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SUBEXPONENTIALLY INCREASING SUM OF PARTIAL

QUOTIENTS IN CONTINUED FRACTION EXPANSIONS

LINGMIN LIAO AND MICHA L RAMS

Abstract. We investigate from multifractal analysis point of view the
increasing rate of the sum of partial quotients Sn(x) =

∑n
j=1 aj(x),

where x = [a1(x), a2(x), · · · ] is the continued fraction expansion of an
irrational x ∈ (0, 1). Precisely, for an increasing function ϕ : N → N,
one is interested in the Hausdorff dimension of the sets

Eϕ =

{

x ∈ (0, 1) : lim
n→∞

Sn(x)

ϕ(n)
= 1

}

.

Several cases are solved by Iommi and Jordan, Wu and Xu, and Xu.
We attack the remaining subexponential case exp(nβ), β ∈ [1/2, 1). We
show that when β ∈ [1/2, 1), Eϕ has Hausdorff dimension 1/2. Thus
surprisingly the dimension has a jump from 1 to 1/2 at the increasing

rate exp(n1/2). In a similar way, the distribution of the largest partial
quotients is also studied.

1. Introduction

Each irrational number x ∈ [0, 1) admits a unique infinite continued frac-
tion expansion of the form

x =
1

a1(x) +
1

a2(x) +
1

a3(x) +
. . .

,(1.1)

where the integers an(x) are called the partial quotients of x. Usually, (1.1)
is written as x = [a1, a2, · · · ] for simplicity. The n-th finite truncation of
(1.1): pn(x)/qn(x) = [a1, · · · , an] is called the n-th convergent of x. The
continued fraction expansions can be induced by the Gauss transformation
T : [0, 1) → [0, 1) defined by

T (0) := 0, T (x) =
1

x
(mod 1), for x ∈ (0, 1).

It is well known that a1(x) = ⌊x−1⌋ (⌊·⌋ stands for the integer part) and
an(x) = a1(T

n−1(x)) for n ≥ 2.
For any n ≥ 1, write Sn(x) =

∑n
j=1 aj(x) the sum of the n first par-

tial quotients. It is proved by Khintchine [5] in 1935 that Sn(x)/(n log n)
converges in measure (Lebesgue measure) to the constant 1/ log 2. In 1988,
Philipp [7] showed that there is no reasonable normalizing sequence ϕ(n)

M.R. was partially supported by the MNiSW grant N201 607640 (Poland).
L.L. was partially supported by 12R03191A - MUTADIS (France).
2010 Mathematics Subject Classification: Primary 11K50 Secondary 37E05, 28A80

1



2 LINGMIN LIAO AND MICHA L RAMS

such that a strong law of large numbers is satisfied, i.e., Sn(x)/ϕ(n) will
never converge to a positive constant almost surely.

From the point of view of multifractal analysis, one considers the Haus-
dorff dimension of the sets

Eϕ =

{

x ∈ (0, 1) : lim
n→∞

Sn(x)

ϕ(n)
= 1

}

.

where ϕ : N → N is an increasing function.
The case ϕ(n) = θn with θ ∈ [1,∞) was studied by Iommi and Jordan

[3]. It is proved that with respect to θ, the Hausdorff dimension of Eϕ is
analytic, increasing from 0 to 1, and tends to 1 when θ goes to infinity. In
[9], Wu and Xu proved that if ϕ(n) = nα with α ∈ (0,∞) or ϕ(n) = exp{nβ}
with β ∈ (0, 1/2), the Hausdorff dimension of Eϕ is always 1. It was shown
by Xu [10], that if ϕ(n) = exp{n} then the Hausdorff dimension of Eϕ is 1/2
and if ϕ(n) = exp{γn} with γ > 1 then the Hausdorff dimension is 1/(γ+1).
The same proofs of [10] also imply that for ϕ(n) = exp{nβ} with β ∈ (1,∞)
the Hausdorff dimension of Eϕ stays at 1/2. So, only the subexponentially

increasing case: ϕ(n) = exp{nβ}, β ∈ [1/2, 1) was left unknown. In this
paper, we fill this gap.

Theorem 1.1. Let ϕ(n) = exp{nβ} with β ∈ [1/2, 1). Then the Hausdorff

dimension of Eϕ is one-half.

We also show that for increasing rates slightly slower than e
√
n, for exam-

ple ϕ(n) = e
√
n(logn)−1

, the Hausdorff dimension will jump.

Theorem 1.2. Let ϕ(n) = e
√
n·ψ(n) be an increasing function with ψ being

a C1 positive function on R+ satisfying

lim
n→∞

ψ(n) = 0 and lim
n→∞

nψ′(n)

ψ(n)
= 0.

Then the Hausdorff dimension of Eϕ is equal to one.

Theorems 1.1 and 1.2 show that, surprisingly, there is a jump of the
Hausdorff dimensions from 1 to 1/2.

11 0 1/2

1/2

1

dimH Eϕ

1/(1+γ)

linear θn subexponential en
a superexponential eγ

n

Figure 1. dimH Eϕ for ϕ with different increasing rate.

By the same method, we also prove some similar results on the distribution
of the largest partial quotients in continued fraction expansions. For x ∈
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[0, 1) ∩Qc, define

Tn(x) := max{ak(x) : 1 ≤ k ≤ n}.

One is interested in the following lower limit:

T (x) := lim inf
n→∞

Tn(x) log log n

n
.

It was conjectured by Erdös that almost surely T (x) = 1. However, it is
proved by Philipp [6] that for almost all x, one has T (x) = 1/ log 2. Recently,
Wu and Xu [8] showed that for all α ≥ 0 the level set

{

x ∈ [0, 1) ∩Qc : lim
n→∞

Tn(x) log log n

n
= α

}

has Hausdorff dimension 1. They also proved that if the denominator n is
replaced by a polynomial the same result holds. In this paper, we show the
following theorem.

Theorem 1.3. For all α > 0,

{

x ∈ [0, 1) ∩Qc : lim
n→∞

Tn(x)/e
na

= α
}

is of Hausdorff dimension 1 if a ∈ (0, 1/2), and is of Hausdorff dimension

1/2 if a ∈ (1/2,∞).

We do not know what happens in the case a = 1/2.

2. Preliminary

For any a1, a2, · · · , an ∈ N, call

In(a1, · · · , an) := {x ∈ [0, 1) : a1(x) = a1, · · · , an(x) = an}

a rank-n basic interval. Denote by In(x) the rank-n basic interval containing
x. Write |I| the length of an interval I. The length of the basic interval
In(a1, a2, · · · , an) satisfies

n
∏

k=1

(ak + 1)−2 ≤
∣

∣

∣
In(a1, · · · , an)

∣

∣

∣
≤

n
∏

k=1

a−2
k .(2.1)

Let A(m,n) :=
{

(i1, . . . , in) ∈ {1, . . . ,m}n :
∑n

k=1 ik = m
}

. Let ζ(·) be
the Riemann zeta function.

Lemma 2.1. For any s > 1/2, for all n ≥ 1 and for all m ≥ n, we have

∑

(i1,...,in)∈A(m,n)

n
∏

k=1

i−2s
k ≤

(

9

2

(

1 + ζ(2s)
)

)n

m−2s.
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Proof. The proof goes by induction. First consider the case n = 2. We will
estimate the sum

∑m−1
i=1 i−2s(m− i)−2s. We have

m−1
∑

i=1

i−2s(m− i)−2s

=2

u−1
∑

i=1

i−2s(m− i)−2s +

m−u
∑

i=u

i−2s(m− i)−2s

≤2
(

u−1
∑

i=1

i−2s
)

(m− u)−2s + (m− 2u+ 1)u−2s(m− u)−2s

≤2ζ(2s)(m− u)−2s + (m− 2u+ 1)u−2s(m− u)−2s.

Take u = ⌊m/3⌋. Then for m large enough, one can have

(m− 2u+ 1)u−2s ≤
(

(m− 2
(m

3
− 1

)

+ 1
)

(m

3

)−2s ≤ 2,

Hence, the above sum is bounded from above by

(2 + 2ζ(2s)) ·
(2m

3

)−2s ≤ 9

2
(1 + ζ(2s)) ·m−2s.

Suppose that we have the estimation for n. Then for n+ 1, we have

∑

(i1,...,in+1)∈{1,...,m}n+1,
∑
ik=m

n+1
∏

k=1

i−2s
k

=
m−1
∑

i=1

i−2s
∑

(i1,...,in)∈{1,...,m}n,
∑
ik=m−i

n
∏

k=1

i−2s
k

≤
m−1
∑

i=1

i−2s

(

9

2

(

1 + ζ(2s)
)

)n

(m− i)−2s

=

(

9

2

(

1 + ζ(2s)
)

)n

·
m−1
∑

i=1

i−2s(m− i)−2s

≤
(

9

2

(

1 + ζ(2s)
)

)n

·
(

9

2

(

1 + ζ(2s)
)

)

m−2s

=

(

9

2

(

1 + ζ(2s)
)

)n+1

m−2s.

�

Let

A(a, c1, c2, N) :=

{

x ∈ (0, 1) : c1 <
an(x)

ena < c2, ∀n ≥ N

}

.

Lemma 2.2. For any a > 0, any N ≥ 1 and any 0 < c1 < c2

dimH A(a, c1, c2, N) =
1

2
.
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Proof. This lemma is only a simplest special case of [2, Lemma 3.2], but
we will sketch the proof (based on [4]), needed for the next lemma. For
simplicity, let N = 1 (the proof for other N is almost identical).

Let a1, a2, . . . , an satisfy c1 < aje
−ja < c2 for all j. Those are exactly the

possible sequences for which the basic interval In(a1, . . . , an) has nonempty
intersection with A(a, c1, c2, 1).

There are approximately

(2.2)
n
∏

j=1

(c2 − c1)e
ja ≈ e

∑n
1 j

a

of such basic intervals, each of diameter

(2.3) |In(a1, . . . , an)| ≈ e−2
∑n

1 j
a
,

(both estimations are up to a factor exponential in n). Hence, using the
intervals {In(a1, . . . , an)} as a cover, we get

dimH A(a, c1, c2, 1) ≤
1

2
.

To get the lower bound, we consider a probabilistic measure µ uniformly
distributed on A(a, c1, c2, 1), in the following sense: given a1, . . . , an−1, prob-
ability of an taking any particular value between c1e

na
and c2e

na
is the same.

The basic intervals In(a1, . . . , an) have length e
−2

∑n
1 j

a
and measure e−

∑n
1 j

a
,

each (up to a factor cn). They are distributed in clusters: all In(a1, . . . , an)

contained in single In(a1, . . . , an−1) form an interval of length e−2
∑n−1

1 ja−na

(up to a factor cn, with c being a constant), then there is a gap, then

there is another cluster. Hence, for any r ∈ (e−2
∑n

1 j
a
, e−2

∑n−1
1 ja) and any

x ∈ A(a, c1, c2, 1) it is easy to estimate the measure of B(x, r):

µ(B(x, r)) ≈
{

r · e−
∑n

1 j
a

if r < e−2
∑n−1

1 ja−na

e−
∑n−1

1 ja if r > e−2
∑n−1

1 ja−na

(up to a factor cn). The minimum of logµ(B(x, r))/ log r is thus achieved

for r = e−2
∑n−1

1 ja−na
, and this minimum equals

−
∑n−1

1 ja

−2
∑n−1

1 ja − na
≈ −na+1/(a+ 1)

−2na+1/(a+ 1)− na
=

1

2
−O(1/n).

Hence, the lower local dimension of µ equals 1/2 at each point ofA(a, c1, c2, 1),
which implies

dimH A(a, c1, c2, 1) ≥
1

2

by the Frostman Lemma (see [1]). �

Let now c1 and c2 not be constant but depend on n:

B(a, c1, c2, N) =

{

x ∈ (0, 1) : c1(n) <
an(x)

ena < c2(n) ∀n ≥ N

}

.

A slight modification of the proof of Lemma 2.2 gives the following.
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Lemma 2.3. Fix a and N . Assume 0 < c1(n) < c2(n) for all n. Assume

also that

lim
n→∞

log(c2(n)− c1(n))

na
= 0

and

lim inf
n→∞

log c1(n)

log n
> −∞ and lim sup

n→∞

log c2(n)

log n
< +∞.

Then

dimH B(a, c1, c2, N) = 1/2.

Proof. We need only to replace the constants c1 and c2 by c1(n) and c2(n) in
the proof of Lemma 2.2. Notice that by the assumptions of Lemma 2.3, the
formulas (2.2) and (2.3) still hold, up to a factor ecn logn for some bounded

c, much smaller than the main term e
∑n

1 j
a
which is of order en

1+a
. The rest

of the proofs are the same. �

3. Proofs

Proof of Theorem 1.1. Let ϕ : N → N be defined by ϕ(n) = exp{na} with
a > 0. For this case, we will denote Eϕ by Ea.

Let us start from some easy observations, giving (among other things) a
simple proof of dimH Ea = 1/2 for a ≥ 1.

Consider first a ≥ 1/2. If x ∈ Ea then for any ε > 0 for n large enough,

(1− ε)en
a ≤ Sn(x) ≤ (1 + ε)en

a

and

(1− ε)e(n+1)a ≤ Sn+1(x) ≤ (1 + ε)e(n+1)a

Hence,

(1− ε)e(n+1)a − (1 + ε)en
a ≤ an+1(x) ≤ (1 + ε)e(n+1)a − (1− ε)en

a
.

For a ≥ 1 this implies

Ea ⊂
⋃

N

A(a, c1, c2, N)

for some constants c1, c2. By Lemma 2.2,

dimH Ea ≤
1

2
, ∀a ≥ 1.

Consider now any a > 0. Set

c1(n) = (en
a − e(n−1)a)e−n

a
and c2(n) =

n+ 1

n
c1(n).

As

(en
a − e(n−1)a)e−n

a ≈ ana−1,

the assumptions of Lemma 2.3 are satisfied. As B(a, c1, c2, N) ⊂ Ea, by
Lemma 2.3,

dimH Ea ≥
1

2
, ∀a > 0.

Thus we have obtained dimH Ea = 1/2 for a ≥ 1 and dimH Ea ≥ 1/2 for
a > 0. What is left to prove is that for a ∈ [1/2, 1) dimH Ea ≤ 1/2.
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Let us first assume that a > 1/2. We will once again use the fact that for
any ε > 0, if x ∈ Ea, then for n large enough,

(1− ε)en
a ≤ Sn(x) ≤ (1 + ε)en

a
.

Take a subsequence n0 = 1, and nk = k1/a (k ≥ 1). Then there exists an
integer N ≥ 1 such that for all k ≥ N ,

(1− ε)ek ≤ Snk
(x) ≤ (1 + ε)ek,

and

(1− ε)ek − (1 + ε)ek−1 ≤ Snk
(x)− Snk−1

(x) ≤ (1 + ε)ek − (1− ε)ek−1.

Thus

Ea ⊂
⋃

N

A(a,N),

with A(a,N) being the union of the intervals {Ink
(a1, a2, · · · , ank

)}k≥N such
that

nℓ
∑

j=nℓ−1+1

aj = m with m ∈ Dℓ, N ≤ ℓ ≤ k,

where Dℓ := [(1− ε)eℓ − (1 + ε)eℓ−1, (1 + ε)eℓ − (1− ε)eℓ−1].
Now, we are going to estimate the upper bound of the Hausdorff dimension

of A(a, 1). For A(a,N) with N ≥ 2, we will have the same bound and the
proofs are almost the same.

For any s > 1/2 we can apply Lemma 2.1 together with the formula

|Ink
|s ≤

k
∏

ℓ=1

(anℓ−1+1anℓ−1+2 · · · anℓ
)−2s

to obtain

∑

Ink
∈A

|Ink
|s ≤

k
∏

ℓ=1

∑

m∈Dℓ

(

9

2

(

1 + ζ(2s)
)

)nℓ−nℓ−1

m−2s

≤
k
∏

ℓ=1

2ε
(

1 +
1

e

)

eℓ ·
(

9

2

(

1 + ζ(2s)
)

)ℓ1/a−(ℓ−1)1/a

·
(

e

e− 1− εe− ε

)2s

e−2sℓ.

We have ℓ1/a− (ℓ− 1)1/a ≈ ℓ1/a−1. As a > 1/2, we have 1/a− 1 < 1, and

the main term in the above estimation is e(1−2s)ℓ. Thus for any s > 1/2,
the product is uniformly bounded and we have the Hausdorff dimension of
A(a, 1) is not greater than 1/2.

If a = 1/2, we take nk = k2/L with L being a constant and we repeat the
same argument. Then the same estimation will lead to

∑

Ink
∈A

|Ink
|s ≤

k
∏

ℓ=1

C · eℓ/
√
L

(

9

2

(

1 + ζ(2s)
)

)(ℓ2−(ℓ−1)2)/L

e−2sℓ/
√
L.

The main term of the right side of the above inequality should be
(

9

2

(

1 + ζ(2s)
)

)2ℓ/L

· e(1−2s)ℓ/
√
L.
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We solve the equation
(

9

2

(

1 + ζ(2s)
)

)2/L

· e(1−2s)/
√
L = 1,

which is equivalent to

(3.1)

(

9

2

(

1 + ζ(2s)
)

)

= e
2s−1

2

√
L.

Observe that the two curves (of the variable s) of the two side of (3.1) always
have a unique intersection for some sL ∈ [1/2, 1], when L is large enough.
These sL are all upper bounds for the Hausdorff dimension of A(a, 1). Notice
that the intersecting point sL → 1/2 as L → ∞ since the zeta function ζ
has a pole at 1. Thus the dimension of A(a, 1) is not greater than 1/2.

So, in both cases, we have obtained dimH Ea ≤ 1/2. �

Sketch proof of Theorem 1.2. The proof goes like Section 4 of [9] with the
following changes. We choose εk = ψ(k). Then by the hypothesis on the
function ψ, we have

r(n)
∑

k=1

εk ≈ r(n)ψ(r(n)),

and we obtain the key formula (10) in [9] in the form

r(n)ψ(r(n)) ≪
√
nψ(n).

The other key point, the formula (15) in [9] follows by the estimation

log(an1an2 · · · anr(n)
) ≪ r(n)

√
nψ(n) + r(n) ≪ nψ2(n)

ψ(r(n))
+ r(n) ≪ n.

�

Proof of Theorem 1.3. For the case a < 1/2, the set constructed in Section
4 of [9] (as a subset of the set of points for which Sn(x) ≈ en

a
) satisfies

also Tn(x) ≈ en
a
and has Hausdorff dimension one. We proceed to the case

a > 1/2.
The lower bound is a corollary of Lemma 2.3. Take c1(n) = α(1 − 1

n)
and c2(n) = α. Then the conditions of Lemma 2.3 are satisfied, and for all
points x such that c1(n)e

na
< an(x) < c2(n)e

na
, we have

Tn(x)/e
na ≥ c1(n) = α

(

1− 1

n

)

,

and
Tn(x)/e

na
= ak/e

na ≤ αek
a
/en

a ≤ α

(where k ≤ n is the position at which the sequence a1, . . . , an achieves a
maximum). Thus we have

lim
n→∞

Tn(x)/e
na

= α

for all x ∈ B(a, c1, c2, 1). The similar argument works for B(a, c1, c2, N) for
any N . Hence, the lower bound follows directly from Lemma 2.3.

The upper bound is a modification of that of Theorem 1.1. Denote the
set in question by E(a, α). We consider the case α = 1 only, since for other
α > 0, the proofs are similar.
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Notice that for any ε > 0, if x ∈ E(a, 1), then for n large enough,

(1− ε)en
a ≤ Sn(x) ≤ n(1 + ε)en

a
.

Take a subsequence nk = k1/a(log k)1/a
2
. Then

(1− ε)ek(log k)1/a ≤ Snk
(x) ≤ k1/a(log k)1/a

2
(1 + ε)ek(log k)1/a ,

and

uk ≤ Snk
(x)− Snk−1

(x) ≤ vk,

with

uk := (1− ε)ek(log k)1/a − (k − 1)1/a(log(k − 1))1/a
2
(1 + ε)e(k−1)(log(k−1))1/a ,

and

vk := k1/a(log k)1/a
2
(1 + ε)ek(log k)1/a − (1− ε)e(k−1)(log(k−1))1/a .

We remark that

uk >
1

2
ek(log k)1/a , vk <

3

2
k1/a(log k)1/a

2
ek(log k)1/a

when k is large enough.
Observe that

E(a, 1) ⊂
⋃

N

B(a,N),

with B(a,N) being the union of the intervals {Ink
(a1, a2, · · · , ank

)}k≥N such
that

nℓ
∑

j=nℓ−1+1

aj = m with m ∈ Dℓ, N ≤ ℓ ≤ k,

where Dℓ is the set of integers in the interval [uℓ, vℓ].
As in the proof the Theorem 1.1, we need only study the set B(a, 1). We

have for any s > 1/2, since

|Ink
|s ≤

k
∏

ℓ=1

(anℓ−1+1anℓ−1+2 · · · anℓ
)−2s,

by Lemma 2.1,

∑

Ink
∈A

|Ink
|s ≤

k
∏

ℓ=1

∑

m∈Dℓ

(

9

2

(

1 + ζ(2s)
)

)nℓ−nℓ−1

m−2s

≤
k
∏

ℓ=1

3

2
· ℓ1/a(log ℓ)1/a2eℓ(log ℓ)1/a

(

9

2

(

1 + ζ(2s)
)

)nℓ−nℓ−1

22se−2sℓ(log ℓ)1/a .

Since nℓ−nℓ−1 ≈ ℓ1/a−1+o(ε) and 1/a−1 < 1, the main term in the above

estimation is e(1−2s)ℓ(log ℓ)1/a . Thus for any s > 1/2, the product is uniformly
bounded and we have the Hausdorff dimension of B(a, 1) is not greater than
1/2. Then we can conclude dimH E(a, 1) ≤ 1/2 and the proof is completed.

�
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