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SUBEXPONENTIALLY INCREASING SUMS OF PARTIAL QUOTIENTS IN CONTINUED FRACTION EXPANSIONS
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We investigate from a multifractal analysis point of view the increasing rate of the sums of partial quotients Sn(x) = n j=1 aj(x), where x = [a1(x), a2(x), • • • ] is the continued fraction expansion of an irrational x ∈ (0, 1). Precisely, for an increasing function ϕ : N → N, one is interested in the Hausdorff dimension of the sets

Several cases are solved by Iommi and Jordan, Wu and Xu, and Xu. We attack the remaining subexponential case exp(n γ ), γ ∈ [1/2, 1). We show that when γ ∈ [1/2, 1), Eϕ has Hausdorff dimension 1/2. Thus, surprisingly, the dimension has a jump from 1 to 1/2 at ϕ(n) = exp(n 1/2 ). In a similar way, the distribution of the largest partial quotient is also studied.

Introduction

Each irrational number x ∈ [0, 1) admits a unique infinite continued fraction expansion of the form x = 1 a 1 (x) + 1 a 2 (x) + 1 a 3 (x) + . . . , (1.1) where the positive integers a n (x) are called the partial quotients of x. Usually, (1.1) is written as x = [a 1 , a 2 , • • • ] for simplicity. The n-th finite truncation of (1.1): p n (x)/q n (x) = [a 1 , • • • , a n ] is called the n-th convergent of x. The continued fraction expansions can be induced by the Gauss transformation T : [0, 1) → [0, 1) defined by T (0) := 0, and T (x) := 1 x (mod 1), for x ∈ (0, 1).

It is well known that a 1 (x) = x -1 ( • stands for the integer part) and a n (x) = a 1 (T n-1 (x)) for n ≥ 2.

For any n ≥ 1, we denote by S n (x) = n j=1 a j (x) the sum of the n first partial quotients. It was proved by Khintchine [START_REF] Ya | Metrische Kettenbruchprobleme[END_REF] in 1935 that S n (x)/(n log n) converges in measure (Lebesgue measure) to the constant 1/ log 2. In 1988, Philipp [START_REF] Philipp | Limit theorems for sums of partial quotients of continued fractions[END_REF] showed that there is no reasonable normalizing sequence ϕ(n) such that a strong law of large numbers is satisfied, i.e., S n (x)/ϕ(n) will never converge to a positive constant almost surely.

From the point of view of multifractal analysis, one considers the Hausdorff dimension of the sets

E ϕ = x ∈ (0, 1) : lim n→∞ S n (x) ϕ(n) = 1 .
where ϕ : N → N is an increasing function.

The case ϕ(n) = γn with γ ∈ [1, ∞) was studied by Iommi and Jordan [START_REF] Iommi | Multifractal analysis of Birkhoff averages for countable Markov maps[END_REF]. It is proved that with respect to γ, the Hausdorff dimension (denoted by dim H ) of E ϕ is analytic, increasing from 0 to 1, and tends to 1 when γ goes to infinity. In [START_REF] Wu | On the distribution for sums of partial quotients in continued fraction expansions[END_REF], Wu and Xu proved that if ϕ(n) = n γ with γ ∈ (1, ∞) or ϕ(n) = exp(n γ ) with γ ∈ (0, 1/2), then dim H E ϕ = 1. Later, it was shown by Xu [START_REF] Xu | On sums of partial quotients in continued fraction expansions[END_REF], that if ϕ(n) = exp(n) then dim H E ϕ = 1/2 and if ϕ(n) = exp(γ n ) with γ > 1 then dim H E ϕ = 1/(γ + 1). The same proofs of [START_REF] Xu | On sums of partial quotients in continued fraction expansions[END_REF] also imply that for ϕ(n) = exp(n γ ) with γ ∈ (1, ∞) the Hausdorff dimension dim H E ϕ stays at 1/2. So, only the subexponentially increasing case: ϕ(n) = exp(n γ ), γ ∈ [1/2, 1) was left unknown. In this paper, we fill this gap.

Theorem 1.1. Let ϕ(n) = exp(n γ ) with γ ∈ [1/2, 1). Then dim H E ϕ = 1 2 .
We also show that there exists a jump of the Hausdorff dimension of E ϕ between ϕ(n) = exp(n 1/2 ) and slightly slower growing functions, for example 

ϕ(n) = exp( √ n(log n) -1 ). Theorem 1.2. Let ϕ(n) = exp( √ n • ψ(n))
Then dim H E ϕ = 1.
We remark that the assumption (1.2) on the function ψ says that ψ decreases to 0 slower than any polynomial. We also remark that when ψ is decreasing, then the first condition of (1.2) is automatically satisfied.

Theorems 1.1 and 1.2 show that, surprisingly, there is a jump of the Hausdorff dimensions from 1 to 1/2 in the class ϕ(n) = exp(n γ ) at γ = 1/2 and that this jump cannot be easily removed by considering another class of functions. See Figure 1 for an illustration of the jump of the Hausdorff dimension.

By the same method, we also prove some similar results on the distribution of the largest partial quotient in continued fraction expansions. For x ∈ [0, 1) \ Q, define

T n (x) := max{a k (x) : 1 ≤ k ≤ n}.
One is interested in the following lower limit:
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linear γn subexponential e n γ superexponential e γ n such that a strong law of large numbers is satisfied, i.e., S n (x)/ϕ(n) will never converge to a positive constant almost surely.

From the point of view of multifractal analysis, one considers the Hausdorff dimension of the sets

E ϕ = x ∈ (0, 1) : lim n→∞ S n (x) ϕ(n) = 1 .
where ϕ : N → N is an increasing function.

The case ϕ(n) = θn with θ ∈ [1, ∞) was studied by Iommi and Jordan [START_REF] Iommi | Multifractal analysis of Birkhoff averages for countable Markov maps[END_REF]. It is proved that with respect to θ, the Hausdorff dimension of E ϕ is analytic, increasing from 0 to 1, and tends to 1 when θ goes to infinity. In [START_REF] Wu | On the distribution for sums of partial quotients in continued fraction expansions[END_REF], Wu and Xu proved that if ϕ(n) = n α with α ∈ (0, ∞) or ϕ(n) = exp{n β } with β ∈ (0, 1/2), the Hausdorff dimension of E ϕ is always 1. It was shown by Xu [START_REF] Xu | On sums of partial quotients in continued fraction expansions[END_REF], that if ϕ(n) = exp{n} then the Hausdorff dimension of E ϕ is 1/2 and if ϕ(n) = exp{γ n } with γ > 1 then the Hausdorff dimension is 1/(γ +1). The same proofs of [START_REF] Xu | On sums of partial quotients in continued fraction expansions[END_REF] also imply that for ϕ(n) = exp{n β } with β ∈ (1, ∞) the Hausdorff dimension of E ϕ stays at 1/2. So, only the subexponentially increasing case: ϕ(n) = exp{n β }, β ∈ [1/2, 1) was left unknown. In this paper, we fill this gap. We also show that for increasing rates slightly slower than e √ n , for example ϕ(n) = e √ n(log n) -1 , the Hausdorff dimension will jump. 

n→∞ nψ (n) ψ(n) = 0.
Then the Hausdorff dimension of E ϕ is equal to one.

Theorems 1.1 and 1.2 show that, surprisingly, there is a jump of the Hausdorff dimensions from 1 to 1/2. By the same method, we also prove some similar results on the distribution of the largest partial quotients in continued fraction expansions. For

x ∈ Figure 1. dim H E ϕ for different ϕ.
It was conjectured by Erdös that almost surely T (x) = 1. However, it was proved by Philipp [START_REF] Philipp | A conjecture of Erdös on continued fractions[END_REF] that for almost all x, one has T (x) = 1/ log 2. Recently, Wu and Xu [START_REF] Wu | The distribution of the largest digit in continued fraction expansions[END_REF] showed that

∀α ≥ 0, dim H x ∈ [0, 1) \ Q : lim n→∞ T n (x) log log n n = α = 1.
They also proved that if the denominator n is replaced by any polynomial the same result holds. In this paper, we show the following theorem.

Theorem 1.3. For all α > 0,

F (γ, α) = x ∈ [0, 1) \ Q : lim n→∞ T n (x)/exp(n γ ) = α satisfies dim H F (γ, α) = 1 if γ ∈ (0, 1/2) 1 2 if γ ∈ (1/2, ∞).
We do not know what happens in the case γ = 1/2.

Preliminaries

For any

a 1 , a 2 , • • • , a n ∈ N, call I n (a 1 , • • • , a n ) := {x ∈ [0, 1) : a 1 (x) = a 1 , • • • , a n (x) = a n }
a rank-n basic interval. Denote by I n (x) the rank-n basic interval containing x. Write |I| for the length of an interval I. The length of the basic interval

I n (a 1 , a 2 , • • • , a n ) satisfies n k=1 (a k + 1) -2 ≤ I n (a 1 , • • • , a n ) ≤ n k=1 a -2 k . (2.1) Let A(m, n) := (i 1 , . . . , i n ) ∈ {1, . . . , m} n : n k=1 i k = m . Let ζ(•) be the Riemann zeta function.
Lemma 2.1. For any s ∈ (1/2, 1), for all n ≥ 1 and for all m ≥ n, we have

(i 1 ,...,in)∈A(m,n) n k=1 i -2s k ≤ 9 2 2 + ζ(2s) n m -2s .
Proof. The proof goes by induction. First consider the case n = 2. For m = 2 the assertion holds, assume that m > 2. We will estimate the sum

m-1 i=1 i -2s (m -i) -2s . For any u ∈ [1, m/2] we have m-1 i=1 i -2s (m -i) -2s = 2 u-1 i=1 i -2s (m -i) -2s + m-u i=u i -2s (m -i) -2s ≤ 2 u-1 i=1 i -2s (m -u) -2s + (m -2u + 1)u -2s (m -u) -2s ≤ 2ζ(2s)(m -u) -2s + (m -2u + 1)u -2s (m -u) -2s .
Take u = m/3 . Then one has

(m -2u + 1)u -2s = (m + 1)u -2s -2u 1-2s ≤ (m + 1) m 3 -2s -2 ≤ 4.
Hence, the above sum is bounded from above by

(4 + 2ζ(2s)) • 2m 3 -2s ≤ 9 2 (2 + ζ(2s)) • m -2s .
Suppose now that the assertion holds for n ∈ {2, n 0 }. Then for n = n 0 +1, we have

(i 1 ,...,i n 0 +1 )∈{1,...,m} n 0 +1 , i k =m n 0 +1 k=1 i -2s k = m-1 i=1 i -2s (i 1 ,...,in 0 )∈{1,...,m} n 0 , i k =m-i n 0 k=1 i -2s k ≤ m-1 i=1 i -2s 9 2 2 + ζ(2s) n 0 (m -i) -2s = 9 2 2 + ζ(2s) n 0 • m-1 i=1 i -2s (m -i) -2s ≤ 9 2 2 + ζ(2s) n 0 • 9 2 2 + ζ(2s) m -2s = 9 2 2 + ζ(2s) n 0 +1 m -2s . Let A(γ, c 1 , c 2 , N ) := x ∈ (0, 1) : c 1 < a n (x) e n γ < c 2 , ∀n ≥ N .
Denote by N 0 the smallest integer n such that (c

2 -c 1 ) • e n γ > 1. Then the set A(γ, c 1 , c 2 , N ) is non-empty when N ≥ N 0 .
Lemma 2.2. For any γ > 0, any N ≥ N 0 and any

0 < c 1 < c 2 , dim H A(γ, c 1 , c 2 , N ) = 1 2 .
Proof. This lemma is only a simple special case of [2, Lemma 3.2], but we will sketch the proof (based on [START_REF] Jordan | Increasing digit subsystems of infinite iterated function systems[END_REF]), needed for the next lemma. Without loss of generality, we suppose N 0 = 1 and let N = 1 (the proof for other N is almost identical).

Let a 1 , a 2 , . . . , a n satisfy c 1 < a j e -j γ < c 2 for all j. Those are exactly the possible sequences for which the basic interval I n (a 1 , . . . , a n ) has nonempty intersection with A(γ, c 1 , c 2 , 1).

There are approximately

(2.2) n j=1 (c 2 -c 1 )e j γ ≈ e n 1 j γ of such basic intervals, each of diameter (2.3) |I n (a 1 , . . . , a n )| ≈ e -2 n 1 j γ ,
(both estimations are up to a factor exponential in n). Hence, by using the intervals {I n (a 1 , . . . , a n )} as a cover, we obtain

dim H A(γ, c 1 , c 2 , 1) ≤ 1 2 .
To get the lower bound, we consider a probability measure µ uniformly distributed on A(γ, c 1 , c 2 , 1), in the following sense: given a 1 , . . . , a n-1 , the probability of a n taking any particular value between c 1 e n γ and c 2 e n γ is the same.

The basic intervals I n (a 1 , . . . , a n ) have, up to a factor c n , the length exp(-2 n 1 j γ ) and the measure exp(-n 1 j γ ). They are distributed in clusters: all I n (a 1 , . . . , a n ) contained in a single I n (a 1 , . . . , a n-1 ) form an interval of length exp(n γ ) • exp(-2 n 1 j γ ) (up to a factor c n , with c being a constant), then there is a gap, then there is another cluster. Hence, for any r ∈ (exp(-2 n 1 j γ ), exp(-2 n-1 1 j γ )) and any x ∈ A(γ, c 1 , c 2 , 1) we can estimate the measure of B(x, r):

µ(B(x, r)) ≈ r • e -n 1 j γ if r < e -2 n 1 j γ +n γ e -n-1 1 j γ if r > e -2 n 1 j γ +n γ
(up to a factor c n ). The minimum of log µ(B(x, r))/ log r is thus achieved for r = e -2 n 1 j γ +n γ , and this minimum equals

-n-1 1 j γ -2 n 1 j γ + n γ ≈ -n γ+1 /(γ + 1) -2n γ+1 /(γ + 1) -n γ = 1 2 -O(1/n).
Hence, the lower local dimension of µ equals 1/2 at each point of A(γ, c 1 , c 2 , 1), which implies

dim H A(γ, c 1 , c 2 , 1) ≥ 1 2 by the Frostman Lemma (see [1, Principle 4.2]).
Let now c 1 and c 2 not be constant but depend on n:

B(γ, c 1 , c 2 , N ) = x ∈ (0, 1) : c 1 (n) < a n (x) e n γ < c 2 (n) ∀n ≥ N .
A slight modification of the proof of Lemma 2.2 gives the following.

Lemma 2.3. Fix γ > 0. Assume 0 < c 1 (n) < c 2 (n) for all n. Assume also that lim n→∞ log(c 2 (n) -c 1 (n)) n γ = 0 and lim inf n→∞ log c 1 (n) log n > -∞ and lim sup n→∞ log c 2 (n) log n < +∞.
Then there exists an integer

N 1 such that (c 2 (n) -c 1 (n)) • e n γ > 1 for all n ≥ N 1 , and for all N ≥ N 1 , dim H B(γ, c 1 , c 2 , N ) = 1/2.
Proof. We need only to replace the constants c 1 and c 2 by c 1 (n) and c 2 (n) in the proof of Lemma 2.2. Notice that by the assumptions of Lemma 2.3, the formula (2.2) holds up to a factor exp(ε n 1 j γ ) for a sufficiently small ε > 0. While the formula (2.3) holds up to a factor exp(cn log n) for some bounded c. All these factors are much smaller than the main term exp( n 1 j γ ) which is of order exp(n 1+γ ). The rest of the proof is the same as that of Lemma 2.2.

Proofs

Proof of Theorem 1.1. Let ϕ : N → N be defined by ϕ(n) = exp(n γ ) with γ > 0. For this case, we will denote E ϕ by E γ .

Let us start from some easy observations, giving (among other things) a simple proof of dim H E γ = 1/2 for γ ≥ 1.

Consider first γ ≥ 1/2. If x ∈ E γ then for any ε > 0 and for n large enough

(1 -ε)e n γ ≤ S n (x) ≤ (1 + ε)e n γ (3.1) and (1 -ε)e (n+1) γ ≤ S n+1 (x) ≤ (1 + ε)e (n+1) γ . Hence (1 -ε)e (n+1) γ -(1 + ε)e n γ ≤ a n+1 (x) ≤ (1 + ε)e (n+1) γ -(1 -ε)e n γ .
For γ ≥ 1 this implies

E γ ⊂ N A(γ, c 1 , c 2 , N ) for some constants c 1 , c 2 . By Lemma 2.2, dim H E γ ≤ 1 2 , ∀γ ≥ 1.
Consider now any γ > 0. Set

c 1 (n) = (e n γ -e (n-1) γ )e -n γ and c 2 (n) = n + 1 n c 1 (n).
For γ ≥ 1, c 1 (n) and c 2 (n) are bounded from below. For γ < 1 and n large, we have (e n γe (n-1) γ )e -n γ ≈ γn γ-1 .

Thus, in both cases the assumptions of Lemma 2.3 are satisfied. Checking B(γ, c 1 , c 2 , N ) ⊂ E γ , we deduce by Lemma 2.3 that

dim H E γ ≥ 1 2 , ∀γ > 0.
Therefore, we have obtained dim

H E γ = 1/2 for γ ≥ 1 and dim H E γ ≥ 1/2 for γ > 0. What is left to prove is that for γ ∈ [1/2, 1) we have dim H E γ ≤ 1/2.
Let us first assume that γ > 1/2. Remember that if x ∈ E γ , then for any ε > 0 and for n large enough we have (3.1). Take a subsequence n 0 = 1, and n k = k 1/γ (k ≥ 1). Then there exists an integer N ≥ 1 such that for all Observe that every set A(γ, k, N ) has a product structure: the conditions on a i for i ∈ (n 1 , n 1 +1 ] and for i ∈ (n 2 , n 2 +1 ] are independent from each other. Hence, for any s ∈ (1/2, 1) we can apply Lemma 2.1 together with the formula

k ≥ N , (1 -ε)e n γ k ≤ S n k (x) ≤ (1 + ε)e n γ k , and (as exp(n γ k ) = e k ) (1 -ε)e k -(1 + ε)e k-1 ≤ S n k (x) -S n k-1 (x) ≤ (1 + ε)e k -(1 -ε)e k-1 . Thus E γ ⊂ N k≥N A(γ, k, N ), with A(γ, k, N ) being the union of the intervals {I n k (a 1 , a 2 , • • • , a n k )} such that n j=n -1 +1 a j = m with m ∈ D , N ≤ ≤ k,
|I n k | s ≤ k =1 (a n -1 +1 a n -1 +2 • • • a n ) -2s
to obtain

In k ⊂A(γ,k,1) |I n k | s ≤ k =1 m∈D 9 2 2 + ζ(2s) n -n -1 m -2s .
Denote r 1 := 2ε(1e -1 ) and r 2 := (e -1εeε)/e. Then we have |D | ≤ r 1 e and any m ∈ D is not smaller than r 2 e . Thus we get

In k ⊂A(γ,k,1) |I n k | s ≤ k =1 r 1 e • 9 2 2 + ζ(2s) 1/γ -( -1) 1/γ • r 2s 2 e -2s . (3.2)
We have 1/γ -( -1) 1/γ ≈ 1/γ-1 . As γ > 1/2, we have 1/γ -1 < 1, and the main term in the above estimate is e (1-2s) . Thus for any s > 1/2, the product is uniformly bounded. Thus dim H E (1)

ϕ ≤ 1/2.
If γ = 1/2, we take n k = k 2 /L 2 with L being a constant and we repeat the same argument. Observe that now exp(n γ k ) = e k/L . Then the same estimation will lead to

In k ⊂A(γ,k,1) |I n k | s ≤ k =1 r 1 r 2s 2 • 9 2 2 + ζ(2s) 2 -( -1) 2 L 2 e (1-2s) /L . (3.3)
The main term of the right side of the above inequality should be

9 2 2 + ζ(2s) 2 /L 2 • e (1-2s) /L .
We solve the equation

9 2 2 + ζ(2s) 2/L 2 • e (1-2s)/L = 1,
which is equivalent to

(3.4) 9 2 2 + ζ(2s) = e 2s-1 2 L .
Observe that the graphs of the two sides of (3.4) (as functions of the variable s) always have a unique intersection for some s L ∈ [1/2, 1], when L is large enough. These s L are upper bounds for the Hausdorff dimension of E

ϕ . Notice that the intersecting point s L → 1/2 as L → ∞ since the zeta function ζ has a pole at 1. Thus the dimension of E

ϕ is not greater than 1/2. So, in both cases, we have obtained dim

H E γ ≤ 1/2.
Sketch proof of Theorem 1.2. The proof goes like Section 4 of [START_REF] Wu | On the distribution for sums of partial quotients in continued fraction expansions[END_REF] with the following changes. We choose ε k = ψ(k). Let n 1 be such that ϕ(n 1 ) ≥ 1 and define n k as the smallest positive integer such that

ϕ(n k ) ≥ (1 + ε k-1 )ϕ(n k-1 ). (3.5)
For a large enough integer M , set

E M (ϕ) := x ∈ [0, 1) : a n 1 (x) = (1 + ε 1 )ϕ(n 1 ) + 1, a n k (x) = (1 + ε k )ϕ(n k ) -(1 + ε k-1 )ϕ(n k-1 ) + 1 for all k ≥ 2, and 1 ≤ a i (x) ≤ M for i = n k for any k ≥ 1 . We can check that E M (ϕ) ⊂ E ϕ .
To prove dim H E ϕ = 1, for any ε > 0, we construct a (1/(1 + ε))-Lipschitz map from E M (ϕ) to E M , the set of numbers with partial quotients less than some M in its continued fraction expansion. The theorem will be proved by letting ε → 0 and M → ∞.

Such a Lipschitz map can be constructed by send a point x in E M (ϕ) to a point x by deleting all the partial quotients a n k in its continued fraction expansion. Define r(n) := min{k : n k ≤ n}. The (1/(1 + ε))-Lipschitz property will be assured if

lim n→∞ r(n) n = 0, (3.6) and lim n→∞ log(a n 1 a n 2 • • • a n r(n) ) n = 0. (3.7)
In fact, by (1.2), we can check for any δ > 0, ψ(n) ≤ n δ for n large enough. Thus by definition of n k , we can deduce that r(n) ≤ n 1/2+δ . Hence (3.6) is satisfied.

Further, we have

r(n) k=1 ε k ≈ r(n)ψ(r(n)). (3.8) By (3.5) ϕ(n) ≥ ϕ(n r(n) ) ≥ r(n)-1 k=1 (1 + ε k )ϕ(n 1 ) ≥ e r(n) k=1 ε k /2 ϕ(n 1 ). Thus (3.8) implies r(n)ψ(r(n)) √ nψ(n), (3.9)
where a n b n means that a n /b n is bounded by some constant when n → ∞. On the other hand, by (2.1) and (3.5), we have

log(a n 1 a n 2 • • • a n r(n) ) ≤ r(n) log(2ϕ(n)) + r(n) k=1 ε k .
Hence (3.8) and (3.9) give log(a

n 1 a n 2 • • • a n r(n) ) r(n) √ nψ(n) + r(n)ψ(r(n)) nψ 2 (n) ψ(r(n)) + r(n).
Finally, (3.7) follows from the assumption (1.2) and the already proved formula (3.6).

Proof of Theorem 1.3. For the case γ < 1/2, the set constructed in Section 4 of [START_REF] Wu | On the distribution for sums of partial quotients in continued fraction expansions[END_REF] (as a subset of the set of points for which S n (x) ≈ e n γ ) satisfies also T n (x) ≈ e n γ and has Hausdorff dimension one. We proceed to the case γ > 1/2. The lower bound is a corollary of Lemma 2.3. Take c 1 (n) = α(1 -1 n ) and c 2 (n) = α. Let N 1 be the smallest integer n such that α n e n γ > 1. Then the conditions of Lemma 2.3 are satisfied, and for all points x such that c 1 (n)e n γ < a n (x) < c 2 (n)e n γ , we have

T n (x)/e n γ ≥ c 1 (n) = α 1 - 1 n ,
and

T n (x)/e n γ = a k /e n γ ≤ αe k γ /e n γ ≤ α,
where k ≤ n is the position at which the sequence a 1 , . . . , a n achieves a maximum. Thus for all x ∈ B(γ, c 1 , c 2 , N 1 ) lim n→∞ T n (x)/e n γ = α.

Hence, B(γ, c 1 , c 2 , N 1 ) ⊂ F (γ, α) and the lower bound follows directly from Lemma 2.3. The upper bound is a modification of that of Theorem 1.1. We consider the case α = 1 only, since for other α > 0, the proofs are similar.

Notice that for any ε > 0, if x ∈ F (γ, 1), then for n large enough,

(1 -ε)e n γ ≤ S n (x) ≤ n(1 + ε)e n γ .
Take a subsequence

n k = k 1/γ (log k) 1/γ 2 . Then (1 -ε)e k(log k) 1/γ ≤ S n k (x) ≤ k 1/γ (log k) 1/γ 2 (1 + ε)e k(log k) 1/γ , and u k ≤ S n k (x) -S n k-1 (x) ≤ v k , with 
u k := (1 -ε)e k(log k) 1/γ -(k -1) 1/γ (log(k -1)) 1/γ 2 (1 + ε)e (k-1)(log(k-1)) 1/γ , and 
v k := k 1/γ (log k) 1/γ 2 (1 + ε)e k(log k) 1/γ -(1 -ε)e (k-1)(log(k-1)) 1/γ .
We remark that As in the proof of Theorem 1.1, we need only study the set B(γ, 1). For any s ∈ (1/2, 1), since

u k > 1 2 e k(log k) 1/γ , v k < 3 2 k 1/γ (log k) 1/γ 2 e k(log k) 1/γ (3.
|I n k | s ≤ k =1 (a n -1 +1 a n -1 +2 • • • a n ) -2s , by Lemma 2.1, In k ⊂B(γ,N ) |I n k | s ≤ k =1 m∈D 9 2 2 + ζ(2s) n -n -1 m -2s .
Note that by (3.10) the number of integers in D satisfies

|D | ≤ v -u ≤ v < 3 2 • 1/γ (log ) 1/γ 2 .
By (3.10), we also have 

m ≥ u > 1 2 e (log )
⊂B(γ,N ) |I n k | s is less than k =1 3 2 • 1/γ (log ) 1/γ 2 e (log ) 1/γ 9 2 2 + ζ(2s) n -n -1
2 2s e -2s (log ) 1/γ .

Since nn -1 ≈ 1/γ-1+o(ε) and 1/γ -1 < 1, the main term in the above estimation is e (1-2s) (log ) 1/γ . Thus for any s > 1/2 the product is uniformly bounded and we have the Hausdorff dimension of B(γ, 1) is not greater than 1/2. Then we can conclude dim H F (γ, 1) ≤ 1/2 and the proof is completed.

Generalizations

In this section we consider after [START_REF] Jordan | Increasing digit subsystems of infinite iterated function systems[END_REF] certain infinite iterated function systems that are natural generalizations of the Gauss map. For each n ∈ N, let f n : [0, 1] → [0, 1] be C 1 maps such that (1) there exists m ∈ N and 0 < A < 1 such that for all (a 1 , ..., a m ) ∈ N m and for all x ∈ [0, 1]

0 < |(f a 1 • • • • • f am ) (x)| ≤ A < 1, (2) 
for any i, j ∈ N f i ((0, 1)) ∩ f j ((0, 1)) = ∅, (3) there exists d > 1 such that for any ε > 0 there exist C 1 (ε), C 2 (ε) > 0 such that for i ∈ N there exist constants ξ i , λ i such that for all x ∈ [0, 1] ξ i ≤ |f i (x)| ≤ λ i and

C 1 i d+ε ≤ ξ i ≤ λ i ≤
C 2 i d-ε . We will call such an iterated function system a d-decaying system. It will be further called Gauss like if

∞ i=1 f i ([0, 1]) = [0, 1)
and if for all x ∈ [0, 1] we have that f i (x) < f j (x) implies i < j.

We have a natural projection Π : N N → [0, 1] defined by

Π(a) = lim n→∞ f a 1 • • • • • f an (1),
which gives for any point x ∈ [0, 1] its symbolic expansion (a 1 (x), a 2 (x), . . .). This expansion is not uniquely defined, but there are only countably many points with more than one symbolic expansions. For a d-decaying Gauss like system we consider S n (x) = n 1 a i (x). Given an increasing function ϕ : N → N we denote The proofs (both from Section 3 and from [START_REF] Wu | On the distribution for sums of partial quotients in continued fraction expansions[END_REF][START_REF] Xu | On sums of partial quotients in continued fraction expansions[END_REF]) go through without significant changes.

  be an increasing function with ψ being a C 1 positive function on R + satisfying lim x→∞ sup y≥x ψ(y)
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 1 Figure1. dim H E ϕ for ϕ with different increasing rate.
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 11 Let ϕ(n) = exp{n β } with β ∈ [1/2, 1). Then the Hausdorff dimension of E ϕ is one-half.

Theorem 1 . 2 .

 12 Let ϕ(n) = e √ n•ψ(n) be an increasing function with ψ being a C 1 positive function on R + satisfying lim n→∞ ψ(n) = 0 and lim

  where D := [(1ε)e n γ -(1 + ε)e n γ -1 , (1 + ε)e n γ -(1ε)e n γ -1 ]. Now, we are going to estimate the upper bound of the Hausdorff dimension of E (1) ϕ = k A(γ, k, 1). For E (N ) ϕ = k≥N A(γ, k, N ) with N ≥ 2 we have the same bound and the proofs are almost the same.

  [START_REF] Xu | On sums of partial quotients in continued fraction expansions[END_REF] when k is large enough.Observe that F (γ, 1)⊂ N B(γ, N ),with B(γ, N ) being the union of the intervals{I n k (a 1 , a 2 , • • • , a n k )} k≥N such that n j=n -1 +1 a j = m with m ∈ D , N ≤ ≤ k,where D is the set of integers in the interval [u , v ].
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 141 d (ϕ) = x ∈ (0, 1) : lim n→∞ S n (x) ϕ(n) =Theorem Let {f i } be a d-decaying Gauss like system. We havei) if ϕ(n) = e n γ with γ < 1/d, dim H E d (ϕ) = 1, ii) if ϕ(n) = e n γ with γ > 1/d, dim H E d (ϕ) = 1 d , iii) if ϕ(n) = e γ n with γ > 1, dim H E d (ϕ) = 1 γ + d -1.

  Similar to (3.2) and (3.3), we deduce that In k

1/γ 

for any m ∈ D .
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