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MATHEMATICAL MODELING OF HUMAN BEHAVIORS
DURING CATASTROPHIC EVENTS.

N. Verdiere, V. Lanza, R. Charrier, D. Provitolo, E. Dubos-Paillard, C. Bertelle, A. Alaoui *

Abstract.
for modeling the human collective behaviors in the specific

In this paper, we introduce a new approach

scenario of a sudden catastrophe, this catastrophe can be
natural (i.e. earthquake, tsunami) or technological (nuclear
event). The novelty of our work is to propose a mathemat-
ical model taking into account different concurrent behav-
iors in such situation and to include the processes of transi-
tion from one behavior to the other during the event. Thus,
in this multidisciplinary research included mathematicians,
computer scientists and geographers, we take into account
the psychological reactions of the population in situations
of disasters, and study their propagation mode. We pro-
pose a SIR-based model, where three types of collective re-
actions occur in catastrophe situations: reflex, panic and
controlled behaviors. Moreover, we suppose that the inter-
actions among these classes of population can be realized
through imitation and emotional contagion processes. Some
simulations will attest the relevance of the proposed model.
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1 Introduction

Nowadays, management of disasters has become a
major issue, due to their huge financial and human
costs. In fact, our societies, independently from
their development level, are still not sufficiently pre-
pared to a natural or anthropic catastrophe and to
possible domino effects. However, there is an in-
creasing trend concerning the number of disasters,
ranking from a hundred in 1960 to over 800 in 2000,
and the trend is not expected to be inverted in the
future, due to the population growth and densifica-
tion in the risk zones [1].

A fundamental lever for reducing human vulner-
ability in the face of such events is definitely the
population training, in order to adapt their behav-
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iors to extreme situations. In fact, during several
catastrophic events, controlled and uncontrolled be-
haviors in either individuals, small groups or crowds
have been observed. These reactions depend not
only on the event and its temporality (nature, unex-
pectedness, presence of alert), but also on the popu-
lation characteristics (density, composition, prepa-
ration level) [5].

In this paper, our aim is to model the collec-
tive behaviors that take place in a crowd during a
catastrophe, in order to better apprehend and han-
dle the collective reactions. In the literature, sev-
eral models at different scales have been proposed
for modeling crowd dynamics, also in extreme sce-
narios as in a panic situation [3]. At microscopic
level we encounter cellular automata or agent based
models [14], where each individual of the popula-
tion is modeled as single entity. Moreover, espe-
cially for the study of pedestrian flows, some mi-
croscopic models consider the pedestrians as par-
ticles subject to a mixture of socio-psychologically
and physical forces [11]. This approach permits to
take into account the heterogeneity of the popu-
lation but this means also high computational re-
quirements and sometimes a difficulty in transfer-
ring the microscopic properties at a macroscopic
level [16]. At macroscopic level, the models of crowd
dynamics consist in partial differential equations
that describe the evolution in time and space of
the density and mean velocity of the crowd flow.
In particular, interactions of crowds and structures
in panic situations have been considered [2, 9]. Fi-
nally, at mesoscopic level, between the microscopic
and the macroscopic ones, we have the models that
exploit the approach of the kinetic theory, through
the Boltzmann or Vlasov equations, depending on
the different range of interactions [3].

However, these mathematical models consider
only the panic reaction, and do not take into ac-
count what is well-known by now in human sci-
ences [7, 15]: in a catastrophe, the population can
exhibit different concurrent reactions, not only the
panic one, and each individual does not keep the
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same behavior during all the event. It is what we
propose to do in this paper in exploiting the po-
tential of SIR models [13] that are widely used in
epidemics. Indeed, in these models, one can de-
compose the population in several subpopulations
categorized in compartments. Furthermore, differ-
ent types of transition between these compartments
can be easily considered.

In this paper, we omit the spatial dynamics in order
to focus first of all on the different psychological be-
haviors in a crowd, and the processes of transition
from one behavior to an other during a disaster.

The collective behaviors that have been observed
in the impact and in the destruction zone [5] can be
classified in two main categories:

e the instinctive behaviors, managed by the rep-
tilian zone of the brain, that handle with the
impulsive and urged behaviors [12]

e the controlled behaviors, where the pre-frontal
cortex adapts in a more reflexive way the reac-
tions to an external perturbation [8].

In particular, in the first group we have all the be-
haviors of instinctive escape and fight, the panic,
but also the behaviors as a sort of automaton [17],
while in the second one we have all the persons that
keep calm and self-control.

In our case, we have subdivided the population
in situation of catastrophe in three groups corre-
sponding to the three following collective reactions:
reflex behaviors except the panic one, panic and
controlled behaviors. Indeed, according to the spe-
cific status of the panic, this reaction has been dif-
ferentiated from the others reflex behaviors. More-
over, according to [10], we suppose that the inter-
actions among these classes of population can be
realized through imitation and emotional contagion
processes. In fact, it is well-known that in a crowd
the perception of an emotional state causes in an
observer an automatic imitation of this expression.

The paper is structured as follows. In part 2,
our choice of the thee groups of compartmental re-
actions is discussed and from this discussion, the
mathematical model is deduced. In part 3, the
available data present in the literature are presented
and our strategy for calibrating the model is given.
In part 4, numerical simulations attest the relevance
of our suggested approach.

2 The mathematical model

2.1 Choice of three groups of com-
partmental reactions

In this paper, we consider the human behaviors
in the impact zone of a catastrophe, with a fast
dynamic and no alert to the population. We
suppose that the effect of surprise is total and there
are no precursor signs or warnings that allow the
population to adopt preventive behaviors. To give
an example, there may be an earthquake or a local
tsunami. We have distinguished three different
types of behaviors in such situation.

The first type consists in the reflex behaviors
and concerns the reptilian brain. In our case, it
corresponds to the set of instinctive behaviors
except panic. This mechanism permits to react
quickly, either by running away as fast as possible
or by being flabbergasted and being physically
unable to move in space. It can take the form of
sideration and automate behaviors for example [5].
In our model, we have decided to globalize all these
reflex behaviors, despite their diversity.

The second one corresponds the panic behavior.
Panic has a particular status since, even if it is
not always adopted (as, for example, during an
earthquake in prepared regions as Japan), this be-
havior is the most feared. Indeed, this mechanism
is difficult to stop once started [6] and can provoke
dangerous situations in a crowd, due to trampling
and crushing. Moreover, the extinction of collective
panic is more linked to internal dynamics than
to the remoteness of the danger [5]. Thus, even
if it belongs to reflex behaviors, we consider it
apart due to its particular nature. Furthermore, in
our model, the collective panic can propagate via
imitation and contagion mechanisms [10].

Finally, the third type includes all the controlled
behaviors. They are governed by the prefrontal
cortex, which takes over the reptilian brain. Thus,
reflex reactions are substituted by controlled,
intelligent and reasoned reactions. They can take
different forms in a catastrophe, as, for example,
evacuation, leak, containment, sheltering, research
for help, pillage, theft... As for the first type,
we have decided to globalize all these controlled
behaviors, despite their variety.

It is worth noting that the three previous behav-
iors do not all occur at the same time and respect a
certain order. Indeed, the first behavior of an indi-
vidual in the face of danger is a reflex one followed,
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in a second step, by controlled or panic behavior
[8].

2.2 Formalization of the human be-
havior

In this paper, we propose a SIR-based mathemati-
cal model composed of four classes, one constitutes
daily behaviors, and the three others correspond to
the three previous behaviors described at Section
2.1. Thus, first of all, we suppose to have a class
named ) composed of individuals in a daily behav-
ior and that, during the event, no death nor birth
takes place. Hence, globally the population is con-
stant and composed by N individuals. Moreover,
during the catastrophe, @ is the sum of two sub-
populations:

e (Q1(t): it designs the number of individuals
with routine behaviors. Clearly, just before the
catastrophic event occurs, all the population is
in this state, therefore Q,(0) = N,

e (Q2(t): it designs the number of individuals who
come back to normal lifestyle after the out-
break of the disaster. We expect that at the
end of the event, all the individuals will be in
this state, thus Q2 (tend) = N.

According to Section 2.1, the population during the
catastrophe is decomposed into 3 subpopulations
who are represented by the following variables:

e z(t) = number of persons with reflex behaviors,

e y(t) = number of persons with controlled be-
haviors,

e z(t) = number of persons with panic behaviors.

Since we suppose to be in presence of a sudden and
unpredictable event, all the involved population
will have firstly a reflex reaction, corresponding
to instinctive comportments. Thus, the routine
behaviors, represented here with the variable
Q1(t), can only be transformed in reflex behaviors,
that is in x(t). Hereafter, reflex behaviors can
become controlled or panic behaviors. Since Q2(t)
represents the number of individuals who come
back to normal lifestyle, it can be alimented only by
the controlled behaviors y(t). In fact, an individual
needs to recover self-control in order to regain the
everyday routine. Moreover, we suppose that, once
they have come back to normality, they maintain
their habitual behaviors. Thus, the individuals in
()2 cannot pass in )1 and re-enter in the loop.

Furthermore, according to our psychological and
geographical references [7, 10, 6, 4], during catas-
trophic events we have interactions and transitions
between the different behaviors, as represented in
Figure 1. The exterior event, that is the catastro-

() = reflex behaviors

@)

Q(t) = daily

behaviors

2(t) = panic behaviors

Qa(t)

A‘
_ o AN
o y(t) = controlled behaviors AN
v [

Q instinctive behavior, managed by the reptilian zone of the brain
Q controlled behaviors, managed by the pre-frontal cortex

Figure 1: Graphic modeling of three types of human
behaviors in context of disasters

phe onset, is represented by a forcing function -~y
which can be discrete or continuous, depending on
the type of the event under study. For example,
an event such as a local tsunami can be modeled
by a discrete function, whereas an inundation can
be modeled by a continuous function since it can
be announced fewer hours before its start. In our
case, we suppose to be in the first situation and the
brutality and the speed of the catastrophic event is
modeled through a logistic function.

For taking into account the possible continuation
or repetition of the catastrophe perception stress,
the arrows labeled s; and sy are added, where s;
and s, are supposed to be constant parameters.
Once the population is in a reflex behavior, they
can evolve in a controlled or panic one according
to the parameters B and Bs, respectively. In the
same way, a part of the controlled population can
evolve to a panic behavior and reciprocally accord-
ing to the coefficients C7 and Cs, respectively.

All the previous transitions are causality links.
However, some processes of imitation and contagion
exist and are modeled by the arrows labeled «, u, d.
In the graphic, a transposes the process of imitation
between x and y which is realized in both directions.
This process is modeled as an epidemiological prop-
agation and has the following form: a- f1(z(t))-y(¢).
This modeling permits to favor the imitation in one
direction, in particular from z to y. Indeed, in our
numerical tests, we have assumed that there must
be at least 55% of reflex behaviors for that con-
trolled individual behaviors imitate reflex ones.

In the same manner, the constant § traduces the
imitation processes between x and z and is mod-
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eled by the function ¢ - fo(xz(t)) - 2(t). Finally, the
constant p traduces the imitation processes between
controlled and panic individuals behavior, knowing
that the imitation is essentially in the sens panic
towards controlled individuals behavior. It is mod-
eled by the term p - g(y(t)) - 2(t).

From the graphical modeling in Figure 1, the math-
ematical model is deduced:

% =000 (1= 22) = 51+ Bt

orfy (2(1)y(t) + 8 Faw(D))2(0) + s19(1) + s22(t),

% = Bya(t) — afy (2(£)y(t) + Cr2(t) — s1y(t)
~Coy(t) — (1)) (1 - ?;252) T ugy(t))-

% = Bya(r) — 522(1) ~ 82(w(1)2(t)  Cr2(t)
+Coy(t) — nug(y)z,

dQ, z(t)

el ()Q1(t)< xm>a

W gt (1- 29)

(1)
Since the concerned population is supposed to be
constant, that is the equality Q1 (t) + Q2(t) +z(¢) +
y(t) + z(t) = N for all ¢t € [0,T] is verified, system
(1) can be reduced to four equations and rewritten
as:

% =0a0 (1-22) — 51+ Bt

Fafi(z(t)y(t) + 6f2(x(1))2(t) + s1y(t) + s22(1),

Y~ Bua(t) — @i O)ylo) + Crz(0) — s1(0)
~Caylt) — (Bl (1 - Qg) )= olt)
= Uk ) + ng(y(t)

% = Box(t) — s22(t) — 0 fa(a(t))2(t) — Cr2(t)
+C2y(t) — ng(y)=(1),

e (1-29).

3 Calibration of the model

Unfortunately, in the literature, the available data
to calibrate the model are scarce. However, one can

distinguish two groups of quantitative data. The
first one concerns the percentages of the population
adopting a certain type of behavior and the second
one relates on the duration of such behaviors.

3.1 The percentages of population
adopting a certain type of behav-
ior

The different types of human behaviors described

previously can manifest in variable proportions, in

function of the considered catastrophe, the sudden-
ness of the threat, the composition of the group,
the individual aptitudes for understanding the dan-
ger and the knowledge of the environment. More-
over, [4] considers that in most of the catastrophes,

”15% of individuals manifest obvious pathological

reactions, 15% keep their cool and 70% manifest

an apparently calm behavior but answer in fact to

a certain degree of emotional sideration and lost

of initiative which reports to a pathological regis-

ter”. These percentage have to be modulated ac-
cording to the different parameters of our model,
which leads us to consider:

e z(t) = 50 to 75% of the population
e y(t) = 12 to 25% of the population
e z(t) = 12 to 25% of the population

At our knowledge, no data are available for quan-
tifying transition mechanisms from one state to an
other.

3.2 The duration of the behavior

The three different reactions have different duration
[17]. The duration of the reflex and panic behav-
iors varies from few minutes to one hour. Most of
the time, these two types of behavior do not ex-
ceed 15 minutes. However, for the first one, it may
take longer especially if it corresponds to a delay
of evacuation in a disaster area. In this case, sup-
port and research behaviors for relatives and vic-
tims gradually appears [5]. For the second one, the
collective panic behaviors resolves generally sponta-
neously. However, sometimes, an external interven-
tion permits to the panic population z(t) to come
back to an automate behavior z(t), before adopting
a controlled behavior y(t).

In general, the duration of the uncontrolled behav-
ior z(t) + z(t) does not last more than 1h30. In
this model, we suppose that an individual cannot
stay 1 hour in a reflex behavior and another hour
in a panic state. The duration of the controlled be-
havior y(t) varies from few minutes to fewer hours,
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according to the intervention of the emergency re-
sponse.

The choice of the parameters will be done in order
to find these data.

4 Numerical examples

For the numerical simulations, we have transformed
the model in a dimensionless form, that is, popu-
lation numbers correspond to fractions of the total
population. In the following subsection, the func-
tions intervening in the dimensionless model are
specified.

4.1 The functions v, ¢, fi, fo, f3

In the case of a sudden catastrophe, as a local
tsunami, modeled by the function v, we suppose
that the population begins to be rapidly informed
that is to say after 1 minute, and that all the con-
cerned population is informed in the 3 following
minutes, hence, the shape of the function v in Fig-
ure 2. Clearly, the return to the normality, cor-
responding to the function ¢, can not be immedi-
ate. We have supposed that it is done after 5 min-
utes from the outbreak and this return is done very
slowly, which leads us to consider the function ¢ as
in Figure 2. As we have said before, the form of the
curves has to be modulated according to the type
of catastrophe event (depending if it is announced
or not).

0.9 4
0.8 — gamma()
— phiy

0.7 4
0.6 o
0.5+
0.4 4

0.3 4

0.2

Figure 2: Functions ¢ and ~y

The terms af1 (z(t))y(t) and 0 fo(z(t))z(t) are the
terms of imitation between z(t) and y(t), and z(t)
and z(t), respectively. We promote the imitation
from z(t) to y(t) in assuming that there must be

at least 55% of reflex behaviors for that controlled
individuals imitate reflex behavior (see Figure 3).

0.4 4
0.3 4
0.2 4

0.14

014

024

0.3+

0.4

0.5+

0.6 4

0.7 4

0.8

0.9 4

Figure 3: Function f; and f,

For the imitation term ug(y(t))z, we suppose that
the imitation is essentially in the sense from z(t) to
y(t) (see Figure 4).

Figure 4: Function g

Functions f1, f2, g, ¢ and  are modelised
through the function

hmin for s < Spmin
hmaz fOr 8 > Spae

hmam - hmzn S — Smin
h(s) =< — cos T
2 Smax — Smin

+ hmzn "2_ hmam else

(3)
where [Smin, Smaz] 18 the support of the function h
and Nypin (resp. higq) 18 its minimum value (resp.
maximum value).
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4.2 Numerical simulations

Different scenarios were made and correspond to
different values of parameters.

4.2.1 Simulation 1

The first one corresponds to Figure 5. The chosen
values of the parameters permit to find the calibra-
tion data presented at Section 3. The areas between
each curve and the horizontal axis gives the global
percentage of the corresponding population. The
global percentage of reflex behaviors (z(t)) equal to
61,41% is included between 50 and 75% otherwise
the global percentages of panics and controlled be-
haviors respectively equal to 18,42% and 20,17% are
included between 12% and 25%. Furthermore, the
model gives the evolution of these global behaviors
distributions.

Figure 5: Simulation of the model with the param-
eters values: z,, = 0.75, Q2,, = 1, By = 0.04,
BQ = 002, S1 = 001, S9 = 001, Ol = 05,
Cy =05, a=0=p=0.01

4.2.2 Simulation 2

In this section, we are interested in the evolution of
the model when the parameter By varies, in partic-
ular, the possibility to evolve from reflex to panic
behaviors. The numerical simulations at Figure 6
shows that for a low value of Bs, the density of
population having a reflex behavior remains im-
portant during all the simulation. However, for a
high value of this parameter (Figure 7), the density
of this population decreases to extinguish rapidly.
Furthermore, the densities of panic and controlled
populations grow significantly between Figure 6 and
7.

Figure 6: Simulation of the model with the param-
eters values: z,, = 0.75, @Q2,, = 1, By = 0.04,
0.01, C; =

By = 0.002, s; = 0.01, so =
Cy =05, a=3=pu=0.0L

0.5,

Figure 7: Simulation of the model with the param-
eters values: z,, = 0.75, Q2,, = 1, By = 0.04,
By =0.2, s =0.01, s = 0.01, C; = 0.5, Cy = 0.5,
a=0§=u=0.01



Mathematical modeling of human behaviors during catastrophic events.

4.2.3 Simulation 3

In the following simulations, we force the emergence
of panic and controlled behaviors in acting on the
parameters By, By, C7 and Cy. Figure 8 shows that
the return from controlled to daily behavior can be
furthered, while Figure 9 induces a high proportion
of panic behaviors and a return more difficult to
normality as remarked by [6].

Figure 8: Simulation of the model with the param-
eters values: =z, = 0.75, Q2,, = 1, By = 0.2,
By = 0.04, s; = 0.01, s = 0.01, C; = 0.5,
Co=0.1,a=6§=p=0.01.

0.9 o

Figure 9: Simulation of the model with the param-
eters values: x,, = 0.75, Qa2 = 1, By = 0.04,
BQ = 0.2, S1 = 0.01, So = 0.01, Cl = 0.1, 02 = 0.5,
a=4§=u=0.01

5 Conclusion

This paper introduces a new step in the modeling
of the crowd dynamics in catastrophic events. In-
deed, it considers three concurrent behaviors and
includes the processes of transition from one be-
havior to the other. Up to now, the main models
consist in modeling the panic which is a fear behav-
ior but it is not always adopted. Furthermore, panic
does not necessarily lasts during all the event and,
on the contrary, the global behavior of the crowd
can change. In this work, two other behaviors have
been integrated in the modeling: the reflex one and
the controlled one. As seen in human sciences, our
simulations show that they can influence the crowd
behavior and a return to normality. The next step
of this work will consist in doing a mathematical
study of this model and integrating it in a diffusion
process.
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