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GEOMETRY OF PERIODIC REGIONS ON FLAT SURFACES AND

ASSOCIATED SIEGEL–VEECH CONSTANTS

MAX BAUER AND ELISE GOUJARD

flat surfaces, moduli spaces, abelian differentials, configurations, saddle connections,

Siegel–Veech constants

ABSTRACT. An Abelian differential gives rise to a flat structure (translation surface) on

the underlying Riemann surface. In some directions the directional flow on the flat sur-

face may contain a periodic region that is made up of maximal cylinders filled by parallel

geodesics of the same length. The growth rate of the number of such regions counted with

weights, as a function of the length, is quadratic with a coefficient, called Siegel–Veech

constant, that is shared by almost all translation surfaces in the ambient stratum.

We evaluate various Siegel–Veech constants associated to the geometry of configura-

tions of periodic cylinders and their area, and study extremal properties of such configura-

tions in a fixed stratum and in all strata of a fixed genus.

1. INTRODUCTION

1.1. Statement of some known results. Suppose that Mg,m is a closed connected oriented

surface Mg of genus g with a set of m labelled marked points Σ = {P1, . . . ,Pm}.

By a translation surface S we mean a flat Riemannian metric and a parallel vector field

on Mg,m. The metric has cone type singularities at all of the points Pi of Σ where the total

angle is of the form 2π(di+ 1) for some integer di ≥ 1.

Each geodesic on a translation surface moves in a constant direction, so geodesics do

not have self intersections and a regular geodesic that connects a non-singular point to itself

comes back with the same angle, so it is a periodic geodesic. A periodic geodesic is al-

ways part of a maximal connected periodic region: a maximal cylinder of parallel periodic

geodesics of the same length. We refer to such a maximal cylinder as a periodic cylinder

or, for short, a cylinder, and we say that the common length of the periodic geodesics that

make up the cylinder is the width of the cylinder. The number Ncyl(S,C ,L) of cylinders

of width less than L grows like cπL2: a first fundamental result of Masur [12, 13] states

that there exist two positive constants c1 and c2 such that c1πL2 ≤ Ncyl(S,C ,L) ≤ c2πL2.

Using this fact, Eskin and Masur [6] prove the deep theorem that for almost every surface

in a stratum there is an exact asymptotics Ncyl(S,C ,L) ∼ cπL2. The constant c is called

a Siegel–Veech constant. The main tool to study Siegel–Veech constants is the method

of Veech [19] that also showed the exact asymptotics in a more general setting, but for a

weaker form of convergence.

The main object of this paper is the computation of various Siegel–Veech constants

related to counting periodic regions in different ways. Siegel–Veech constants are par-

ticularly interesting because they appear in various fields. In arithmetic, they give the

asymptotics of the number of primitive points in certain lattices. In dynamics they are
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related to the sum of Lyapunov exponents for the Teichmüller geodesic flow in any in-

variant suborbifold of a stratum of Abelian differentials by the main formula of [5]. For

a Teichmüller curve, they have an algebro-geometric interpretation involving degrees of

certain line bundles given by a formula of Bouw-Möller [1]. Furthermore they are related

to slopes of effective divisors and intersection theory in the moduli space of curves: this

aspect is studied by Chen (see [2] for example) and Chen-Möller (see [3] for example).

By identifyingR2 andC, a translation surface inherits fromC a complex structure on Mg

and a holomorphic one form (Abelian differential) ω . A zero of ω of order d corresponds

to a conical singularity of angle 2π(d+ 1). There is a one to one correspondence between

translation surfaces endowed with a distinguished direction and Abelian differentials. If

we denote by α = (d1, . . . ,dm) the orders of the zeros of ω then we have ∑di = 2g− 2.

For a given α = (d1, . . . ,dm) such that ∑di = 2g− 2 and di ≥ 1, for i = 1, . . . ,m, we

consider the stratum H (α) of the moduli space of Abelian differentials on Mg,m that have

zeros at the points of Σ of orders (d1, . . . ,dm), or equivalently the moduli space of transla-

tion surfaces S with singularities at the points of Σ of angles (2π(d1 +1), . . . ,2π(dm+1)).
The dimension of H (α) is dimCH (α) = 2g+m− 1. The stratum H (α) may be non

connected [18] but contains at most three connected components [10]. The stratum H (α)
admits a volume element [11, 17] that induces a finite SL(2,R)-invariant measure on the

hyperspace H1(α) of area one surfaces in H (α). The volumes of the connected com-

ponents of the strata of Abelian differentials were effectively computed by A. Eskin and

A. Okounkov [8].

The boundary of a periodic cylinder contains singularities. Generically, each boundary

component contains exactly one singularity so it is a closed saddle connection, i.e. a

geodesic that joins a singularity to itself (and contains no other singularity).

Consider a translation surface S. For each positive real number L > 0, denote by

Ncyl(S,L) the number of periodic cylinders in S of width at most L and by Narea(S,L)
the total area of these cylinders. It was shown in [6] that

Theorem (Eskin–Masur). Let H (α) be a stratum, where α = (d1, . . . ,dm) with di ≥ 1,

for i = 1, . . . ,m. For every connected component K of H1(α), there exist constants ccyl(K)
and carea(K) such that for almost every translation surface S in K one has

lim
L→∞

Ncyl(S,L)

πL2
= ccyl(K) lim

L→∞

Narea(S,L)

πL2
= carea(K).

The Siegel–Veech constants ccyl(K) and carea(K) only depend on K. An earlier version

of this result (in a more general setting) where convergence is replaced by convergence in

L1 was proved in [19].

The results in [6, 19] assure the existence of quadratic asymptotics (Siegel–Veech con-

stants) if one counts cylinders with weights (under certain conditions). The existence of

all the Siegel–Veech constants we consider in this paper is justified by these results (see

section 1.3). The function Narea(S,L) for example counts cylinders with weight the area of

the cylinder.

One can also only count cylinders with sufficiently big area: for x ∈ [0,1), denote by

Ncyl,A≥x(S,L) the number of cylinders in S of width at most L and of area at least x. We

denote the corresponding Siegel–Veech constant by ccyl,A≥x(K). It is shown in [20] that
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Theorem (Vorobets [20]). Let H (α) be a stratum, where α = (d1, . . . ,dm) with di ≥ 1,

for i = 1, . . . ,m. Then for any connected component K of H1(α)

(a) cmean area(K) =
carea(K)

ccyl(K)
=

1

2g+m− 2
=

1

dimCH (α)− 1

(b)
ccyl,A≥x(K)

ccyl(K)
= (1− x)2g+m−3 = (1− x)dimCH (α)−2.

The ratio cmean area(K) of part a) of the theorem can be interpreted as the (asymptotic)

mean area of a cylinder on a generic surface in K in the following sense: for almost any

surface M in K one has
carea(K)

ccyl(K)
= lim

L→∞

Narea(M,L)

Ncyl(M,L)
.

Part b) of the theorem is an answer to a question of Veech in [19] where the author asks

if there is a simple formula for
ccyl,A≥x(K)

ccyl,A≥0(K)
(which is the same as

ccyl,A≥x(K)

ccyl(K)
).

As a by-product of our results using the methods from [7] we get an alternative proof

of the theorem of Vorobets by evaluating an explicit integral that is a simplified version of

the integral used in [7].

The methods from [7] allow for the computation of various other Siegel–Veech con-

stants associated to counting cylinders for more specific data that we allude to next.

It might happen that the geodesic flow in a given direction on M contains several (max-

imal) periodic cylinders in that direction. Generically, this only happens if the boundary

saddle connections of the cylinders are homologous. The boundary saddle connections

might be part of a larger family of homologous saddle connections, where the extra saddle

connections do not bound a cylinder. We refer to such a family as a configuration of ho-

mologous saddle connections or simply as a configuration. A topological representation of

such configurations can be obtained by taking blocks of surfaces as in figures 6, 7, and 8

(the surfaces are drawn as tori, but might have arbitrary genus), arranging them in a cyclic

order and then identifying the boundary components.

Note that the fact that the saddle connections are homologous implies that they are

all of the same length. Call this the length of the configuration. It also implies that a

configuration persists under small deformations of the translation structure.

One says that two configurations of homologous saddle connections correspond to the

same topological type if the saddle connections are based at the same singularities, if the

complementary regions are of the same topological type and have the same number and

type of singularities, e.t.c. In particular, they always have the same number of comple-

mentary cylinders. The length of the configuration is the common width of the cylinders

coming from the configuration.

For each connected component K of a stratum there are only a finite number of admis-

sible topological types of configurations, i.e. topological types of configurations that are

realized on at least one surface in K. In fact almost all surfaces share the same admissible

topological types. We will consider only configurations of this special type. Their dis-

tinguishing feature is that they persist under any small deformation. For related counting

problems in the case of general periodic components (so not configurations), see [15, 16].

For S in K, denote by Nconf(S,C ,L) the number of configurations of homologous saddle

connections on S of type C and whose length is at most L.

Theorem (Eskin–Masur–Zorich, [7]). For a given connected component K of a stratum

H1(α) and an admissible topological type C of configurations there exists a Siegel–Veech
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constant cconf(K,C ) such that for almost any surface S in K one has

lim
L→∞

Nconf(S,C ,L)

πL2
= cconf(K,C ).

The authors of [7] give a method to compute these Siegel–Veech constants.

1.2. Statement of results. We denote by Ncyl(S,C ,L) the number of cylinders of length

less than L coming from a configuration of type C . For a real number p ≥ 0 we denote by

Nareap(S,C ,L) the sum of the p-th power of the area of each of these cylinders. We denote

the corresponding Siegel–Veech constants by ccyl(K,C ), resp. careap(K,C ). For p = 1 we

write carea(K,C ). Note that if C comes with q cylinders then ccyl(K,C ) = qcconf(K,C ).
It follows from the general result of [6] that there is a Siegel–Veech constant careap(K,C )

such that for almost any surface S in K one has

lim
L→∞

Nareap(S,C ,L)

πL2
= careap(K,C ).

The methods from [7] can be applied to compute careap(K,C ) in a way similar to the

computation of cconf(K,C ). The expression for careap(K,C ) contains a constant M that

depends only on combinatorial data such as the dimension of the stratum, the order of

the singularities and the possible symmetries. It is given by an explicit formula in § 13.3.

of [7]. It also contains the “principal boundary stratum” H1(α
′) determined by K and

C (the stratum of possibly disconnected surfaces we get by contracting the closed saddle

connections of the configuration). The constant n always denotes the complex dimension

of H1(α
′). If C comes with q cylinders then we have n = dimCH (α)− q− 1.

With this notation we show in section 2.2,

Theorem 1. Given a real number p ≥ 0. Let H (α) be a stratum, where α = (d1, . . . ,dm)
and di ≥ 1, for i = 1, . . . ,m. Let K be a connected component of H1(α) and C an admis-

sible topological type of configuration containing q ≥ 1 cylinders. Then

careap(K,C ) = M · Vol(H1(α
′))

Vol(K)
· (n− 1)!

(p+ 1) · (p+ 2) · · ·(p+ q+ n− 1)
·q

ccyl(K,C ) = M · Vol(H1(α
′))

Vol(K)
· (n− 1)!

(n+ q− 1)!
·q

carea(K,C ) = M · Vol(H1(α
′))

Vol(H1(α))
· (n− 1)!

(n+ q)!
·q

where n = dimCH (α)− q− 1. M denotes the combinatorial constant given in § 13.3. of

[7] and H1(α
′) denotes the principal boundary stratum.

Note that carea(K,C ) = carea1(K,C ) and ccyl(K,C ) = carea0(K,C ), so the second and

third equation of the previous theorem follow from the first.

Remark. (a) Evaluation of careap is motivated by the question of M. Möller related to

the study of quasimodular properties of the related counting function.

(b) We recall that the saddle connections in a configuration of given type C can be

named. Choose and fix one of the saddle connections that bounds a cylinder. In the

proof of theorem 1 we show that if we only consider the area of this cylinder then

we get the same formulas for careap(K,C ) and carea(K,C ) except that the factor q

is missing.

We get as a corollary:
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Corollary 2. Given a real number p ≥ 0 and let H (α) be a stratum of Abelian differen-

tials on a surface Mg,m, where α = (d1, . . . ,dm) with di ≥ 1, for i = 1, . . . ,m. Then for any

connected component K of H1(α) and any admissible type C of configuration containing

at least one cylinder,

cmean areap(K,C ) =
careap(K,C )

ccyl(K,C )
=

(d − 2)!

(p+ 1) · (p+ 2) · · ·(p+ d− 2)
,

where d = dimCH (α) = 2g+m− 1.

Remark. (a) The quotient of the corollary can be interpreted as the (asymptotic) mean

area of a cylinder coming from a configuration of type C , where the area is counted with a

power p.

(b) For a natural number p ≥ 1 we obtain

cmean areap(K,C ) =
1

(
p+d−2

p

) .

Define Nareap(S,L) in the same way as we defined Narea(S,L) in section 1.1, except that

the area of each cylinders is counted with a power p. If careap(K) denotes the corresponding

Siegel-Veech constant, then we have

ccyl(K) = ∑
C

ccyl(K,C ) and careap(K) = ∑
C

careap(K,C ),

where the sum is taken over all admissible topological types of configurations for K with

at least one cylinder. This implies

Corollary 3. Given a real number p≥ 0 and let H (α) be a stratum, where α =(d1, . . . ,dm)
with di ≥ 1, for i = 1, . . . ,m. Then for any connected component K of H1(α)

cmean areap(K) =
careap(K)

ccyl(K)
=

(d− 2)!

(p+ 1) · (p+ 2) · · ·(p+ d− 2)
,

where d = dimCH (α) = 2g+m− 1.

For p = 1, corollary 3 becomes part (a) of the theorem of Vorobets as stated in sec-

tion 1.1. Corollary 2 gives more detailed information as corollary 3. For example, the

mean area cmean areap(K,C ) of a cylinder coming from a configuration of type C does not

depend on the number of cylinders. This means in particular that the mean area of a cylin-

der is the same if the cylinder makes up the whole periodic region of a configuration or if

the periodic region is made up of several cylinders.

As a variation of the above, we denote by Nareap,conf(S,C ,L) the p-th power of the total

area of the periodic region (union of the cylinders) on S coming from a configuration of

topological type C whose length is at most L. The corresponding Siegel-Veech constant is

denoted by careap,conf(K,C ). We show in section 2.3

Theorem 4. Given a real number p≥ 0 and let H (α) be a stratum, where α =(d1, . . . ,dm)
and di ≥ 1, for i = 1, . . . ,m. Let K be a connected component of H1(α) and C an admis-

sible topological type of configuration containing q ≥ 1 cylinders. Then

(a) careap,conf(K,C ) = M · Vol(H1(α
′))

Vol(K)
· (n− 1)!

(q− 1)!

1

(p+ q) · · ·(p+ q+ n− 1)

(b)
careap,conf(K,C )

cconf(K,C )
=

q(q+ 1) · · ·(q+ n− 1)

(p+ q)(p+ q+ 1) · · ·(p+ q+ n− 1)
.
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M denotes the combinatorial constant given in § 13.3. of [7] and H1(α
′) denotes the

principal boundary stratum.

Remark. (a) For a natural number p ≥ 1 we obtain

careap,conf(K,C )

cconf(K,C )
=

q · (q+ 1) · · ·(q+ p− 1)

(d − 1) ·d · · ·(d + p− 2)
,

where d = dimCH (α)− 1.

(b) The quotient in part (b) of the preceeding theorem can be interpreted as the asymp-

totic mean area of the periodic part (taking the p-th power of the area). For p = 1 we get

qcmean area(K,C ), which is consistent, as cmean area(K,C ) is the mean area of a cylinder.

(c) For q = 1 we have careap,con f (K,C ) = careap(K,C ).

We next count configurations with cylinders of large area. We recall that the saddle

connections in a configuration of given type C can be named. Choose and fix one of the

saddle connections that bound a cylinder and call this the first cylinder. Given x ∈ [0,1).
Denote by Nconf,A1≥x(S,C ,L) the number of configurations of type C of length at most

L and such that the area of the first cylinder is at least x (of the area one surface S). We

denote by cconf,A1≥x(K,C ) the corresponding Siegel–Veech constant. Note that we have

cconf,A1≥0(K,C ) = cconf(K,C ). We show in section 2.5

Theorem 5. Given x ∈ [0,1). Let H (α) be a stratum of Abelian differentials on a surface

Mg,m, where α = (d1, . . . ,dm) with di ≥ 1, for i = 1, . . . ,m. Then for any connected compo-

nent K of H1(α) and any admissible topological type C of configuration for K containing

at least one cylinder,

cconf,A1≥x(K,C )

cconf(K,C )
= (1− x)2g+m−3 = (1− x)dimCH (α)−2.

Summing over all configurations we get as a corollary part (b) of the theorem of Voro-

bets but our result contains more detailed information.

We next count configurations with periodic regions of large area. Let C be a topo-

logical type of configuration that comes with q ≥ 1 cylinders. For x ∈ [0,1), denote by

Nconf,A≥x(S,C ,L) the number of configurations on S of type C of length at most L and

such that the total area of the q cylinders is at least x (of the area one surface S). We denote

the corresponding Siegel–Veech constant by cconf,A≥x(K,C ).
The incomplete Beta function B(t;a,b) and the regularized incomplete Beta function

I(t;a,b) are defined for t ∈ [0,1] by

B(t;a,b) =
∫ t

0
ua−1(1− u)b−1du, I(t;a,b) =

B(t;a,b)

B(1;a,b)
=

B(t;a,b)

B(a,b)
.

For more details about the incomplete Beta function see section 4: Figure 9 represents the

density function d
dt

I(t;a,b) for various values for a and b.

With this notation we show in section 2.4:

Theorem 6. Given x ∈ [0,1), and let H (α) be a stratum, where α = (d1, . . . ,dm) with

di ≥ 1, for i = 1, . . . ,m. Suppose that K is a connected component of H1(α) and that C is

an admissible topological type of configurations for K containing exactly q cylinders.

cconf,A≥x(K,C )

cconf(K,C )
= I(1− x;n,q) = (1− x)n

q−1

∑
k=0

(
n− 1+ k

k

)

xk,

where n = dimCH (α)− q− 1= dimCH (α ′).
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FIGURE 1. Graphs of the function f (x) =
cconf,A>x(K,C )

cconf(K,C )

See figure 1 for the graph of I(1− x;n,q) for various values for n and q.

Remark. (a) The fraction
cconf,A≥x(K,C )

cconf(K,C )
can be interpreted as the mean proportion

of configurations of type C whose periodic complementary region is big, that is,

the total area of the cylinders is at least x of the area of the surface.

(b) I(1;n,q) = 1 and

lim
x→1

I(0;n,q)

(1− x)n
=

q−1

∑
l=0

(
n+ l− 1

l

)

=

(
n+ q− 1

n

)

,

so
cconf,A≥x(K,C )

cconf(K,C )
∼ (1− x)n

(
n+ q− 1

n

)

as x → 1.

In this form we can compare the result with the previous one for one cylinder, given

in Theorem 5.

In section 2.6 we consider the problem of correlation between the area of two cylinders.

Let C be an admissible configuration for a connected component K that comes with at

least two cylinders. Choose (and fix) two cylinders and let x,x1 ∈ [0,1). We denote by

NA2≥x,A1≥x1
(S,C ,L) the number of configurations of width length at least L such that the

area A1 of the first cylinder is at least x1 and such that the area A2 of the second cylinder is at

least x of the remaining surface, i.e. it is at least x(1−A1). We denote by cA2≥x,A1≥x1
(K,C )

the corresponding Siegel–Veech constant. To simplify notation we will write cA1≥x1
(K,C )

instead of cconf,A1≥x1
(K,C ). We show in section 2.6,

Theorem 7. For any connected component K of a stratum H1(α), where α = (d1, . . . ,dm)
with di ≥ 1, for i = 1, . . . ,m, and any admissible topological type C of configurations

containing at least two cylinders,

cA2≥x,A1≥x1
(K,C )

cA1≥x1
(K,C )

= (1− x)dimCH (α)−3.

The result does not depend on x1.
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Morally, we compute the asymptotic probability that, among configurations whose first

cylinder has area x1, we have a second cylinder with area at least x(1− x1). Comparing

Theorems 7 and 5 we see that this is the probability that, among all configurations, the

area of the second cylinder is at least x, except that the parameter space has one fewer

dimension. So, in some sense, except for the fact that the area of the first cylinder gives a

restriction on the range for the area of the second cylinder, the area of the second cylinder

is independent of the area of the first cylinder.

In the results presented above we studied individual configurations. In the remaining

part of the paper we study extremal properties of configurations among all configurations

in a given stratum or even among all strata for a fixed genus.

In section 3.1 we address the question of finding topological types of configurations C

(admissible for some connected component K) that maximizes

cmean area conf(K,C ) =
carea(K,C )

cconf(K,C )
.

The constant cmean area conf(K,C ) can be interpreted as the asymptotic mean area of the

periodic part (union of the cylinders) of the complementary region of a configuration of

topological type C .

Each stratum has at most three connected components that are classified by the in-

variants “hyperellipticity”, and “parity of spin structure”. (We recall in section 3.2 the

classification of connected components from [10].)

The quantity cmean area conf(K,C ) varies considerably among strata. For the connected

stratum H (1,1, . . . ,1), the maximal value of cmean area conf(K,C ) over all the configura-

tions is 1
4
. For the connected component H hyp(g−1,g−1) it is equal to 1

2g
. The following

proposition gives an uniform bound on the ratio cmean area conf(K,C ).

Theorem 8. Let K be any connected component of a stratum H (α) and C be any admis-

sible topological type of configuration for K, then the asymptotic mean area of the periodic

complementary regions satisfies

cmean area conf(K,C )≤ 1

3
.

The maximum is attained for any genus g ≥ 2: for each g ≥ 2 there is a topological type

of configuration Cg that is admissible for the component H odd(2,2, . . . ,2) (g− 1 zeros

of order 2) of Abelian differentials on a surface of genus g such that the corresponding

constant cmean area conf is 1
3
.

To prove this result we need to determine the maximal number of cylinders that can

come from any configuration which is admissible for a fixed stratum H (α). We insist

on the fact that we compute here the number of cylinders in rigid collections of saddle

connections, which is different from the studies of Naveh [15] and Lindsey [16] where

they count the number of parallel cylinders.

In section 3.2 we answer a question of A. Eskin and A. Wright: is it possible to find

in each connected component of each stratum a topological type of configuration whose

complementary regions are tori with boundary and cylinders.

The answer depends on the connected component. We show (Proposition 11): for hy-

perelliptic components this is not possible; for the components with even spin structure

when the genus is even this is not possible unless we allow one of the complementary

regions to be a genus two surface; in all other cases this is possible.
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1.3. Notation. We introduce here most of the notation we need for the computation of

Siegel–Veech constants. For survey material on Abelian differentials and translation sur-

faces see [9, 22, 14]. For the exact definition of configurations and related results see [7].

Let Mg,n denote a closed oriented surface Mg of genus g on which there are m marked

points Σ= {P1, . . . ,Pm}. By (R,ω) we denote a Riemann surface structure R on Mg together

with an Abelian differential ω . If ω is not identically zero then Σ is the set of zeros of ω .

We usually only write ω for (R,ω). If we denote by (d1, . . . ,dm) the orders of the zeros of

ω then we have ∑di = 2g− 2.

The form ω can be used to define an atlas of adapted coordinates on R. In these adapted

coordinates the Abelian differential ω becomes dz in a neighborhood of any point of R\Σ
and is (di +1)wdidw = d(wdi+1) in a neighborhood of a point Pi ∈ Σ, where di is the order

of the zero Pi. Transition functions away from the zeros for these adapted coordinates are

translations. We refer to a surface together with an atlas whose transition functions are

translations as translation surfaces.

Using such an atlas, R \Σ inherits from the complex plane a flat (zero curvature) Rie-

mannian metric. A zero of order di of the Abelian differential (that is a regular point of the

Riemann surface structure) corresponds to a conical singularity of the flat metric of total

angle 2π(di+ 1). These points are also called saddles.

The horizontal unit vector field on C pulls back by adapted coordinates to a horizontal

unit vector field on R \Σ. Away from the singularities, the leaves of the corresponding

foliation are geodesics with respect to the flat metric. In fact, for each θ ∈ [0,2π [ we have

a unit vector field and so a foliation in that direction that comes from the unit vector field

in direction θ of the complex plane.

The converse construction is also possible: suppose that S is a translation surface struc-

ture on Mg,m, i.e. an atlas on Mg,m whose transition functions are translations. A translation

surface inherits from R
2 a flat Riemannian metric and a parallel vector field on Mg,m. We

assume that Mg is the metric completion of Mg,m. The points of Σ that are not regular points

for the metric, are cone type singularities where the total angle is of the form 2π(di + 1)
for some di ∈ N.

By identifying R2 and C, a translation surface inherits from C a complex (Riemann

surface) structure on Mg and a holomorphic one form (abelian differential) ω . The zeros

of ω are contained in Σ.

Each translation surfaces can be represented by a polygon in the plane whose edges

come in pairs of parallel sides of the same length. Identifying each pair by a translation

one obtains a translation surface. The vertices give rise to singularities (or regular points if

the total angle is 2π .)

We identify two translation surface structures if there is a bijection of the underlying

topological surface that is in local coordinates a translation. We identify two Abelian

differentials (for some complex structures) if they are biholomorphically equivalent. There

is then a one to one correspondance between Abelian differentials and translation surfaces.

We denote by H the moduli space of Abelian differentials ω or equivalently of translation

surfaces S. The moduli space H is an algebraic variety.

Given α = (d1, . . . ,dm) such that 2g−2 = ∑i di. The set H (α) of Abelian differentials

that share the same zero structure α is called a stratum. The stratum H (α) is an algebraic

subvariety that admits a natural affine structure and a natural “Lebesgue” volume element

induced by this affine structure [11, 17]. The dimension of H (α) is dimCH (α) = 2g+
m− 1.
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The area of the translation surface S defined by the Abelian differential ω = φ(z)dz

is
∫

S |φ(z)|2dxdy. We denote by H1(α) the hyperspace of H (α) of area one surfaces.

Masur [11] and Veech [17] showed that H1(α) with the measure induced by the measure

on H (α) is of finite volume.

There is a natural SL(2,R) action on H (α). An element g ∈ SL(2,R) acts on local

coordinates by postcomposition of g. The measure on H (α) and H1(α) is SL(2,R)
invariant. If we represent a translation surfaces by a polygon in R2, then the action of g is

the usual action on R2.

Geodesic segments in the flat metric have constant angle with respect to the flat metric,

so a geodesic segment γ can be represented by a holonomy vector hol(γ) in R2. The angle

and length of the vector is given by the direction and length of the geodesic segment. We

will often use γ both for the geodesic segment and for the holonomy vector.

As we said above, a closed geodesic is always contained in a maximal cylinder of closed

geodesics and each boundary component of the cylinder is generically a closed saddle

connection. As all of the geodesics in the cylinder are represented by the same vector we

say that this vector represents the cylinder. Its length is the width of the cylinder.

Suppose that on a translation surface we find in some direction a configuration of ho-

mologous saddle connections, meaning a maximal family of saddle connections, that are

homologous relative to the singularities. All of the saddle connections are parallel and of

the same length, so they share the same holonomy vector. Its length is the length of the

configuration.

A configuration defines the following data: the named singularities the saddle connec-

tions are based at; the topological type of the complementary regions; the knowledge of

which saddle connection bounds which complementary region, so in particular the cyclic

order of the complementary regions; the order of the singularities (if there are any) in the

interior of each complementary region; the singularity structure on the boundary (the type

of boundary and angles at the boundary singularities to be described below).

We say that two configurations are of the same topological type if they define the same

data. Almost all surfaces in a given connected component K share the same topological

types of configurations that can be realized on the surface. We talk about an admissible

topological type for K.

Denote by V (S,C ) the (discrete) set of holonomy vectors associated to configurations

on S of type C . We are allowed to associate weights to the holonomy vectors. Denote by

B(L) ⊂ R2 the disk of radius L centered at the origin and by N(S,C ,L) the cardinality of

V (S,C )∩B(L), where the elements of V (S,C )∩B(L) are counted with their weights. So

if we write an element of V (S,C ) as (v,w(v)) where w(v) is the weight of the holonomy

vector v, then N(S,C ,L) = ∑v∈V (S,C )∩B(L) w(v).

By using appropriate weights on the holonomy vectors the counting function N(S,C ,L)
becomes the counting functions Nconf(S,C ,L), Ncyl(S,C ,L), Narea(S,C ,L) e.t.c. intro-

duced in section 1.2. If for example we count holonomy vectors associated to a config-

uration with weight one (resp. the number of cylinders, total area of the cylinders) then

N(S,C ,L) equals Nconf(S,C ,L) (resp. Ncyl(S,C ,L), Narea(S,C ,L)).
Given a connected component K of some stratum H1(α) and an admissible topological

type C for K. It follows from [6] that the set of (weighted) holonomy vectors V (S,C ) and

the associated counting functions N(S,C ,L) we consider in this paper verify the following

conditions :

(A) for every g ∈ SL(2,R), V (gS,C ) = gV (S,C ).
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(B) for every S ∈ K there exists a constant c(S)> 0 such that N(S,L,C )≤ c(S)L2. The

constant c(S) can be chosen uniformly on compact sets of K.

(C) there exist constants L > 0 and ε > 0 such that N(S,L,C ) is L1+ε(K,µ) as a func-

tion of S.

In fact, the authors of [6] show that the above conditions are verified for the set V (S) of

holonomy vectors of closed saddle connections on S where the weight associated to a ho-

lonomy vector is the number of saddle connections on S that share this vector. The weights

we use in this paper are “invariant under SL(2,R)”, so the sets V (S,C ) we use verify con-

dition (A). The number of configurations is bounded by the number of saddle connections,

and as we use bounded weights, the counting functions N(S,C ,L) we consider also satisfy

conditions (B) and (C).

For f ∈C∞
0 (R

2) one defines the function f̂ : K → R by

f̂ (S) = ∑
v∈V (S,C )

w(v) f (v).

The fact that the sets V (S,C ) and associated counting functions N(S,C ,L) we consider

in this paper satisfy the conditions (A), (B), (C), implies, using [6], that:

Theorem ([6, 19]). Let K be a connected component of some stratum H1(α) of Abelian

differentials and C an admissible topological type of saddle connections for K. Then for

any of the sets V = V (S,C ,L) and associated counting functions NV (S,C ,L) we consider

in this paper there is a constant cV (K,C ) such that the following holds :

(a) For almost any translation surface S in K,

lim
L→∞

NV (S,C ,L)

πL2
= cV (K,C ).

(b) For any f ∈C∞
0 (R

2),

1

vol(K)

∫

K
f̂ (S)dvol(S) = cV (K,C )

∫

R2
f (x,y)dxdy.

If the convergence in (a) is replaced by convergence in L1 then this theorem follows

from a more general theorem under similar hypotheses in [19]. In that paper, (b) is proved

for integrable functions f of compact support. We will only use (b) for the characteristic

function on a disk.

The paper [7] explains how this last theorem can be used to compute the Siegel–Veech

constant cconf(K,C ). The same method can be used to compute the other Siegel–Veech

constants we consider in this paper.

The strategy used in [7] is as follows: if we apply (b) for the characteristic function fε

of the disc B(ε) of radius ε centered at the origin then the integral of the right hand side

becomes πε2 and we have

f̂ε (S) = ∑
v∈V (S,C )∩B(L)

w(v) = N(S,C ,ε).

So

cV (K,C ) =
1

vol(K)

1

πε2

∫

K
NV (S,C ,ε)dvol(S).

Denote by K(ε,C ) the subset of translation surfaces in K that contain at least one con-

figuration of type C of length smaller than ε . So NV (S,C ,ε) is zero outside K(ε,C ).
Denote by Kthick(ε,C ) the subset of K(ε,C ) of translation surfaces that contain exactly
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one configuration of type C of length smaller than ε but contain no other closed saddle

connection of length smaller than ε . Using a result from [6] the autors of [7] show that

vol(K(ε,C )) = vol(Kthick(ε,C ))+ o(ε2).

So

cV (K,C ) =
1

vol(K)

1

πε2

∫

K(ε,C )
NV (S,C ,ε)dvol(S)

= lim
ε→0

1

vol(K)

1

πε2

∫

Kthick(ε,C )
NV (S,C ,ε)dvol(S).(1)

Consider a translation surface S in Kthick(ε,C ). On S we have a configuration of closed

saddle connections of topological type C of length smaller than ε and no other short closed

saddle connection. Cutting along the closed saddle connections we decompose S into

several pieces. There will be some, say p ≥ 1, surfaces S1, . . . ,Sp with boundary and some,

say q≥ 0, periodic cylinders C1, . . . ,Cq, all having the same width. The pieces are arranged

in a cyclic order. The boundary of each Si is made up of two closed saddle connections.

For each connected component Si, by taking out the boundary and then taking the com-

pactification we get a surface with either one boundary component, a figure eight, as in the

right part of figure 2, or we get a surface with two boundary components, a pair of holes,

as in the right part of figure 3.

In the first case, the figure eight boundary describes two interior sectors of the surface

of angles 2π(a′+ 1) and 2π(a′′+ 1), for some integers a′,a′′ ≥ 0. (Figure 2 illustrates the

case a′ = 1 and a′′ = 0.) By shrinking the figure eight boundary to a point we produce a

singularity of order a′+a′′ if a′+a′′ ≥ 1, or a regular point if a′+a′′ = 0. (See the left part

of figure 2.)

2π(a′ + a′′ + 1)

2π(a′ + 1)

2π(a′′ + 1)

FIGURE 2. Figure eight construction

In the second case, each of the boundary components comes with a boundary singularity

of angles π(2b′+ 3) and π(2b′′ + 3) for some integers b′,b′′ ≥ 0. (Figure 3 illustrates

the case b′ = 1 and b′′ = 0.) By shrinking the two boundary components we produce

singularities (or regular points) of orders b′ and b′′. (See the left part of figure 3.)

2π(b′′ + 1)2π(b′ + 1)

π(2b′′ + 3)π(2b′ + 3)

FIGURE 3. Creating a pair of holes

The type of boundary, figure eight or pair of holes, and the associated angles is what we

referred to above as “singularity structure on the boundary”.
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We get in this way closed surfaces S′i that belong to some stratum H (α ′
i ), for i =

1, . . . , p. We write α ′ =⊔p
i=1α ′

i and H (α ′) = Π
p
i=1H (α ′

i ). We will say that the surface S′

whose connected components are S′1, . . . ,S
′
p belongs to H (α ′). We say that S′ belongs to

the principal boundary of H (α) determined by C and that H (α ′) is the corresponding

principal boundary stratum. All this data (topological type of complementary regions,

cyclic order, boundary stratum, e.t.c.) are the same for any configuration of the same

topological type C . In fact the topological type is characterized by this data.

By shrinking a closed saddle connection, the singular point it is based at might become

a regular point with total angle 2π . In this case the regular point will be considered as a

marked point of order 0. So α ′
i can contain one or two 0.

The procedure of shrinking saddle connections can be reversed. We summarize the

description form [7] in case where H (α) has only one connected component K. Start

with a (maybe disconnected) surface T ′ in H (α ′) and call the connected components

T ′
i . Choose some holonomy vector γ in B(ε). There are two types of surgery. A figure

eight surgery where we start with a singularity or a marked point of order a ≥ 0, choose

a′,a′′ ≥ 0 such that a = a′ + a′′ and then metrically create a figure eight boundary that

consists of two saddle connections in direction γ that are of length |γ| and are based at

the same singularity. There will be two sectors of angles 2π(a′+ 1) and 2π(a′′+ 1) (see

figure 2). A pair of holes surgery where we start with two points that are either a singularity

or a marked point of orders b′ ≥ 0 and b′′ ≥ 0 and then create a boundary saddle connection

at each singularity. The pair of holes boundary has two boundary singularities of angles

π(2b′+ 3) and π(2b′′+ 3) (see figure 3).

By performing an appropriate surgery on each T ′
i we obtain surfaces Ti that are homeo-

morphic to the surfaces Si and have the same type of singularities in the interior and on the

boundary. We then take q cylinders C j with a marked point on each boundary. We finally

combine the surfaces Ti and the cylinders C j in the way prescribed by the topological type

C to produce a surface T in Kthick(ε,C ). We do this by identifying pairs of boundary com-

ponents by an isometry that identifies boundary singularities. The boundary components

give rise to a configuration of closed saddle connections of topological type C . In fact each

surface in Kthick(ε,C ) can be produced in this way.

The parameters used to produce surfaces in Kthick(ε,C ) are the following:

• a maybe disconnected surface in H (α ′).
• a holonomy vector γ in B(ε).
• a combinatorial constant M that only depends on the configuration. There is a M : 1

correspondence between the surfaces in Kthick(ε,C ) and the surfaces in H1(α
′).

This is mainly due to the facts that at a zero of order k there are k+ 1 sectors of

angle 2π where we can produce a saddle connection in the direction of γ and to

possible symmetries of the surface in Kthick(ε,C ) (see § 13.3. of [7]).

• the heights hi of the q cylinders Ci (the width is given by |γ|).
• for each cylinder Ci a twist parameter ti ∈ [0, |γ|) that describes the relative position

of the marked points on the two boundary components.

Remark. If H (α) has more than one connected component than the correspondence

between the thick part Kthick(ε,C ) of a connected component K of H1(α) and the principal

boundary H (α ′) is slightly more complicated. For example, to construct a surface T in

Kthick(ε,C ), where K is a hyperelliptic component, we must start with a surface T ′ in the

principal boundary such that all connected components T ′
i of T ′ are hyperelliptic surfaces.

So only the hyperelliptic components of some strata are in the principal boundary of K. It

might even happen that only part of a connected component of a stratum is in the principal
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boundary. We still denote the principal boundary of Kthick(ε,C ) by H (α ′), although

H (α ′) might be the union of (parts of) connected components of some strata.

We remark in passing that there are also some parameters used to describe the surgeries

but this does not affect our computations.

If q > 1, then to parametrize the q tori we will always replace hq by h = h1 + · · ·+ hq.

So the heights (h1, . . . ,hq−1) are in the cone ∆q−1(h) given by the conditions hi > 0, for

1 ≤ i ≤ q− 1, and h1 + · · ·+ hq−1 < h.

For a given ε > 0 we define

H
ε(0q) = {(γ,h,h1, . . . ,hq−1, t1, . . . , tq) |

γ ∈ B(ε),(h1, . . . ,hq−1) ∈ ∆q−1(h),(t1, . . . , tq) ∈ [0, |γ|]q}.

In what follows, |γ| will always be small, but if no specific restriction on |γ| is needed we

will write H (0q). We write dν(T ) for the measure

dν(T ) = dγ dh

q−1

∏
i=1

dhi

q

∏
i=1

dti.

We refer to the elements of H ε(0q) as tori as we obtain a torus with q marked points by

joining the q cylinders. We write H ε
1 (0q) for the subset of H ε(0q) of area 1 tori, meaning

that they satisfy the condition h|γ|= 1.

We remark in passing that H ε (0q) can be interpreted as the ε -neighborhood of the

“cusp” of the moduli space of flat tori with q marked points except that the marked points

are already named by the way we parametrize them. This is in contrast to the cusp of the

usual moduli space H ε(0, . . . ,0
︸ ︷︷ ︸

q times

) where the marked points can be arbitrarily named.

We denote by dν(S) (resp. dν(S′)) the measure on H (α) (resp. H (α ′)). It is shown

in [7] that

dν(S) = dν(S′) ·dν(T ).

Let S be a translation surface in H1(α). For r a positive real number we denote by

rS ∈ H (α) the surface we get by multiplying the flat metric on S by r. Equivalently, if

we represent S by an Abelian differential ω with respect to some complex structure, then

rS corresponds to the Abelian differential rω with respect to the same complex structure.

Note that we have in particular area(rS) = r2 area(S).
If X is a subset of H1(α) then the cone C(X) is defined to be

C(X) = {rS |0 < r < 1,S ∈ X} ⊂ H (α).

If we denote by dvol(S) the measure on H1(α) induced by the measure dν(S) then we

have

dν(S) = rdimRH (α)−1dr dvol(S).

So in particular one has

vol(H1(α)) = dimRH (α)ν(H (α)).

One has analogous statements for H1(α
′) and H1(0

q) with their induced measures

denoted by dvol(S′) and dvol(T ).
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Note that there are q+1 complex parameters for H ε(0q) and that one has dimRH (α)=
dimRH (α ′)+ dimRH (0q). So by writing n = dimCH (α ′) we have

dimRH (α ′) = 2n

dimRH (0q) = 2(q+ 1)

dimRH (α) = 2(n+ q+ 1)

We recall for completeness that if α = (d1, . . . ,dm) with di ≥ 1 for i = 1, . . . ,m, then

dimRH (α) = 2(2g+m− 1).

2. SIEGEL–VEECH CONSTANTS.

2.1. General method. We will describe in this section the method used to compute the

Siegel–Veech constants introduced in section 1.2. Consider a stratum H (α) of Abelian

differentials where α = (d1, . . . ,dm) and di ≥ 1 for i = 1, . . . ,m. Suppose that K is a con-

nected component of H1(α) and that C is an admissible topological type of configurations

for K containing exactly q ≥ 1 cylinders. We denote the corresponding principal boundary

stratum by H (α ′). Recall that Kthick(ε,C ) is the set of translation surfaces in K that con-

tain exactly one configuration of type C of length smaller than ε but do not contain another

closed saddle connection of length smaller than ε . To simplify notation we will write from

now on Kε for Kthick(ε,C ).
Suppose that N(S,C ,ε) is one of the above mentioned counting functions that counts

configurations on S of length smaller than ε and of topological type C. We want to evaluate
∫

Kε N(S,C ,ε)dν(S).
The decomposition of a surface S ∈H (α) as q tori with marked points on the boundary

and a surface S′ in H (α ′) on which one performs surgeries (M choices) gives the following

parametrisation of the cone C(Kε ): before performing the surgeries, a surface S in C(Kε)
is made up of sS′1 and tT1 for some scalars s, t where S′1 ∈ H1(α

′) and T1 ∈ H1(0
q). The

conditions are the following :

(i) the total area s2 + t2 of S satisfies s2 + t2 ≤ 1;

The area 1 surface 1√
s2+t2

S is in Kε so the waist curve of t√
s2+t2

T1 is smaller than ε which

means that the waist curve of T1 is smaller than ε

√
s2+t2

t
. So the second condition is:

(ii) T1 has to lie in H ε ′
1 (0q), where ε ′ = ε

√
s2+t2

t
.

We have

(2)

∫

C(Kε )
N(S,C ,ε)dν(S) =

= M vol(H1(α
′))

1∫

0

s2n−1ds

√
1−s2
∫

0

t2q+1dt

∫

H ε ′
1 (0q)

N(S,C ,ε)dvol(T )+ o(ε2),

where ε ′ = ε ′(s, t) = ε·
√

s2+t2

t
. Note that if we construct S ∈ C(Kε ) as described above

then S contains exactly one configuration of type C and of width less than ε , so N(S,C ,ε)
can be replaced by the weight with which we count configurations.

This integral is a simplification of the integral from [7], page 133. In [7] the statement is

about the volume of C(Kε ) (in our notaton) as the authors only count configurations with

weight one, so N(S,C ,ε) = 1 on Kε .
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2.2. Mean area of a cylinder. Fix an admissible configuration C in a connected compo-

nent K of a stratum H1(α) that comes with q ≥ 1 cylinders and let p be a real number

p ≥ 0.

Proof of Theorem 1. We choose and fix one of the named closed saddle connection of C

that bounds a cylinder and call this cylinder the first one. We denote by Narea
p
1
(S,C ,ε) the

number of configurations on S of type C of length at most ε , counted with weight the p-th

power of the area of the first cylinder. We denote the corresponding Siegel-Veech constant

by carea
p
1
(K,C ).

As described above, we decompose a surface S in C(Kε) as sS′1 and tT1. We use the

usual parameters γ,h,h1, . . . ,hq−1, t1, . . . , tq to parametrize T1 ∈ H
ε

1 (0q). We assume the

notation chosen so that the first cylinder of S corresponds to the first cylinder of T1. So the

area of the first cylinder of S is t2h1w, where w = |γ|. We use the following weight:
(

t2h1w

s2 + t2

)p

.

This weight is invariant under scaling of S and if the area s2 + t2 of S equals 1 then it

reduces to (t2h1w)p which is the p-th power of the area of the first cylinder of S. A surface

S ∈C(Kε) contains exactly one configuration of type C of width at most ε , so we need to

evaluate the integral of equation (2) for

N(S,C ,ε) = Narea
p
1
(S,C ,ε) =

(
t2

s2 + t2

)p

(h1w)p.

The first step to do this is to show that

Lemma 9.
∫

H ε
1 (0q)

(h1w)pdvol(T ) =
2πε2

(p+ 1) · (p+ 2) · · ·(p+ q− 1)
,

where for q = 1 the denominator is by convention equal to 1.

Proof. For q = 1 we have h1w = hw = 1, so the computation is a simplified version of the

general case. Assume that q > 1. We will first integrate over the domain C(H ε
1 (0q)), still

using the parameters γ,h,h1, . . . ,hq−1, t1, . . . , tq for T ∈C(H ε
1 (0q)). To have a weight that

is invariant under scaling of T and that becomes (h1w)p for an area one torus T1, we use

the weight
(

h1w

hw

)p

=

(
h1

h

)p

.

The domain of integration for T ∈ C(H ε
1 (0q)) is as follows: The area wh of T satisfies

wh≤ 1. We have 1√
wh

T ∈H ε
1 (0q), so the length w√

wh
of the waist curve of 1√

wh
T is smaller

than ε , which gives h ≥ w
ε2 . (See figure 4.)

(3)

∫

C(H ε
1 (0q))

(
h1

h

)p

dvol(T ) =

2π∫

0

dθ

ε∫

0

w dw

1/w∫

w/ε2

dh

∫ h

0

(
h1

h

)p

dh1·

·
∫

∆q−2(h−h1)

dh2 . . .dhq−1

∫

[0,w]q

dt1 . . .dtq.
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h

w = |γ|ε

h = 1

w

h = w

ε
2

FIGURE 4. Domain of integration for C(H ε
1 (0))

The volume of the cone ∆q−2(h−h1) is
(h− h1)

q−2

(q− 2)!
and the volume of the cube [0,w]q

is wq. Using the change of variables u = h1/h, the right hand side of equation (3) then

evaluates to
πε2

(q− 2)!

B(p+ 1,q− 1)

q+ 1
=

πε2

q+ 1

1

(p+ 1) · · ·(p+ q− 1)
,

where B(·, ·) is the Beta function defined by (10). We get the right hand side using rela-

tions (11) and (9).

The weight f (S)= (h1/h)p satisfies f (rS) = f (S) and, if S1 ∈H ε
1 (0q), f (S1)= (h1w)p,

so

∫

C(H ε
1 (0q))

(
h1

h

)p

dvol(T ) =

=

1∫

0

r2(q+1)−1dr

∫

H ε
1 (0q)

f (rS1)dvol(S1) =
1

2(q+ 1)

∫

H ε
1 (0q)

(h1w)pdvol(S1),

which completes the proof of the lemma. �

To continue the proof of Theorem 1, we evaluate equation (2). We use lemma 9

with ε ′ =
ε ·

√
s2 + t2

t
and integrate the function

(

t2

s2 + t2

)p

that is the remaining part

of Narea
p
1
(S,C ,ε). So equation (2) becomes

∫

C(Kε )
Narea

p
1
(S,C ,ε)dν(S) =

M ·Vol(H1(α
′)) ·2πε2

(p+ 1) · (p+ 2) · · ·(p+ q− 1)
Jp + o(ε2),

where

Jp =
∫ 1

0
s2n−1ds

∫
√

1−s2

0
t2q+1 ·

(
t2

s2 + t2

)p−1

dt

Using polar coordinates s = r cosθ , t = r sinθ we get

Jp(C ) =
1

2(n+ q+ 1)

∫ π
2

0
(cosθ )2n−1(sin θ )2p+2q−1dθ .
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Using u = cos2 θ we get

(4) Jp(C ) =
B(n,q+ p)

4(n+ q+ 1)
=

1

4(n+ q+ 1)

(n− 1)!

(p+ q) · · ·(p+ q+ n− 1)
.

Using the fact that for S ∈ C(Kε), Nareap(S,C ,ε) =
(

t2

s2+t2

)p

is invariant under scaling

of S and reduces to the initial definition of Nareap(S1,C ,ε) if S1 ∈ Kε , we can show as in

the proof of lemma 9 that
∫

Kε

Narea
p
1
(S1,C ,ε)dvol(S1) = 2(n+ q+ 1)

∫

C(Kε)

Narea
p
1
(S,C ,ε)dν(S),

where 2(n+ q+ 1)= dimRH (α). And so

∫

Kε

Narea
p
1
(S,C ,ε)dvol(S) =

= M ·πε2 ·Vol(H1(α
′)) · (n− 1)!

(p+ 1) · · ·(p+ q+ n− 1)
+ o(ε2).

Using equation (1) we conclude that

carea
p
1
(K,C ) = M · Vol(H1(α

′))
Vol(K)

· (n− 1)!

(p+ 1) · · ·(p+ q+ n− 1)
.

Note that if we define Narea
p
i
(S,C ,ε) in the same way as Narea

p
1
(S,C ,ε), except that we use

the area of the i-th cylinder, for i= 1, · · · ,q, then we have Nareap(S,C ,ε)=∑i Narea
p
i
(S,C ,ε).

It follows that careap(K,C ) = qcarea
p
1
(K,C ), which completes the proof of Theorem 1. �

Remark. (a) We note that the volume of the stratum H1(α
′) of disconnected surfaces was

computed in [7], equation (12); writing H (α ′) = Π
p
i=1H (α ′

i ) and ni = dimCH (α ′
i ), we

have

Vol(H1(α
′)) =

1

2p−1
· ∏

p
i=1(ni − 1)!

(n− 1)!
·

p

∏
i=1

Vol(H1(α
′
i )).

(b) As an example we consider the moduli space of tori. To have a configuration we need to

mark one regular point. The only possible topological type C of configuration is a closed

saddle connection based at this regular point. We get, using Lemma 9 for p = 0 and q = 1,

cconf(H1(0),C ) = lim
ε→0

1

πε2
· Vol(H ε

1 (0))

Vol(H1(0))
=

1

πε2
· 2πε2

π2/3
=

6

π2
=

1

ζ (2)
,

which is the well-known factor for the proportion of coprime lattice points in Z⊕Z.

2.3. Mean area of the periodic region. Fix an admissible topological type of configura-

tion C for a connected component K of a stratum H1(α) that comes with q ≥ 1 cylinders.

Recall that Nareap,conf(S,C ,L) denotes the p-th power of the total area of the periodic re-

gion (union of the cylinders) on S coming from a configuration of topological type C

whose length is at most L.

Proof of theorem 4. The argument is a special case of the argument in section 2.2. By

decomposing as before a surface S in C(Kε ) as sS′1 and tT1 we use the weight

Nareap,conf(S,C ,ε) =

(
t2

s2 + t2

)p

.
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So by taking p = 0 in lemma 9,

(5)

∫

H ε
1 (0q)

dvol(T ) =
2πε2

(q− 1)!
.

We then have
∫

C(Kε )
Nareap,conf(S,C ,ε)dν(S) = M ·Vol(H1(α

′)) · 2πε2

(q− 1)!
Jp + o(ε2),

where Jp satisfies relation (4). We conclude as in section 2.2 that

∫

Kε

Nareap,conf(S,C ,ε)dvol(S) =
M ·πε2 ·Vol(H1(α

′)) · (n− 1)!

(q− 1)! · (p+ q) · · ·(p+ q+ n− 1)
+ o(ε2).

It suffices to apply relation (1). �

2.4. Configurations with periodic regions of large area. Fix an admissible configura-

tion C in a connected component K of a stratum H1(α) that comes with q ≥ 1 cylinders

and let x ∈ [0,1) be a real parameter. Recall that Nconf,A≥x(S,C ,ε) denotes the number of

configurations on S of type C of length smaller than ε and such that the total area of the q

cylinders is at least x (of the area one surface S).

Proof of Theorem 6. We use a modification of the argument from section 2.2. Here we

consider the subset of Kε consisting of surfaces S whose area of the periodic part is at

least x (of the area 1 surface S). Construct S in the cone of this set using sS′1 and tT1 for

some scalars s, t and S′1 ∈ H1(α
′) and T1 ∈ H

ε ′
1 (0q). We need to evaluate the integral in

equation (2) with an additional condition : when scaling S by 1
s2+t2 we get a surface of area

one that satisfies

area

(

t√
s2 + t2

T1

)

=
t2

s2 + t2
> x ⇐⇒ t ≥

√

x

1− x
s.

We count a configuration that satisfies this additional constraint with weight 1, so equa-

tion (2) becomes

∫

C(Kε )

Nconf,A>x(S,C ,ε)dν(S)

= M vol(H1(α
′))

1∫

0

s2n−1ds

√
1−s2
∫

√
x

1−x s

t2q+1dt

∫

H ε ′
1 (0q)

dvol(T )+ o(ε2),

where ε ′ =
ε ·

√
s2 + t2

t
.

Using relation (5), the right hand side becomes

M ·2πε2

(q− 1)!
·Vol(H1(α

′)) · Ix + o(ε2)

where

Ix =
∫

√
1−x

0
s2n−1

∫
√

1−s2

√
x

1−x s
t2q+1 s2 + t2

t2
dtds.

The domain of integration for s and t is described in Figure 5.
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s

t

1

1

0
√
1− x

√
x

FIGURE 5. Domain of integration.

Using polar coordinates s = r cosθ , t = r sinθ and setting α = arccos
√

1− x we get

Ix =
1

2(n+ q+ 1)

∫ π
2

α
(cosθ )2n−1(sinθ )2q−1dθ .

Using the change of variables u = cos2 θ we get

Ix =
1

4(n+ q+ 1)

∫ 1−x

0
un−1(1− u)q−1du =

B(1− x;n,q)

4(n+ q+ 1)
,

where B(·; ·, ·) is the incomplete Beta function as defined in equation (12).

Note that we have cconf(K,C ) = cconf,A≥0(K,C ), so up to the same constant, the integral

used to compute cconf,A≥x(K,C ), resp cconf(K,C ) is given by Ix, resp I0 (or equivalently

J0, see equation (4)), so

cconf,A≥x(K,C )

cconf(K,C )
=

Ix

I0

= I(1− x;n,q).

We proved Theorem 6 of section 1.2, where, to expand I(1−x;n,q), we use Lemma 14.

�

2.5. Configurations with a cylinder of large area. Fix an admissible configuration C in

a connected component K of a stratum H1(α) that comes with q ≥ 1 cylinders and let x be

a parameter that satisfies 0 ≤ x < 1.

We choose and fix one of the named closed saddle connection of C that bounds a cylin-

der and call this cylinder the first one. Recall that Nconf,A1≥x(S,C ,L) is the number of

configurations of type C of length at most L and such that the area of the first cylinder is

at least x (of the area one surface S).

Proof of theorem 5. Suppose that we have q ≥ 1 cylinders. The argument is as in sec-

tion 2.4 with the following modification: We replace “area” by “area of the first cylinder”

in the condition area

(

t√
s2+t2

T1

)

= t2

s2+t2 > x. Denote by Cuspa(ε
′) the subset of H ε ′

1 (0q)

of tori T1 such that the area of the first cylinder of T1 is at least a = x s2+t2

t2 . Using the usual

parameters (γ,h,hi, t j), a torus T is in the cone of Cuspa(ε
′) if the area one torus 1√

wh
T is

in Cuspa(ε
′), so the parameters for T have the additional constraint

wh1
wh

> a.

To compute the volume of Cuspa(ε
′) we proceed as in the proof of lemma 9 for x =

0. The only difference is that we replace the condition 0 ≤ h1 ≤ h by ah ≤ h1 ≤ h. So
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(h1, . . . ,hq−1) is in a cone whose volume is
((1−a)h)q−1

(q−1)! . So the volume is as in equation (5)

except that we have an extra factor (1− a)q−1. So we need to integrate

(6) I′x =
∫

√
1−x

0
s2n−1

∫
√

1−s2

√
x

1−x s
t2q+1(1− a)q−1 s2 + t2

t2
dtds.

Using polar coordinates s = r cosθ , t = r sin θ followed by the change of variables w =
cos2 θ
1−x

we get

(7) I′x =
(1− x)n+q−1

4(n+ q+ 1)
B(n,q).

Note that cconf(K,C ) = cconf,A1≥0(K,C ), so
cconf,A1≥x(K,C )

cconf(K,C ) =
I′x
I′0

as claimed. (Recall that

dimCH (α) = n+ q+ 1.) �

Remark. For q = 1 we have cconf,A1≥x(K,C ) = cconf,A≥x(K,C ) (see Theorem 6).

2.6. Correlation between the area of two cylinders. Let C be an admissible configu-

ration for a connected component K that comes with at least two cylinders. Choose (and

fix) two cylinders and let x,x1 ∈ [0,1). Recall that we denote by NA2≥x,A1≥x1
(S,C ,L) the

number of configurations of length at least L such that the area A1 of the first cylinder is at

least x1 and such that the area A2 of the second cylinder is at least x(1−A1). We denote by

cA2≥x,A1≥x1
(K,C ) the corresponding Siegel–Veech constant. To simplify notation we will

write cA1≥x1
(K,C ) instead of cconf,A1≥x1

(K,C ).

Proof of theorem 7. We proceed as in the proof of Theorem 5 (see section 2.5). Using the

same notation, we have the condition that the area Ã1 of the first cylinder of t√
s2+t2

T1 is at

least x1 and the area Ã2 of the second cylinder of t√
s2+t2

T1 is at least x(1− Ã1). This means

that the area A1 of the first cylinder of T1 satisfies A1 ≥ a1 = x1
s2+t2

t2 and the area A2 of

the second cylinder is at least x(1− Ã1)
s2+t2

t2 which gives A2 ≥ x

(
s2+t2

t2 −A1

)

= a− xA1,

where a = x s2+t2

t2 .

Denote by Cuspa1,a
(ε ′) the subset of tori in H ε ′

1 (0q) that satisfies these conditions.

Using the usual parameters (γ,h,hi, t j), a torus T is in the cone C(Cuspa1,a
(ε ′)) if and only

if T1 =
1√
wh

T is in Cuspa1,a
(ε ′). So the areas A1 and A2 of the first and second cylinders of

T1 must satisfy A1 =
wh1
wh

≥ a1 and A2 =
wh2
wh

≥ a− x
wh1
wh

. So we get

a1h ≤ h1 ≤ h, (∗) ah− xh1 ≤ h2 ≤ h− h1. (∗∗)
Equation (∗∗) has a solution if and only if ah− xh1 ≤ h− h1 which can be written as

h1 ≤ 1−a
1−x

h so we need to modify (∗):

a1h ≤ h1 ≤
1− a

1− x
h. (∗′)

Equation (∗′) has a solution if and only if a1 ≤ 1−a
1−x

. This translates into x2
s2+t2

t2 ≤ 1, where

x2 = x+ x1(1− x), which in turn becomes

t ≥
√

x2

1− x2

s.
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We also have 0 ≤ h1 ≤ h and 0 ≤ h2 ≤ h− h1. But for all possible t,s we have a1 ≥ 0,

ah−xh1 ≥ 0, and 1−a
1−x

≤ 1, so h1 can take all values between a1h and 1−a
1−x

h and h2 can take

all values between ah− xh1 and h− h1.

The computation of the volume of Cuspa1,a
(ε ′) is as in the proof of Lemma 9 for x = 0,

except that we replace
∫

∆q−1(h)

dh1 . . .dhq−1 =
hq−1

(q− 1)!

by

1−a
1−x h
∫

a1h

dh1

h−h1∫

ah−ph1

dh2

∫

∆q−3(h−h1−h2)

dh3 . . .dhq−1

=
[(1− a)− (1− x)a1]

q−1

1− x

hq−1

(q− 1)!
=

(1− a2)
q−1

1− x

hq−1

(q− 1)!
,

where a2 = x2
s2+t2

t2 .

So the volume is as in equation (5) except that we have an extra factor
(1−a2)

q−1

1−x
. So we

need to integrate

1

1− x

∫ √
1−x2

0
s2n−1

∫
√

1−s2

√
x2

1−x2
s

t2q+1(1− a2)
q−1 s2 + t2

t2
dtds.

Note that up to the factor 1/(1−x) this is I′x2
as defined in (6). The integral used to compute

cX1≥x1
(K,C ) = cconf,X1≥x1

(K,C ) is I′x1
, so we conclude

cA2≥x,A1≥x1
(K,C )

cA1≥x1
(K,C )

=
I′x2

1− x
· 1

I′x1

.

Using equation (7) and 1− x2 = (1− x)(1− x1) we find

cA2≥x,A1≥x1
(K,C )

cA1≥x1
(K,C )

=
(1− x2)

n+q−1

(1− x)(1− x1)n+q−1
= (1− x)n+q−2.

�

3. EXTREMAL PROPERTIES OF CONFIGURATIONS

3.1. Maximal total mean area of a configuration. Consider an admissible topological

type C of configuration for some connected component K of some stratum H (α), where

α = (d1, . . . ,dm) satisfies di ≥ 1, for i = 1, . . . ,m. We denote by q(C ) the number of cylin-

ders that come with C . In this section we prove Theorem 8, so we look for a topological

type of configuration C (that is admissible for some connected component K) that maxi-

mizes

cmean area conf(K,C ) =
carea(K,C )

cconf(K,C )
=

q(C )

2g+m− 2
,

where for the last equality we used Corollary 2 and ccyl(K,C ) = q(C )cconf(K,C ).
For a given stratum H (α), we start by determining the maximal possible number of

cylinders qmax(α) that can come from an admissible topological type of configuration for

H (α) :

qmax(α) = max
C in H (α)

q(C ).
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It is shown in [7] that topological types of configurations can be constructed by creating

singular points of the following three types:

(a) a cylinder, followed by k ≥ 1 surfaces Si of genus gi ≥ 1 with figure eight boundary,

followed by a cylinder. See figure 6 for k = 3 and gi = 1, i = 1,2,3. We say that

the newborn singularity is of type I.

(b) a cylinder, followed by k ≥ 0 surfaces Si of genus gi ≥ 1 with figure eight boundary,

followed by a surface Sk+1 of genus gk+1 ≥ 1 with a pair of holes boundary. See

Figure 7 for k = 2 and gi = 1, i = 0,1,2. We say that the newborn singularity is

of type II. For k = 0 we just have a cylinder followed by a surface with a pair of

holes boundary. We might also reverse the order: a pair of holes torus followed by

k ≥ 0 figure eight tori followed by a cylinder.

(c) a singularity of type III, which is obtained from a singularity of type II by replacing

the cylinder by a surface with a pair of holes boundary. As for surfaces of type II

there might be no surface with a figure eight boundary. See Figure 8 where all

of the surfaces are of genus 1 and where we have two surfaces with figure eight

boundary.

FIGURE 6. Block of surfaces creating a zero of type I

FIGURE 7. Block of surfaces creating a zero of type II

FIGURE 8. Block of surfaces creating a zero of type III

Counting angles, it is shown in [7] that the order of the newborn zeros is as follows:
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(a) To create a zero of type I one uses k ≥ 1 figure eight boundaries that were created

at zeros of orders a1 ≥ 0,. . . ,ak ≥ 0 (a zero of order 0 being a regular point). The

zero then has order ∑k
i=1(ai + 2). All orders bigger or equal to 2 are possible.

(b) To create a zero of type II one uses a figure eight boundary that was created at a

zero of order b′ ≥ 0. If there is no figure eight boundary involved then the newborn

zero has order b′ + 1. If there are k ≥ 1 figure eight boundaries involved that

were created at zeros of orders a1 ≥ 0,. . . ,ak ≥ 0 then the newborn zero has order

(b′+ 1)+∑k
i=1(ai + 2). All orders bigger or equal to 1 are possible.

(c) To create a zero of type III we use two pair of holes boundaries created at zeros of

orders b′1 and b′′2 . If there are no figure eight boundaries involved then the order of

the newborn zero is (b′1 + 1)+ (b′′2 + 1). If there are k ≥ 1 figure eight boundaries

involved that were created at zeros of orders a1 ≥ 0,. . . ,ak ≥ 0 then the newborn

zero has order (b′+ 1)+∑k
i=1(ai + 2)+ (b′′2 + 1). All orders bigger or equal to 2

are possible.

For a given small γ one can create all of the boundaries of the surfaces involved in the

above construction by an appropriate figure eight surgery or a pair of holes surgery (see

Figures 2 and 3) such that the boundaries all have holonomy vector γ .

By arranging the blocks in a cyclic order and identify boundary components we create

an admissible topological type of configuration of homologous saddle connections where

each saddle connection is based at a newborn singularity of one of the three types. There

is only the following obstruction: one needs to either use at least one surface with a pair of

holes boundary or, if one only uses surfaces with figure eight boundaries, then one needs

to use at least one cylinder.

Each cylinder is bounded by two saddle connections, so to have a one to one correspon-

dence we think of the cylinder as being cut into two parts by the central waist curve. Each

half cylinder then has a saddle connection γ on the boundary (that is not the waist curve)

that joins a saddle P to itself. We say that P accounts for this half-cylinder. A zero of type

I (see Figure 6) accounts for two half-cylinders (so for one cylinder), a zero of type II (see

Figure 7) accounts for one half of a cylinder, and a zero of type III (see Figure 8) does not

account for any half cylinder. Note that only singularities of type II can have order 1. It

follows that if for n ∈N we define

χ(n) =

{

1/2, if n = 1

1, if n > 1

then we have qmax(d1, . . . ,dk) ≤ ∑m
i=1 χ(di). To maximize the number of cylinders we

construct the zeros of orders greater than or equal to 2 by zeros of type I. The other zeros

of order 1 must be created by zeros of type II (coming from a cylinder followed by a torus

with a pair of holes boundary). This works well if there is an even number of zeros of

order 1 in which case we constructed a configuration with ∑n
i=1 χ(di) cylinders. If there is

an odd number of zeros of order 1 then the construction of the zeros of order 1 ends with

a surface with a pair of holes boundary. In this case we are obliged to construct one of the

zeros of order greater than 1 by a surface of type II, so we constructed a configuration with

∑m
i=1 χ(di)− 1/2 cylinders. We showed

Proposition 10. Consider a stratum H (α), where α = (d1, . . . ,dm) satisfies di ≥ 1, for

i = 1, . . . ,m. We have

(8) qmax(α) =

[
n

∑
i=1

χ(di)

]

,
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where the square brackets denote the integer part of a number.

Remark. The proposition says that it is possible to find in each stratum H (α) a topologi-

cal type of configuration C such that q(C ) = qmax(α) is as stated. It is not possible to find

a topological type C in each connected component of H (α) with qmax(α) cylinders.

We next show that given any connected component K of a stratum H (α) and any

admissible topological type C of configuration for K,

cmean area conf(K,C )≤ 1

3
.

Proof. Let g ≥ 2. Denoting by ℓ(α) the length of α we have

cmean area conf(K,C ) =
q(C )

2g− 2+ ℓ(α)
≤

qmax(α)

2g− 2+ ℓ(α)
.

We determine

max
α∈Π(2g−2)

qmax(α)

2g− 2+ ℓ(α)
,

where Π(2g− 2) denotes the set of permutations of 2g− 2.

First let us prove that a partition α containing at least one entry 1 is not maximizing.

Indeed, if there is at least one pair of entries 1 we can modify the initial partition α by

replacing the elements 1,1 with a single entry 2. This does not change the value (8) of

qmax(α), but decreases the denominator in the ratio qmax/(2g− 2+ ℓ(α)).
If there is a single entry 1 in the partition α , then ∑n

i=1 χ(di) is not an integer. We can

modify α by deleting the entry 1 and increasing some other entry by 1. This operation does

not change the value (8) of qmax(α), but decreases the denominator in the ratio qmax/(2g−
2+ ℓ(α)).

Thus we have proved that all of the entries of the partition maximizing the ratio qmax(α)/(2g−
2+ ℓ(α)) are greater then or equal to 2. The formula (8) for such partitions simplifies to

qmax(α) = ℓ(α). Now note that for any g ≥ 2 the function

fg(x) =
x

2g− 2+ x
= 1− 2g− 2

2g− 2+ x

is strictly decreasing. Thus, among all partitions of 2g−2 with entries strictly greater than

one we have to chose the one maximizing ℓ(α). This is the partition (2, . . . ,2) where the

order 2 appears g−1 times. For this partition we get qmax(2, . . . ,2) = g−1 = ℓ(α) and so

cmean area conf(K,C ) is bounded from above by 1/3 as claimed. �

Proof of Theorem 8. It suffices to show that for each genus g there is an admissible topo-

logical type of configuration C for a connected component K of the stratum H (2, . . . ,2)
(g− 1 zeros of order 1) such that cmean area conf(K,C ) attains the upper bound 1/3.

Note that for the upper bound 1/3 for cmean area conf(K,C ) we used qmax. As we ex-

plained in the proof of the relation (8), the only way to obtain qmax(2, . . . ,2) is to only use

zeros of type I (a cylinder followed by a torus with a figure eight boundary that was created

at a regular point followed by a cylinder). Doing this we obtain a surface in H (2, . . . ,2)
with a configuration that comes with g− 1 cylinders.

By Lemma 14.2 in [7] the surface in H (2, . . . ,2) we constructed that comes with a max-

imizing configuration has odd parity of spin structure, so this surface is in H odd(2, . . . ,2).
(We recall in the next section the classification of connected components.) Proposition 8 is

proved. �
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3.2. Configurations with simple complementary regions. This section provides an an-

swer to the following question of Alex Eskin and Alex Wright: is it possible to find in

each connected component of a stratum an admissible topological type of configuration

whose complementary regions are tori (with boundary) and cylinders. Motivations for this

problem can be found in [21].

The answer depends on the connected component, so we need to recall the classifica-

tion of connected components for strata H (α) of Abelian differentials from [10]. Some

connected components are characterized by the fact that they only contain hyperelliptic

surfaces. For a surface S in a stratum H (d1, . . . ,dn) where all di are even one has the

notion of parity of spin structure that is either 0 or 1. We then have

Theorem (M. Kontsevich, A. Zorich [10]). Let H (d1, . . . ,dm) be a stratum of Abelian

differentials on a surface of genus g ≥ 4. The strata H (2g− 2) and H (g− 1,g− 1) are

the only strata to have a hyperelliptic component H hyp(2g−2), resp. H hyp(g−1,g−1).
Apart from these hyperelliptic components we have:

(a) If at least one of the di is odd then there is only one non-hyperelliptic component.

(b) If all of the αi are even then there are two non-hyperelliptic components, H even

with even and H odd with odd parity of spin structure.

Remark. The classification in [10] also covers g = 2,3 but we will not need this.

Proposition 11. Let H comp(α) denote a connected component of a stratum of Abelian

differentials on a surface of genus g ≥ 5.

Then:

(a) If H comp(α) is hyperelliptic (so H hyp(2g−2) or, if g−1 is even, H hyp(g−1,g−
1)) then it is not possible to find an admissible topological type of configuration

whose complementary regions are only tori (with boundary) and cylinders.

(b) If g is even and H comp(α) = H even(α) then we can find a topological type of

configuration whose complementary regions are tori, cylinders and one surface of

genus two. But it is not possible to only have tori and cylinders.

(c) In all remaining connected components one can explicitly construct an admissi-

ble topological type of configuration whose complementary regions are tori and

cylinders.

Proof. First note that a configuration containing only tori and cylinders, or tori, cylinders,

and at most one genus two surface does not occur in hyperelliptic strata, since a hyperellip-

tic surface can contain at most two closed homologous saddle connections, which rules out

g ≥ 5. Lemma 14.5 in [7] describes precisely configurations in hyperelliptic components

of strata.

We suppose for what follows that H comp(α) is not a hyperelliptic component.

Recall the description of singularities of types I, II, and III from the previous section.

If apart from cylinders, we only use surfaces of genus 1, then we must do figure eight

surgeries and pair of holes surgeries at regular marked points. So we have:

(a) A zero of type I has order 2k, where k ≥ 1 is the number of tori with figure eight

boundaries (see Figure 6).

(b) A zero of type II has order 2k+ 1, where k ≥ 0 is the number of tori with figure

eight boundaries (see figure 7).

(c) A zero of type III has order 2k+ 2, where k ≥ 0 is the number of tori with figure

eight boundaries (see figure 8).
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Assume that α contains at least one odd di, so α = (2a1, · · · ,2ap,2b1+1, · · · ,2br+1) with

p ≥ 0 and r ≥ 1 (p = 0 corresponds to the case when all αi are odd).

We construct blocs of surfaces that contain zeros of type II of orders 2b1+1,. . . , 2br+1.

Note that since ∑i di is even, the number r of odd di is even, so in our construction the

first and last surface is a cylinder. If there is at least one zero of even order then we

construct in addition blocs of surfaces that contain zeros of type I of orders 2a1,. . . ,2ap.

For this construction the first and last surface is also a cylinder. Arranging the blocs in a

cyclic order and identifying cylinders we get in each case an admissible topological type

of configuration for H (α) whose complementary regions are cylinders and tori.

Suppose now that all di in H (α) are even, so we can not have a zero of type II. We

then either have only zeros of type I or only zeros of type III as having zeros of types I

and III necessarily implies that we have a zero of type II.

It is easy to verify (§14.1 in [7]) that if we only have zeros of type I then the corre-

sponding surface has an odd parity of spin structure and if we only only have zeros of type

III then the parity of the resulting surface is the parity of g− 1. So for g odd we are done,

but for even g the parity of the spin structure is 1 in both cases.

If we only have zeros of type III but replace one of the pair of holes boundary tori with

a genus 2 surface with a pair of holes boundary then the parity of the spin structure of the

resulting surface is the parity of g. So for even g we constructed a surface of parity 0. This

completes the proof. �

4. TOOLBOX

We recall some well known facts about the Beta function and incomplete Beta function.

The (real) Gamma function is defined for each t > 0 by

Γ(t) =

∫ ∞

0
e−uut−1du.

It satisfies

(9) Γ(t) = (t − 1)Γ(t − 1), so for n ∈ N, Γ(n) = (n− 1)!.

The Beta function defined for real numbers a,b > 0 by

(10) B(a,b) =

∫ 1

0
ua−1(1− u)b−1du

satisfies for positive real numbers a,b and positive integers n,m

(11) B(a,b) =
Γ(a)Γ(b)

Γ(a+ b)
B(n,m) =

(n− 1)!(m− 1)!

(n+m− 1)!
.

The Incomplete Beta function defined for real positive numbers t,a,b by

(12) B(t;a,b) =

∫ t

0
ua−1(1− u)b−1du

satisfies

B(t;a,b) = B(a,b)
a+b−1

∑
k=a

(
a+ b− 1

k

)

tk(1− t)a+b−1−k.

The regularized incomplete Beta function is defined as

I(t;a,b) =
B(t;a,b)

B(1;a,b)
=

B(t;a,b)

B(a,b)
.

See figure 9 for the density function f (t) = d
dt

I(t;a,b) for various values for a and b.

See [4] for a historical development of the incomplete Beta function.
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FIGURE 9. Graphs of the density function f (t) = d
dt

I(t;a,b)

Lemma 12.

I(A,B) =
B

∑
k=0

(−1)k

(
A+B

A+ k

)

=

(
A+B− 1

B

)

(13)

Ĩ(A,B) =
B

∑
k=0

k(−1)k+1

(
A+B

A+ k

)

=

(
A+B− 2

B− 1

)

(14)

Proof. Let Ix(A,B) = ∑B
k=0(−x)k

(
A+B
A+k

)
and Ĩx(A,B) = ∑B

k=0 k(−x)k
(

A+B
A+k

)
.

We have the recurrence relation Ix(A,B+1)− (1−x)Ix(A,B) =
(

A+B
A−1

)
. Taking x = 1 we

get (13).

Taking the derivative of the recurrence relation with respect to x we get Ĩx(A,B) =
xI′x(A,B) and hence Ĩx(A,B+ 1) = −xIx(A,B)+ (1− x)Ĩx(A,B). Taking x = 1 we get (14).

�

Lemma 13. For q ≥ 0 and l ≤ q the value of

Î(n,q, l) =
q+1

∑
k=0

(
n+ q+ 1

n+ k

)(
k

q+ 1− l

)

(−1)l+k+q+1

is

Î(n,q, l) =

(
n+ l− 1

l

)

.

Proof. Using the recurrence relation on binomial coefficients one obtains Î(n,q+ 1, l) =
Î(n,q, l). So we have Î(n,q+ 1, l) = Î(n, l, l). Noting that Î(n, l, l) = Ĩ(n, l + 1) we get the

desired result. �



GEOMETRY OF PERIODIC REGIONS ON FLAT SURFACES AND ASSOCIATED SIEGEL–VEECH CONSTANTS 29

Lemma 14. The incomplete Beta function satisfies

B(1− x,n,q) = (1− x)n B(n,q)
q−1

∑
l=0

(
n+ l− 1

l

)

xl .

Proof.

n+q−1

∑
k=n

(
n+ q− 1

k

)

(1− x)kxn+q−1−k

= (1− x)n
q−1

∑
k=0

(
n+ q− 1

n+ k

)

(1− x)n+kxq−1−k

= (1− x)n
q−1

∑
k=0

k

∑
j=0

(
n+ q− 1

n+ k

)(
k

j

)

(−1)k− jxq−1− j

= (1− x)n
q−1

∑
l=0

[
q−1

∑
k=0

(
n+ q− 1

n+ k

)(
k

q− 1− l

)

(−1)k+l+q+1

]

xl

It suffices to apply Lemma 13 �
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