
HAL Id: hal-00992826
https://hal.science/hal-00992826

Submitted on 19 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Singular limits for reaction-diffusion equations with
fractional Laplacian and local or nonlocal nonlinearity

Sylvie Méléard, Sepideh Mirrahimi

To cite this version:
Sylvie Méléard, Sepideh Mirrahimi. Singular limits for reaction-diffusion equations with fractional
Laplacian and local or nonlocal nonlinearity. Communications in Partial Differential Equations, 2015,
40 (5), pp.957-993. �10.1080/03605302.2014.963606�. �hal-00992826�

https://hal.science/hal-00992826
https://hal.archives-ouvertes.fr


Singular limits for reaction-diffusion equations with fractional
Laplacian and local or nonlocal nonlinearity
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Abstract

We perform an asymptotic analysis of models of population dynamics with a fractional Laplacian
and local or nonlocal reaction terms. The first part of the paper is devoted to the long time/long
range rescaling of the fractional Fisher-KPP equation. This rescaling is based on the exponential
speed of propagation of the population. In particular we show that the only role of the fractional
Laplacian in determining this speed is at the initial layer where it determines the thickness of the
tails of the solutions.
Next, we show that such rescaling is also possible for models with non-local reaction terms, as
selection-mutation models. However, to obtain a more relevant qualitative behavior for this second
case, we introduce, in the second part of the paper, a second rescaling where we assume that
the diffusion steps are small. In this way, using a WKB ansatz, we obtain a Hamilton-Jacobi
equation in the limit which describes the asymptotic dynamics of the solutions, similarly to the
case of selection-mutation models with a classical Laplace term or an integral kernel with thin tails.
However, the rescaling introduced here is very different from the latter cases. We extend these
results to the multidimensional case.

Key-Words: Fractional Laplacian, Fisher-KPP equation, local and nonlocal competition, asymptotic
analysis, exponential speed of propagation, Hamilton-Jacobi equation

1 Introduction

We study the asymptotic behavior of the solution of the following equation
{

∂tn+ (−∆)α/2n = nR(n, I),

n(x, 0) = n0(x), x ∈ R
(1)

with

I(t) =

∫

R

n(x, t)dx. (2)

In all what follows, α ∈ (0, 2) is given. The term (−∆)α/2 denotes the fractional Laplacian:

(−∆)α/2n(x, t) = −
∫ ∞

0
[n(x+ h, t) + n(x− h, t)− 2n(x, t)]

dh

|h|1+α
.
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In the case of the classical diffusion, singular limits using Hamilton-Jacobi equations have been helpful
to describe the asymptotic behavior of the reaction-diffusion equations with local or nonlocal nonlin-
earities (see for instance Freidlin [18, 19], Evans and Souganidis [17], Barles et al. [3, 5], Diekmann et
al. [15]). Is it possible to extend these results to the case of models where the Laplace term is replaced
by a fractional Laplacian?

Here, we consider two different forms of reaction terms. The first case corresponds to the fractional
Fisher-KPP equation, describing population dispersion with local interactions:

R(n, I) = 1− n. (3)

The second case which is motivated by selection-mutation models or spatially structured population
models, considers only a dependence on the nonlocal term and therefore induces a nonlocal nonlinear-
ity:

R(n, I) = R(I). (4)

A standard example is the logistic one, where R(I) = (r − I), r being the intrinsic growth rate of
a population and I is a mean-field competition term. Such models are rigorously derived from mi-
croscopic (individual-based) dynamics involving Lévy flights which naturally appear in evolutionary
ecology or population dynamics, when the mutation distribution or the dispersal kernel have heavy
tails and belong to the domain of attraction of a stable law (see for example Gurney and Nisbet [20]
and Baeumer et al. [1]). This derivation is detailed in Jourdain et al. [22] for a selection-mutation
model where x denotes a quantitative genetic parameter. It leads to a more relevant reaction term
with also a dependence on the trait x of the ecological parameters. However, due to technical dif-
ficulties in this paper we only focus on the nonlocal nonlinearity and study the above simplified version.

In this paper, our motivation is twofold. In the one hand, we are interested in the long range/long time
asymptotic analysis of (1). The objective is to describe how fast the population propagates, using an
asymptotic analysis, similarly to the case of the classical Fisher KPP equation (see for instance [17, 3]).
In the other hand, we would like to describe the population dynamics, while the mutation (dispersion)
steps are small. To this end, we look for a rescaling of time and the size of mutation (dispersion)
steps such that we can perform an asymptotic analysis to describe the asymptotic dynamics of the
population, similarly to the models where the mutations have thiner tails (see for instance [24, 5]).
Note that, in the both above cases, usual rescalings used for similar models with the classical laplacian
or smoother mutation kernels (see [17, 3, 24, 5]) cannot be used. The possibility of big jumps with a
high rate (algebraically small and not exponentially), modifies drastically the behavior of the solutions
(see Section 2). The leading effect of the big jumps for processes driven by stable Lévy processes has
also been observed from a probabilistic point of view, (see [21]).

An important contribution of this paper, is the unusual rescalings that we introduce, which lead to the
description of the asymptotic dynamics of the population. We will use two rescalings. The first one,
being a long range/long time rescaling, is based on the speed of the propagation. The idea here, is to
look at the population from far, as in homogenization, so that we forget the full and detailed behavior,
but capture the propagation of the population. In this way, we suggest a new asymptotic formalism
to deal with reaction-diffusion equations with the fractional laplacian. This formalism generalizes a
classical approach known as the ”approximation of geometric optics” which is well developed in the
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case of the reaction-diffusion equations with the classical laplacian (see [18, 19, 17, 3]). However, the
difference between the speed of propagation in the classical or in the fractional Laplacian case can
convince the reader that a similar spatial scaling as in the classical Laplacian case cannot lead to
satisfying asymptotical results. Therefore we introduce a first rescaling inspired from the exponential
speed of propagation (the result announced in [11] and proved in [12] by Cabré et al.). We show in
particular that with this rescaling, the fractional Laplacian disappears in the limit as ε → 0. As a
consequence, the only influence of the fractional Laplacian on the speed of the propagation is at the
initial layer where it determines the thickness of the tails. This property is very different from the
case with the classical Laplacian and is true either in case (3) or in case (4).

The above rescaling is not relevant in the case of selection-mutation models or in dispersion models,
where we consider small diffusion steps independently of the position of the individuals. Therefore,
we suggest a second rescaling for the case of small mutation steps where the mutation (dispersion)
kernel is rescaled homogeneously with respect to x. In this case the fractional Laplacian does not
disappear in the limit as ε → 0 and the asymptotic dynamics is still influenced by this term. The
asymptotic behavior of the population is described by a Hamilton-Jacobi equation. This approach is
closely related to recent works on the asymptotic study of selection-mutation models (see [15, 24, 5])
developed in the easier case where the mutation steps have finite moments. For the sake of simple
representation, we have presented our results for x ∈ R. However, we show that these results can be
easily extended to the multidimensional cases.

2 The main results

We introduce two scalings yielding two different asymptotics. The first one is a long range/long time
rescaling well suited when the equation models a spatial propagation. The second one is well suited in
the selection-mutation modeling, when the diffusion term represents a small mutation approximation.

2.1 Long range/long time rescaling and the asymptotic speed of propagation

In this section we firstly study the asymptotic behavior of the Fisher-KPP equation (1) with (3):
{

∂tn(x, t) + (−∆)α/2n = n (1− n),

n(x, 0) = n0(x), x ∈ R.

It has been proved in Cabré et al. [10, 12] that the level sets of n propagate with a speed that is
exponential in time (see also [16, 7, 23, 13] for related works on the speed of propagation for reaction-
diffusion equations, with fractional laplacian or a diffusion term with thick tails). In particular, in [12]
it is proved that for any initial data such that

0 ≤ n0(x) ≤ C
1

1 + |x|1+α
,

we have
{

n(x, t) → 0, uniformly in {|x| ≥ eσt}, if σ > 1
1+α , as t → ∞,

n(x, t) → 1, uniformly in {|x| ≤ eσt}, if σ < 1
1+α , as t → ∞.

(5)

Our objective is to understand this behavior using singular limits as for the KPP equation with a
Laplace term (cf. [18, 3]). The idea is to rescale the equation and to perform an asymptotic limit so
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that we forget the full and detailed behavior and capture only this propagation. In the case of the
classical Fisher-KPP equation, to study the asymptotic behavior of the solutions one should use the
following rescaling [18, 19, 17, 3]

|x| 7→ x

ε
, t 7→ t

ε
, and nε(x, t) = n(

x

ε
,
t

ε
).

In the case of the fractional Fisher-KPP equation, being inspired from (5) we use the following long-
range/long time rescaling

|x| 7→ |x| 1ε , t 7→ t

ε
. (6)

For the sake of simple representation we assume

n0(x) = n0(|x|), x ∈ R. (7)

Having in mind that under assumption (7), for all (x, t) ∈ R×R
+, we have n(x, t) = n(|x|, t), we then

can define

nε(x, t) = n(|x| 1ε , t
ε
). (8)

Note that Assumption (7) is not necessary for our results to be held. In the case where n is not
symmetric, it is enough to perform the following rescaling

nε(x, t) = n(sgn(x) |x| 1ε , t
ε
).

Replacing (8) in (1) we obtain,

{

ε∂tnε(x, t) =
∫∞
0

(

nε

(∣

∣

∣
|x| 1ε + h

∣

∣

∣

ε
, t
)

+ nε

(∣

∣

∣
|x| 1ε − h

∣

∣

∣

ε
, t
)

− 2nε(x, t)
)

dh
|h|1+α + nε(x, t)(1 − nε(x, t)),

nε(x, 0) = n0
ε(x),

(9)
where Iε(t) = I( tε).

Although, for the classical Fisher-KPP equation, the long range and long time rescaling coincides with
the one with small diffusion steps and long time, this is not the case for the fractional Fisher-KPP
equation. To understand this better, we rewrite (9), for x 6= 0, in the following form

ε∂tnε(x, t) = |x|−α
ε

∫ ∞

0

(

nε

(

|x| · eεk, t
)

+ nε

(

|x| · exp
(

ε log |2− ek|
)

, t
)

− 2nε(x, t)
) ek

|ek − 1|1+α
dk

+nε(x, t) (1 − nε(x, t)).

Notice that here we have used the following change of variable:

h = |x| 1ε
(

ek − 1
)

, so that |x| 1ε + h = |x| 1ε · ek.

On this form, one can guess that the fractional Laplatian will disappear in the limit. Note that, by a
change of variable, this rescaling can be interpreted as a rescaling of the integral kernel:

h = |x|(ek − 1), t 7→ t

ε
, M(x, k, dk) =

|x|−αekdk

|ek − 1|1+α
7→ Mε(x, k, dk) = |x|−α

ε
e

k
ε
dk
ε

|ek
ε − 1|1+α

.
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We observe that this rescaling is heterogeneous in x, and the diffusion steps are rescaled differently at
different points.

Another way to have an idea of the shape of the solutions is to recall the following bounds on the
transition probability function p associated with the fractional Laplacian with coefficient α/2 (see,
e.g., Sato [25] p.89 and p.202):

Bm

t
1
α (1 + |t−1

α x|1+α)
≤ p(x, t) ≤ BM

t
1
α (1 + |t−1

α x|1+α)
. (10)

Note that the solution v to the following equation

{

∂tv + (−∆)α/2v = 0, in R× R
+,

v(x, 0) = v0, in R,

satisfies

v(x, t) =

∫

R

p(y, t)v0(x− y)dy.

The inequality (10) is written after the rescaling (6) as

Bm

( tε)
1
α (1 + |( tε)

−1
α |x| 1ε |1+α)

≤ pε(|x|, t) = p(|x| 1ε , t
ε
) ≤ BM

( tε)
1
α (1 + |( tε)

−1
α |x| 1ε |1+α)

, (11)

Being inspired now by (11) we use the classical Hopf-Cole transformation

nε = exp
(uε
ε

)

, (12)

and make the following assumption

Cm

1 + |x| 1+α
ε

≤ nε(x, 0) ≤
CM

1 + |x| 1+α
ε

, with Cm < 1 < CM . (13)

Our first result is the following.

Theorem 2.1 Let nε be the solution of (9) with (3) and uε = ε log nε. (i) Under assumption (7) and
(13), as ε → 0, (uε)ε converges locally uniformly to u defined as below

u(x, t) = min(0,−(1 + α) log |x|+ t). (14)

(ii) Moreover, as ε → 0,

{

nε → 0, locally uniformly in A = {(x, t) ∈ R× (0,∞) | t < (1 + α) log |x|},
nε → 1, locally uniformly in B = {(x, t) ∈ R× (0,∞) | t > (1 + α) log |x|}.

(15)
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Let us provide some heuristic arguments to understand this result. Rewriting (9) in terms of uε we
find

∂tuε(x, t) =

∫ ∞

0





nε

(∣

∣

∣|x| 1ε + h
∣

∣

∣

ε
, t
)

nε(x, t)
+

nε

(∣

∣

∣|x| 1ε − h
∣

∣

∣

ε
, t
)

nε(x, t)
− 2





dh

|h|1+α
+ 1− nε.

To prove the convergence of (uε)ε in Theorems 2.1 and 2.2, a key point is to find appropriate sub and
supersolutions for (9). In Section 4 we will prove that the first term of the r.h.s. of the above equation
vanishes as ε → 0. Therefore, the only remaining term is the one coming from the reaction term, i.e.
u the limit of (uε)ε, satisfies

max(∂tu− 1, u) = 0. (16)

Note that, here the variational form of the equation comes from the fact that nε is bounded. Suppose
now that the initial data in (1) satisfies

Cm

1 + |x| 1+α
ε

≤ n0
ε(x) ≤

CM

1 + |x| 1+α
ε

. (17)

Indeed, note in view of (10) that starting with a compactly supported initial data n0
ε, the tails of nε

would have algebraic tails as above, for all t > 0.
Combining the above inequalities, we find that

u(x, t) = min (0,−(1 + α) log |x|+ t) .

The above equality, and the fact that the only steady states of the reaction term (3) are 0 and 1,
suggest that

nε →
{

1 in A,

0 in B,

which is in accordance with (5).
To prove the convergence of nε in Theorems 2.1 the difficulty is for the set B. To prove the convergence
of nε in this set, being inspired by the results on the classical Fisher-KPP equation (see [17]), we
introduce an appropriate viscosity (supersolution) test function which leads to the result.

In view of (16), we notice that at the limit ε = 0, the fractional Laplacian does not have any impact
on the dynamics of u and the dynamics are determined only by the reaction term. The only role of
the fractional Laplacian in the limit is at the first initial time where the tail of the solution is forced to
satisfy some inequalities similar to (17). The exponential propagation is hence derived only from the
form of the solution at the initial layer. This is an important difference with the KPP equation with
the classical Laplacian where, the Laplace term not only forces the solution to have an exponential
tail but also it still influences in positive times the dynamics and modifies the speed of propagation.
To observe this property consider the following equation

{

∂tm− δ∆m = m(1−m), δ ∈ {0, 1},
m(x, 0) = exp

(

−x2

2

)

.

It is easy to verify that in long time the invasion front scales as x ∼
√
2t for δ = 0, while for δ = 1 the

invasion front scales as x ∼ 2t. Therefore, the diffusion term speeds up the propagation.
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Next we consider an analogous equation but with fractional Laplacian:
{

∂tm+ δ(−∆)
α
2 m = m(1−m), δ ∈ {0, 1} α ∈ [0, 2],

m(x, 0) = m0(x), with m0 satisfying (17).

Then following the computations above, in long time and for both cases δ = 0, 1, the invasion front

scales as x ∼ e
t

1+α .

Let us now state that such rescaling is also possible for Equation (1) with nonlocal interactions (4):
{

∂tn+ (−∆)α/2n = nR(I),

n(x, 0) = n0(x), x ∈ R.

For the case (4) we additionally assume

R(n, I) = R(I), R(I0) = 0, for some positive constant I0 > 0. (18)

− C1 ≤
d

dI
R(I) ≤ −C2, for all I ∈ R

+ and positive constants C1, C2, (19)

Im ≤ Iε(0) ≤ IM , where Im and IM are positive constants such that I0 ∈ [Im, IM ]. (20)

Theorem 2.2 Let nε be the solution of (9) with (4) and uε = ε log nε. (i) Under assumptions (7),
(13), (18), (19) and (20), as ε → 0, (uε)ε converges locally uniformly to u ∈ C(R) defined as below

u(x, t) = min(0,−(1 + α) log |x|).

(ii) Moreover, nε converges, along subsequences as ε → 0, in L∞ weak-∗ to a function n ∈ L∞(R×R
+),

such that supp n ⊂ {(x, t) ∈ R× R
+ |u(x, t) = 0} = [−1, 1] ×R

+.

2.2 Diffusion with small steps and long time

The rescaling (8) is not satisfying for the case of structured population dynamics. In that case, x
represents an hereditary parameter as a phenotypic trait and the fractional Laplatian term corresponds
to a mutation term where an individual with trait x can give births to individuals with traits x + h
or x − h. The fractional Laplatian models large mutation jumps (see Jourdain et al. [22]). We are
interested in the long time behavior of the populations with small mutation steps. On the one hand,
this rescaling is not adapted to study a solution nε which is close to a Dirac mass, while this is likely
the case in selection-mutation models. The rescaling (8) attributes indeed to nε(x, t), for x ∈ (−1, 1)
a value close to n(0, t) and therefore flattens the solution. On the second hand, since in the context
of selection-mutation models, the rescaling is on the size of the mutations and not on the variable x
to consider the long range limit, the non homogeneity in the mutation kernel induced by (8) is not
realistic. Therefore, in this case, we consider the following rescaling where the mutation kernel remains
independent of x:

h = ek − 1, t 7→ t

ε
, M(k, dk) =

ekdk

|ek − 1|1+α
7→ Mε(k, dk) =

e
k
ε
dk
ε

|ek
ε − 1|1+α

. (21)

In this way the size of mutations is rescaled to be smaller homogeneously and independently of x.
Here, we have also made a change of variable in time, to be able to observe the effect of small mutations
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on the dynamics. An advantage of this choice is that the size of mutations are rescaled to be smaller
homogeneously and independently of x. In this way, nε solves the following equation

{

ε∂tnε(x, t) =
∫∞
0

(

nε(x+ eεk − 1, t) + nε(x− eεk + 1, t)− 2nε(x, t)
)

ekdk
|ek−1|1+α + nε(x, t)R(nε, Iε)(x, t),

ne(x, 0) = n0
ε(x),

(22)
with

Iε(t) =

∫

R

nε(x, t)dx, (23)

and

nε(x, t) = n(x,
t

ε
).

Note that, the rescaling does not change the algebraic distribution of jumps and the problem remains
different from what is studied previously.

We use the following assumptions

(u0ε)ε is a sequence of Lipschitz continuous functions which converge in Cloc(R) to u0, as ε → 0,
(24)

there exist positive constants A < α and B such that ∀ε > 0 and ∀x, h ∈ R,

u0ε(x) ≤ −A log(|x|+ 1) +B, (25)

u0ε(x+ h) ≤ u0ε(x) +A log (1 + |h|) . (26)

Note that the above assumptions are satisfied for instance for u0ε(x) = −A log(|x|+ 1) +B.

Rescaling (21) being motivated by mutation-selection models, we will first focus on the the case (4)
with nonlocal nonlinearity as developed in [22].

Theorem 2.3 Let nε be the solution of (22) with (4) and uε = ε log nε. Assume (18), (19), (20), (24),
(25) and (26). (i) Then, as ε → 0, (Iε)ε converges locally uniformly to I0 and (uε)ε converges locally
uniformly to a continuous function u which is Lipschitz continuous with respect to x and continuous
in t. Moreover, u is the unique viscosity solution to the following equation

{

∂tu−
∫∞
0

(

eDxu·k + e−Dxu·k − 2
)

ekdk
|ek−1|1+α = 0,

u(x, 0) = u0(x),
(27)

and

‖Dxu‖L∞(R×R+) ≤ A, max
x∈R

u(x, t) = 0. (28)

(ii) Finally, along subsequences as ε → 0, nε converges in L∞
(

w ∗ (0,∞);M1(R)
)

to a measure n,
such that, supp n ⊂ {(x, t) |u(x, t) = 0}.

Here, we observe that, contrarily to the case of long range/long time rescaling (Theorems 2.1 and 2.2),
the fractional Laplacian does not disappear at the limit and still has an influence on the dynamics of
the asymptotic solution. Later in Example 2.6, we give more details on the signification of the results
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in Theorem 2.3, for a particular case.

The above result can be compared to Theorem 1.2 in [5], where a similar problem has been studied
but with a mutation kernel with exponentially small tails. Although, the results seem closely related,
the main difference comes from the rescaling that we have considered to obtain such Hamilton-Jacobi
equations. In the case of the fractional Laplacian, we should contract much more the mutation steps
to obtain a limiting behavior. Note also that, in [5], in the Hamilton-Jacobi equation obtained at the
limit, there is still a dependency in I(t) which is the limit of (Iε(t))ε since in that case, the growth
rate depends on x.

Remark 2.4 The result in Theorem 2.3-(ii) can be improved. One can indeed use arguments similar
to the one in [24](Section 3) and the fact that R(Iε) is small, to obtain that nε converges, along
subsequences as ε → 0, in C

(

(0,∞);M1(R)
)

to a measure n, and hence for all t > 0, supp n(·, t) ⊂
{u(·, t) = 0}. However, in this paper, we do not give the proof of this stronger result since we want to
focus on the difficulties coming from the nonlocal diffusion.

Let us now study the case (3). In addition to the previous assumptions, we also assume that there
exists a positive constant CM such that

0 ≤ nε(x, 0) ≤ CM , for all x ∈ R and ε > 0. (29)

Theorem 2.5 Let nε be the solution of (22) with (3) and uε = ε log nε. Assume (24), (25), (26)
and (29). (i) Then, as ε → 0, (uε)ε converges locally uniformly to a function u that is Lipschitz
continuous with respect to x and continuous in t. Moreover, u is the viscosity solution to the following
Hamilton-Jacobi equation

{

max
(

∂tu−
∫∞
0

(

eDxu·k + e−Dxu·k − 2
)

ekdk
|ek−1|1+α − 1, u

)

= 0,

u(x, 0) = u0(x),
(30)

and
‖Dxu‖L∞(R×R+) ≤ A. (31)

(ii) Moreover, as ε → 0,

{

nε → 0, locally uniformly in {(x, t) ∈ R× (0,∞) |u(t, x) < 0},
nε → 1, locally uniformly in Int {(x, t) ∈ R× (0,∞) |u(t, x) = 0}.

(32)

See Example 2.7, for an interpretation of the results in the above Theorem, for a particular case.

To prove Theorems 2.3 and 2.5 we first prove some regularity bounds using some sub- and supersolu-
tion arguments. Next, to prove the convergence to the corresponding Hamilton-Jacobi equation, we
use the so called half-relaxed limits method for viscosity solutions, see [6]. Note that, Theorems 2.3
and 2.5 are proved under the thick tail assumption (26) on the initial data, which assumes that n0

ε has
tails of order |x|−A/ε. Indeed, we need such property to be able to pass to the Hamilton-Jacobi limit.
We still don’t know how the solution would behave in the case where the initial data has a thiner tail.
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Note that for the Hamiltonian in (27) (or in (30)) to be finite, one should at least have |Dxu| < α in
R× (0,∞).

Note that, our asymptotic study, or more generally the ”approximation of geometric optics” approach
is closely related to the large deviation theory (see for instance [18, 19]). In [8, 9], some large deviation
type estimates have indeed been proven for some nonlocal equations with Levy type kernels which
have fast decays. In those papers, the kernel must scale at most as e−|x| and therefore, the case of the
fractional Laplacian is not treated. It is however worth mentioning that, with our second rescaling
in Theorems 2.3 and 2.5, although at the ε level it is not the case, in the limit ε = 0, the problem
approaches the case of Levy type kernels which scale as e−α|x| (known as kernels with tempered stable
law) and we obtain a Hamilton-Jacobi equation with a Hamiltonian similar to the one obtained in [9].

Lest us provide heuristic arguments on the proof of Theorem 2.3. Replacing (21) in (1) one obtains
(22). Then, using the Hopf-Cole transformation (12), in the case of (4) one obtains

∂tuε(x, t) =

∫ ∞

0

(

e
uε(x+eεk−1,t)−uε(x,t)

ε + e
uε(x−eεk+1,t)−uε(x,t)

ε − 2

)

ek

|ek − 1|1+α
dk +R(Iε(t)).

which leads formally to

∂tu =

∫ ∞

0

(

eDxu·k + e−Dxu·k − 2
) ekdk

|ek − 1|1+α
+R(I),

where I is the limit of (Iε)ε as ε → 0. Our conjecture is that an equivalent result as in Theorem 2.3
holds for the general case R(x, I) = R(I) but due to technical difficulties this is beyond the scope of
the present paper.

In the case of (3) following similar computations as above we find formally

max

(

∂tu−
∫ ∞

0

(

eDxu·k + e−Dxu·k − 2
) ekdk

|ek − 1|1+α
− 1, u

)

= 0.

Next, we give two examples where we discuss the interpretation of the results in Theorems 2.3 and
2.5.

Example 2.6 Let nε be the solution of (22) with (4) and n0
ε(x) = (|x|+ 1)−A/ε. Then, it follows

from Theorem 2.3 that (uε)ε converges locally uniformly to the unique viscosity solution of the following
equation

{

∂tu−H(Dxu) = 0,

u(x, 0) = −A log (1 + |x|) ,
with

H(Dxu) =

∫ ∞

0

(

eDxu·k + e−Dxu·k − 2
) ekdk

|ek − 1|1+α
.

It is easy to verify, using a Taylor expansion, that

C p2 = p2
∫ ∞

0

k2
(

e−Ak + 1
)

ek

2|ek − 1|1+α
dk ≤ H(p) ≤ p2

∫ ∞

0

k2
(

eAk + 1
)

ek

2|ek − 1|1+α
dk = C p2.

10



The above estimates, allow us to approximate the value of u:

sup
y∈R

{−A log (1 + |y|)− |x− y|2
4Ct

} ≤ u(x, t) ≤ sup
y∈R

{−A log (1 + |y|)− |x− y|2
4Ct

}.

In particular, it follows that

supp n = {0} × R
+, and thus for all (x, t) ∈ R× R

+, n(x, t) = I0 δ(x = 0).

Moreover, at the other points (x 6= 0), u becomes more and more flat as time goes by, and finally as
t → ∞, u(x, t) → 0 for all x ∈ R.

We note that here n does not evolve and it remains a Dirac mass at 0, since the growth rate R is too
simple. With the present form of R there is no reason for the population to move from one point to
another. For the Dirac mass to evolve in time, the growth rate R must depend on x, as was the case
for instance in [24, 5].

Example 2.7 Let nε be the solution of (22) with (3) and n0
ε(x) = (|x|+ 1)−A/ε. Then, it follows

from Theorem 2.5 that (uε)ε converges locally uniformly to the unique viscosity solution of the following
equation

{

max (∂tu−H(Dxu) + 1, u) = 0,

u(x, 0) = −A log (1 + |x|) ,

with H(Dxu) defined in Example 2.6. Using the estimates presented in Example 2.6, we obtain that

min

(

sup
y∈R

{−A log (1 + |y|)− |x− y|2
4Ct

+ t}, 0
)

≤ u(x, t) ≤ min

(

sup
y∈R

{−A log (1 + |y|)− |x− y|2
4Ct

+ t}, 0
)

.

After some computations, we find

{

(x, t) ∈ R× R
+ | |x| ≤ maxr∈[0,1]

[

2
√
Crt+ e

t(1−r2)
A − 1

]}

⊂ {u = 0}

⊂
{

(x, t) ∈ R× R
+ | |x| ≤ maxr∈[0,1]

[

2
√
Crt+ e

t(1−r2)
A − 1

]}

.

In view of (32), the above line indicates that the population propagates in space and that the front
position still moves exponentially in time.

The remaining part of the article is organized as follows. In Section 3 we give some preliminary results
on the boundedness of nε and Iε. Section 4 is devoted to the proofs of Theorems 2.1 and 2.2. In
Section 5 we prove some regularity results for (22) with the reaction term given by (4). In Section 6
we prove some regularity results for (22) with the reaction term given by (3). We next prove Theorems
2.3 and 2.5 respectively in Sections 7 and 8. Finally, we show how our results can be extended to the
multidimensional case in Section 9.

Throughout the paper, we denote by C positive constants that are independent of ε but can change
from line to line. The notion of solutions that we consider throughout the paper, is classical unless
stated otherwise.
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3 Notations and preliminary results

It is classical that (1) with (3) has a unique classical solution which is smooth. The existence of a
unique weak solution for a more general equation than (1) with (4), is proved in [22]. Moreover, from
the regularizing effect of the fractional Laplacian we deduce that the solution is smooth and hence
classical. We prove additionally some uniform bounds on nε and Iε respectively in cases (3) and (4),
which are derived from the monotonicity in the reaction term.

Lemma 3.1 Let nε be the unique solution of (9) or (22) with (3). Under assumption (29), we have

0 ≤ nε(x, t) ≤
CMe

t
ε

1− CM +CMe
t
ε

, for all (x, t) ∈ R× [0,∞). (33)

Proof. One can easily verify that the nul function is a subsolution and the r.h.s. is a supersolution
of (9) and (22) with (3). Hence, (33) follows from Assumption (13) or Assumption (29) and the
comparison principle.

Lemma 3.2 Let nε be the unique solution of (9) or (22) with (4). Under assumptions (18), (19) and
(20), we have

Im ≤ Iε(t) ≤ IM , for all t ≥ 0. (34)

Moreover as ε → 0, (Iε)ε converges locally uniformly in (0,∞) to I0. Moreover, there exists constants
C3 and C4 such that

C3 ε ≤
∫ t

0
R(Iε(s))ds ≤ C4 ε, for all t ∈ R

+. (35)

Proof. In both cases of equations (9) and (22) one can obtain

ε
d

dt
Iε(t) = Iε(t)R(Iε(t)). (36)

In the case of (22), this can be derived by integrating (22) with respect to x. In the case of (9), we
integrate first (1) with respect to x and then make the change of variable Iε(t) = I( tε).

We notice that, using (18)–(19),

R(I) < 0, for all I > I0 and R(I) > 0, for all I < I0.

¿From the above inequalities and (20) we deduce that

Im ≤ min (Iε(0), I0) ≤ Iε(t) ≤ max (Iε(0), I0) ≤ IM , for all t ≥ 0. (37)

Moreover, Iε(t) is monotone in R
+, since R(Iε(t)) does not change sign in this interval. We now

suppose that Iε(0) < I0. The case with Iε(0) > I0 can be studied following similar arguments. We
compute using (19)

d

dt
R(Iε(t)) =

d

dI
R(Iε(t))

d

dt
Iε(t) ≤ −C2

ε
Iε(t)R(Iε(t)).

Using (37), it follows that

R(Iε(t)) ≤ R(Iε(0))e
−

C2Imt

ε .

12



Hence as ε → 0, (R(Iε(t)))ε converges locally uniformly in (0,∞) to 0. We then conclude, using again
(19) that (Iε(t))ε converges locally uniformly in (0,∞) to I0. Moreover, integrating (36) we obtain

Iε(t) = Iε(0)e
1
ε

∫ t
0
R(Iε(s))ds.

Since Iε is bounded above and below by positive constants, we obtain (35).

To prove our results we will need some comparison principles for equations of the following type

∂tn+ r(−∆)α/2n(x, t) + F (t, x, n,Dxn) = 0, in R× R
+, (38)

with r ≥ 0. We introduce here the statement of the comparison principle that we will use throughout
the paper.

Definition 3.3 (Comparison principle) Equation (38) admits a comparison principle if the fol-
lowing statement holds:
Let n1 and n2 be respectively viscosity subsolution and supersolution of (38) (see the definition in [4])
and

n1(x, 0) ≤ n2(x, 0), for all x ∈ R.

Then
n1(x, t) ≤ n2(x, t), for all (x, t) ∈ R× R

+.

4 The proofs of Theorems 2.1 and 2.2

4.1 The proof of Theorem 2.1

(i) To prove the first part of Theorem 2.1, we claim that for all δ > 0, there exists ε0(δ) small enough
such that

Cme−εt− δ
ε

1 + e−
(t+δ)

ε |x| 1+α
ε

≤ nε(x, t) ≤
CMeεt

1 + e−
(t+δ)

ε |x| 1+α
ε

, for all ε ≤ ε0 and in R× R
+. (39)

We postpone the proof of the above inequalities to the end of this paragraph.

Combining (12) and (39) we obtain

−ε2t−ε logCm−ε log
(

1 + e−
t+δ
ε |x| 1+α

ε

)

−δ ≤ uε(x, t) ≤ ε2t+ε logCM−ε log
(

1 + e−
t+δ
ε |x| 1+α

ε

)

. (40)

Define
u(x, t) = lim inf

ε→0
uε(x, t), u(x, t) = lim sup

ε→0
uε(x, t), for all (x, t) ∈ R× R

+.

Letting ε → 0, we obtain

min (0, t+ δ − (1 + α) log |x|)− δ ≤ u(x, t) ≤ u(x, t) ≤ min (0, t+ δ − (1 + α) log |x|) .

We then let δ → 0 and obtain

u(x, t) = u(x, t) = min (0, t− (1 + α) log |x|) .

13



In other words uε converges to u given by (14). We note that this convergence is locally uniform in
R × (0,∞), since for any compact set K ∈ R× (0,∞) one can pass to the limit in the r.h.s. and the
l.h.s. of (40) uniformly in ε.

It now remains to prove (39). We only prove the r.h.s. of (39). The l.h.s. can be proved following
similar arguments.

To this end, we need the following lemma, which is proved in Appendix A.

Lemma 4.1 Let g(x) = 1
1+|x|1+α . Then, there exists a positive constant C, independent of x, such

that

|(−∆)
α
2 g(x)| ≤ Cg(x).

We define

fε(x, t) :=
CM

1 + e−
t(1+ε2)+δ

ε |x| 1+α
ε

.

We notice that, for ε small enough, fε verifies







∂
∂tfε ≥

fε
ε (1 + ε2 − fε),

fε(x, 0) =
CM

1+e−
δ
ε |x|

1+α
ε

.

Moreover, defining

∆
α
2
ε fε(x, t) :=

∫ ∞

0

(

fε

(∣

∣

∣
|x| 1ε + h

∣

∣

∣

ε
, t
)

+ fε

(∣

∣

∣
|x| 1ε − h

∣

∣

∣

ε
, t
)

− 2fε(x, t)
) dh

|h|1+α
,

we deduce from Lemma 4.1 and a change of variable that |∆
α
2
ε fε(x, t)| ≤ Ce

−
α((1+ε2)t+δ)

(1+α)ε fε(x, t). It
follows that for ε ≤ ε0(δ) with ε0 small enough,

|∆
α
2
ε fε(x, t)| ≤ ε2fε(x, t).

We deduce that for all ε ≤ ε0(δ), fε is a supersolution of (9) with (3). Moreover fε(x, 0) ≥ nε(x, 0)
thanks to (13). We conclude from the comparison principle for (9) with (3) (see [4] Theorem 3, or
[12]) that

nε(x, t) ≤
CM

1 + e−
(1+ε2)t+δ

ε |x| 1+α
ε

≤ CMeεt

1 + e−
t+δ
ε |x| 1+α

ε

, for all ε ≤ ε0(δ).

(ii) We now prove the second part of Theorem 2.1. We first notice using (14) that, for any compact
set K ⊂ A, there exists a positive constant a such that for all (x0, t0) ∈ A we have u(x0, t0) < −a. It is
thus immediate from (12) that nε converges uniformly in K to 0. Next, we study the case (x0, t0) ∈ K,
K a compact set such that K ⊂ B. To this end, we define

ϕ(x, t) = min (0,−(1 + α) log |x|+ t0 − δ)− (t− t0)
2,

14



where δ is a positive constant chosen small enough such that for all (y, s) ∈ K, s ≥ 2δ and such that
(1 + α) log |x0| < t0 − δ. It is easy to verify that u− ϕ attains a local in t and global in x minimum
at (x0, t0). Moreover, this minimum is strict in t but not in x. We also define

ϕε(x, t) = −ε log
(

1 + e−
t0−δ

ε |x| 1+α
ε

)

− (t− t0)
2.

One can also verify that (ϕε)ε converges locally uniformly to ϕ. Since (uε)ε converges also locally
uniformly to u, we deduce that there exist points (xε, tε) ∈ K such that uε − ϕε has a local in t and
global in x minimum at (xε, tε) and such that tε → t0 and (uε − ϕε)(xε, tε) → 0 as ε → 0.
We then, using (12), rewrite (9) as follows

∂tuε(x, t) =

∫ ∞

0






e

uε

(

∣

∣

∣

∣

|x|
1
ε +h

∣

∣

∣

∣

ε
,t

)

−uε(x,t)

ε + e

uε

(

∣

∣

∣

∣

|x|
1
ε −h

∣

∣

∣

∣

ε
,t

)

−uε(x,t)

ε − 2







dh

|h|1+α
+ 1− nε(x, t).

Since uε − ϕε has a local in t and global in x minimum at (xε, tε), we have

∂tuε(xε, tε) = ∂tϕε(xε, tε) = −2(tε − t0),

∫ ∞

0






e

uε

(

∣

∣

∣

∣

|xε|
1
ε +h

∣

∣

∣

∣

ε
,tε

)

−uε(xε,tε)

ε + e

uε

(

∣

∣

∣

∣

|xε|
1
ε −h

∣

∣

∣

∣

ε
,tε

)

−uε(xε,tε)

ε − 2







dh

|h|1+α

≥
∫ ∞

0






e

ϕε

(

∣

∣

∣

∣

|xε|
1
ε +h

∣

∣

∣

∣

ε
,tε

)

−ϕε(xε,tε)

ε + e

ϕε

(

∣

∣

∣

∣

|xε|
1
ε −h

∣

∣

∣

∣

ε
,tε

)

−ϕε(xε,tε)

ε − 2







dh

|h|1+α
=

∆
α
2
ε gε(xε, tε)

gε(xε, tε)
,

where ∆
α
2
ε is defined in part (i) of the ongoing proof and

gε(x, t) := exp

(

ϕε(x, t)

ε

)

=
e

−(t−t0)
2

ε

1 + e−
t0−δ

ε |x| 1+α
ε

.

Using Lemma 4.1 and a change of variable similarly to the proof of part (i) we obtain

|∆
α
2
ε gε(xε, tε)|
gε(xε, tε)

≤ Ce
−

α(t0−δ)
(α+1)ε ≤ Ce

− αδ
(α+1)ε ,

which vanishes uniformly for all (xε, tε) ∈ K as ε → 0. Combining the above arguments we deduce
that nε(xε, tε) ≥ 1+o(1). Next, we notice that since uε−ϕε has a local minimum in (xε, tε), it follows
that

uε(xε, tε)− ϕ(xε, tε) ≤ uε(x0, t0)− ϕε(x0, t0).

Moreover, by definition, we have
ϕε(xε, tε) ≤ ϕε(x0, t0).

Combining the above inequalities we find

uε(xε, tε) ≤ uε(x0, t0), and thus nε(xε, tε) ≤ nε(x0, t0).

We deduce that

nε(x0, t0) ≥ 1 + o(1) and hence lim inf
ε→0

nε(x0, t0) ≥ 1, uniformly in K.

Finally, we conclude from the above inequality and Lemma 3.1 that nε(x0, t0) → 1 uniformly in K, as
ε → 0.
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4.2 The proof of Theorem 2.2

(i) The proof of Theorem 2.2-(i), is close to the one of Theorem 2.1, (i). In this case, we prove that
for all δ > 0, there exists ε0(δ) small enough such that

Cme−εt− δ
ε
+ 1

ε

∫ t
0 R(Iε(s))ds

1 + e−
δ
ε |x| 1+α

ε

≤ nε(x, t) ≤
CMeεt+

1
ε

∫ t
0 R(Iε(s))ds

1 + e−
δ
ε |x| 1+α

ε

, for all ε ≤ ε0 and in R× R
+. (41)

We notice that, admitting the above inequality is true, following similar arguments as in Subsection
4.1 and using (35), we deduce that as ε → 0, (uε)ε converges locally uniformly in R × (0,∞) to u
defined as below

u(x, t) = u(x) = min(0,−(1 + α) log |x|).

It now remains to prove (41). As before, we only prove the r.h.s. of (39). The l.h.s. can be proved
following similar arguments. To this end, we define

fε(x, t) :=
CMe

1
ε

∫ t
0
R(Iε(s))ds+εt

1 + e−
δ
ε |x| 1+α

ε

.

We notice that f verifies






∂
∂tfε =

fε
ε

(

R(Iε) + ε2
)

,

fε(x, 0) =
CM

1+e−
δ
ε |x|

1+α
ε

.

Moreover, we deduce again from Lemma 4.1 that for ε ≤ ε0(δ) with ε0 small enough,

|∆
α
2
ε fε(x, t)| ≤ Ce

− αδ
(1+α)ε fε(x, t) ≤ ε2fε(x, t).

It follows that for all ε ≤ ε0(δ), fε is a supersolution of (9). Moreover fε(x, 0) ≥ nε(x, 0) thanks to
(13). We conclude from the comparison principle for (9) with (3) and Iε(·) fixed (see [4] Theorem 3)
that

nε(x, t) ≤
CMe

1
ε

∫ t
0 R(Iε(s))ds+εt

1 + e−
δ
ε |x| 1+α

ε

, for all ε ≤ ε0(δ).

(ii) We first deduce from (41) and (35) that nε is uniformly bounded in L∞(R×R
+) for all ε ≤ ε0.

It follows that nε converges, along subsequences ε → 0, in L∞ weak-∗ to a function n ∈ L∞(R×R
+).

Moreover, from (12) and the fact that (uε)ε converges locally uniformly to u, we deduce that supp n ⊂
{(x, t) ∈ R× R

+ |u(x, t) = 0)} = [−1, 1] × R
+.

5 Regularity results for (22) and the reaction term given by (4)

We first notice that, combining (12) with (22), we obtain

∂tuε(x, t) =

∫ ∞

0

[

e
uε(x+eεk−1,t)−uε(x,t)

ε + e
uε(x−eεk+1,t)−uε(x,t)

ε − 2

]

ek

|ek − 1|1+α
dk +R(Iε(t)). (42)

We then prove the following
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Theorem 5.1 Assume (18), (19), (20), (25) and (26). Then, for all T > 0 and R > 0, there exist
constants A1(R,T ), A2(T ) and C such that

− A

2
log(|x|2 + 1)−D −Ct ≤ uε(x, t) ≤ −A

2
log(|x|2 + 1) +B + Ct, in BR(0)× [0, T ], (43)

and

ε log

(

Im
4A2(T )

)

≤ max
x∈R

uε(x, t), for all t ∈ [0, T ]. (44)

Moreover, we have

uε(x+ h, t) ≤ uε(x, t) +A log(1 + |h|), for all x, h ∈ R and t ≥ 0. (45)

In particular (uε)ε is uniformly Lipschitz with respect to x:

‖Dxuε‖L∞(R×R+) ≤ A. (46)

Proof. (i) Uniform bound from above. We prove that, for C large enough,

uε(x, t) ≤ s(x, t) := −A

2
log(|x|2 + 1) +B + Ct, in BR(0)× [0, T ].

We prove indeed that s is a supersolution of (42). One can also verify that, (42) with (4) and Iε fixed,
admits a comparison principle, since (22) admits a comparison principle (see [4] Theorem 3). Then,
the claim follows from (25) and since uε is a solution and in particular a subsolution of (42).

To prove that s is a supersolution of (42), since R is bounded thanks to (19) and (34), it is enough to
prove that, for C sufficiently large but independent of ε,

S :=

∫

k≥0

[

e
s(x+eεk−1,t)−s(x,t)

ε + e
s(x−eεk+1,t)−s(x,t)

ε − 2

]

ek

|ek − 1|1+α
dk ≤ C.

We compute

S =

∫

k≥0





(

|x|2 + 1
) A

2ε

(|x+ eεk − 1|2 + 1)
A
2ε

+

(

|x|2 + 1
) A

2ε

(|x− eεk + 1|2 + 1)
A
2ε

− 2





ek

|ek − 1|1+α
dk = f + g,

with

f =

∫

1≥k≥0





(

|x|2 + 1
)

A
2ε

(|x+ eεk − 1|2 + 1)
A
2ε

+

(

|x|2 + 1
)

A
2ε

(|x− eεk + 1|2 + 1)
A
2ε

− 2





ek

|ek − 1|1+α
dk, (47)

and

g =

∫

k≥1

[

( |x|2 + 1

|x+ eεk − 1|2 + 1

)
A
2ε

+

( |x|2 + 1

|x− eεk + 1|2 + 1

)
A
2ε

− 2

]

ek

|ek − 1|1+α
dk. (48)

Let

s1ε,x(k) =

( |x|2 + 1

|x+ eεk − 1|2 + 1

)
A
2ε

, s2ε,x(k) =

( |x|2 + 1

|x− eεk + 1|2 + 1

)
A
2ε

.
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We claim that
siε,x(k) ≤ eAk, for i = 1, 2 and all ε > 0, k ≥ 0 and x ∈ R. (49)

We show this only for i = 1. The case i = 2 can be proved following similar arguments.
For the sake of simple representation we introduce a new variable

y = x+ l, l = eεk − 1.

Then siε,x(k) is rewritten in terms of y and l as siε,x(k) =

( |y − l|2 + 1

|y|2 + 1

)
A
2ε

. One can easily verify that

|y − l|2 + 1

|y|2 + 1
≤ (|l|+ 1)2, for k > 0

and hence (49) follows.

The above bound on siε,x helps us to control g. We obtain indeed, for some positive constant C,

g =

∫

k≥1

[

s1ε,x(k) + s2ε,x(k) − 2
] ek

|ek − 1|1+α
dk ≤ 2

∫

k≥1
eAk ek

|ek − 1|1+α
dk ≤ C.

Note that the above integral is bounded since A < α.

To control f , we compute the Taylor expansion of s1ε,x + s2ε,x around k = 0:

s1ε,x(k) + s2ε,x(k) = 2 +
k2

2

d2

dk2
(

s1ε,x + s2ε,x
)

(k′), with 0 ≤ k′ ≤ k ≤ 1.

Using (49), it is easy to show that for 0 ≤ ε ≤ ε0 and 0 ≤ k′ ≤ 1, we have

| d
2

dk2
(

s1ε,x + s2ε,x
)

(k′)| ≤ C0(ε0),

where C0 is a positive constant depending only on ε0. It then follows that, for a large enough constant
C,

|f | ≤ C(ε0)

2

∫

0≤k≤1
k2

ek

|ek − 1|1+α
dk ≤ C,

since α < 2 and ek − 1 ≈ k near k = 0.

Combining the above bounds on f and g, we obtain that for large enough constant C and for all
ε ≤ ε0, S ≤ C.

(ii) Uniform bounds from below. We prove that for D and C large enough constants,

s(x, t) := −A

2
log(|x|2 + 1)−D − Ct ≤ uε(x, t), for all (x, t) ∈ R×R

+.

We first prove that the above inequality is verified for t = 0, forD large enough. We then show that, for
C large enough, s is a subsolution of (42), where we fix the last term R(Iε), with Iε =

∫

e
uε
ε dx. Then,
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the claim follows from the comparison principle since uε is a solution and in particular a supersolution
of (42).
To prove the inequality for t = 0, we first notice from (26) that

u0ε(0)−A log (1 + |x|) ≤ u0ε(x), for all x ∈ R.

Next, we notice from (24) that for ε0 small enough, u0ε(0) is uniformly bounded for 0 ≤ ε ≤ ε0.
Therefore, we can choose D large enough, such that for ε ≤ ε0,

−D − A

2
log
(

1 + |x|2
)

≤ u0ε(0)−A log (1 + |x|) ≤ u0ε(x), for all x ∈ R.

To prove that s is a subsolution of (42), since R is bounded thanks to (19) and (34), it is enough to
prove that, for C large enough,

S =

∫

k≥0

[

e
s(x+eεk−1,t)−s(x,t)

ε + e
s(x−eεk+1,t)−s(x,t)

ε − 2

]

ek

|ek − 1|1+α
dk ≥ −C.

As in Step (i) above we split S into two terms S = f + g, with f and g given respectively by (47) and
(48). The term f can be controlled in the same way as in Step (i) in the proof of Theorem 5.1. To
control g we compute

∫

k≥1

[

( |x|2 + 1

|x+ eεk − 1|2 + 1

)
A
2ε

+

( |x|2 + 1

|x− eεk + 1|2 + 1

)
A
2ε

− 2

]

ek

|ek − 1|1+α
dk ≥ −2

∫

k≥1

ek

|ek − 1|1+α
dk,

which is enough to conclude, since the r.h.s. of the above inequality is bounded from below.

(iii) The proof of (45).

For all h ∈ R and ε > 0, we define

wε,h(x, t) = uε(x+ h, t)− uε(x, t), for t ≥ 0 and x ∈ R.

We then compute

∂twε,h(x, t) =
∫

k≥0

[

e
uε(x+h+eεk−1,t)−uε(x+h,t)

ε − e
uε(x+eεk−1,t)−uε(x,t)

ε

+e
uε(x+h−eεk+1,t)−uε(x+h,t)

ε − e
uε(x−eεk+1,t)−uε(x,t)

ε

]

ek

|ek−1|1+αdk.

Using the convexity inequality ea ≤ eb + ea(a− b), we deduce that

∂twε,h(x, t) ≤
∫

k≥0

[

e
uε(x+h+eεk−1,t)−uε(x+h,t)

ε

(

wε,h(x+eεk−1,t)−wε,h(x,t)
ε

)

+e
uε(x+h−eεk+1,t)−uε(x+h,t)

ε

(

wε,h(x−eεk+1,t)−wε,h(x,t)
ε

)

]

ek

|ek−1|1+αdk.

Therefore, by the maximum principle, (43) and (26) we obtain that for all t > 0, ε > 0 and h, x ∈ R,

wε,h(x, t) ≤ sup
x

wε,h(x, 0) ≤ A log(1 + |h|),
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and hence (45) follows.

(iv) The proof of (44). We prove (44), we first notice from (34) that

0 < Im ≤
∫

R

e
uε(x,t)

ε dx ≤ IM .

Moreover, we already know from step (i) that uε(x, t) ≤ −A
2 log(|x|2 + 1) +B + Ct.

The two above properties imply that there exists A2 = A2(T ) large enough such that, for all t ∈ [0, T ]
and ε ≤ ε0 with ε0 = ε0(A) small enough,

Im
2

≤
∫

|x|≤A2

e
uε(x,t)

ε dx.

We deduce that ε log
(

Im
4A2(T )

)

≤ maxx∈BA2
(0) uε(x, t), for all t ∈ [0, T ] and ε ≤ ε0, and hence (44).

6 Regularity results for (22) and the reaction term given by (3)

Theorem 6.1 Assume (24), (25), (26) and (29). Then, for all T > 0 and R > 0, there exist constants
ε0, A1(R,T ), A2(T ), D and C such that, for all ε ≤ ε0,

− A

2
log(|x|2 + 1)−D − Ct ≤ uε ≤ −A

2
log(|x|2 + 1) +B + Ct, in BR(0)× [0, T ], (50)

Moreover, we have

uε(x+ h, t) ≤ uε(x, t) +A log(1 + |h|), for all x, h ∈ R and t ≥ 0. (51)

In particular (uε)ε is uniformly Lipschitz with respect to x:

‖Dxuε‖L∞(R×R+) ≤ A. (52)

Proof. (i) Uniform bounds from above and below. The inequalities given in (50) can be proved
following similar arguments as in the proof of Steps (i) and (ii) in Theorem 5.1. The only difference
here is that the boundedness of the reaction term R is derived from (33).

(ii) The proof of (51). The proof of this part is also close to the one in Theorem 5.1. As in the
previous case, for all h ∈ R and ε > 0, we define

wε,h(x, t) = uε(x+ h, t)− uε(x, t), for t ≥ 0 and x ∈ R.

We then compute

∂twε,h(x, t) =
∫

k≥0

[

e
uε(x+h+eεk−1)−uε(x+h)

ε − e
uε(x+eεk−1)−uε(x)

ε

+e
uε(x+h−eεk+1)−uε(x+h)

ε − e
uε(x−eεk+1)−uε(x)

ε

]

ek

|ek−1|1+αdk + nε(x, t) − nε(x+ h, t).
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Using the convexity inequality ea ≤ eb + ea(a− b), we deduce that

∂twε,h(x, t) ≤
∫

k≥0

[

e
uε(x+h+eεk−1)−uε(x+h)

ε

(

wε,h(x+eεk−1)−wε,h(x)
ε

)

+e
uε(x+h−eεk+1)−uε(x+h)

ε

(

wε,h(x−eεk+1)−wε,h(x)
ε

)

]

ek

|ek−1|1+αdk + nε(x, t)− nε(x+ h, t).

Therefore, by the maximum principle, (26), (50) and since uε(x+h, t)−uε(x, t) and nε(x+h, t)−nε(x, t)
have the same sign, we obtain that for all t > 0, ε > 0 and h, x ∈ R,

wε,h(x, t) ≤ max

(

0, sup
x

wε,h(x, 0)

)

≤ A log(1 + |h|).

and hence (51) follows.

7 Proof of Theorem 2.3

To prove Theorem 2.3, we use the half-relaxed methods for viscosity solutions [14, 2]. Since (uε)ε is
locally uniformly bounded, we can define it’s lower and upper semicontinuous envelopes

u(x, t) := lim inf
ε→0

(y,s)→(x,t)

uε(y, s), u(x, t) := lim sup
ε→0

(y,s)→(x,t)

uε(y, s).

(i) We prove Theorem 2.3-(i), in several steps. We first prove that u is a viscosity supersolution of
(27). Next we prove that u is a viscosity subsolution of (27). We then conclude using that (27) admits
a comparison principle. Finally we prove (28).

Step 1. (u is a viscosity supersolution of (27)) Let ϕ ∈ C (R× R
+) ∩ C2 (Ω(x0, t0)), with

Ω(t0, x0) an open neighborhood of (x0, t0), be a test function. We assume that u − ϕ has a global
minimum at (x0, t0). By classical arguments in the theory of viscosity solutions (see [14, 2]) we can
assume that the minimum at (x0, t0) is strict and thus there exists a sequence (xε, tε) such that (xε, tε)
tends to (x0, t0), and uε(xε, tε) tends to u(x0, t0) as ε → 0 and uε − ϕ takes a minimum at (xε, tε).
Since uε solves (42), we find

∂tϕ(xε, tε)−R(Iε(tε)) ≥
∫

k≥0

[

e
uε(xε+eεk−1,tε)−uε(xε,tε)

ε + e
uε(xε−eεk+1,tε)−uε(xε,tε)

ε − 2

]

ek

|ek − 1|1+α
dk.

Since uε − ϕ takes a minimum at (xε, tε), we obtain

ϕ(xε + l, tε)− ϕ(xε, tε) ≤ u(xε + l, tε)− u(xε, tε), for all l ∈ R.

It follows that

∂tϕ(xε, tε) ≥ R(Iε(tε))

+
∫

M≥k≥0

[

e
ϕ(xε+eεk−1,tε)−ϕ(xε,tε)

ε + e
ϕ(xε−eεk+1,tε)−ϕ(xε,tε)

ε − 2

]

ek

|ek−1|1+αdk

+
∫

k≥M

[

e
uε(xε+eεk−1,tε)−uε(xε,tε)

ε + e
uε(xε−eεk+1,tε)−uε(xε,tε)

ε − 2

]

ek

|ek−1|1+αdk.

(53)
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We note that, using the Taylor-Lagrange formula, for some 0 < µ, µ′ < ε

ϕ(xε+eεk−1,tε)−ϕ(xε,tε)
ε = Dxϕ(xε, tε) · k

+ ε
2

[

eµkk2Dxϕ(xε + eµk − 1, tε) + e2µkk2D2ϕ(xε + eµk − 1, tε)
]

,

ϕ(xε−eεk+1,tε)−ϕ(xε,tε)
ε = −Dxϕ(xε, tε) · k

+ ε
2

[

−eµ
′kk2Dxϕ(xε − eµ

′k + 1, tε) + e2µ
′kk2D2ϕ(xε − eµ

′k + 1, tε)
]

.

Since ϕ ∈ C2 (Ω(x0, t0)), it follows that, for fixed M and as ε → 0, the second term of the r.h.s. of
(53) converges to

∫

M≥k≥0

[

eDxϕ(x0,t0)·k + e−Dxϕ(x0,t0)·k − 2
] ek

|ek − 1|1+α
dk.

Furthermore, one can control the third term of the r.h.s. of (53) as below

∫

k≥M

[

e
uε(xε+eεk−1,tε)−uε(xε,tε)

ε + e
uε(xε−eεk+1,tε)−uε(xε,tε)

ε − 2

]

ek

|ek − 1|1+α
dk ≥ −2

∫

k≥M

ek

|ek − 1|1+α
dk.

Combining the above lines and Lemma 3.2 we deduce

∂tϕ(x0, t0) ≥
∫

M≥k≥0

[

eDxϕ(x0,t0)·k + e−Dxϕ(x0,t0)·k − 2
] ek

|ek − 1|1+α
dk − 2

∫

k≥M

ek

|ek − 1|1+α
dk.

Letting M → ∞ we obtain

∂tϕ(x0, t0) ≥
∫

k≥0

[

eDxϕ(x0,t0)·k + e−Dxϕ(x0,t0)·k − 2
] ek

|ek − 1|1+α
dk.

It follows that u is a viscosity supersolution of (27).

Step 2. (u is a viscosity subsolution of (27)) Let ϕ ∈ C (R× R
+)∩C2 (Ω(x0, t0)), with Ω(t0, x0)

an open neighborhood of (x0, t0), be a test function. We assume that u−ϕ has a global maximum at
(x0, t0). We prove that

∂tϕ(x0, t0) ≤
∫

k≥0

[

eDxϕ(x0,t0)·k + e−Dxϕ(x0,t0)·k − 2
] ek

|ek − 1|1+α
dk. (54)

We first notice from (46) that

|Dxϕ|(x0, t0) ≤ A < α.

By similar arguments as in the previous steps, we obtain that there exist a sequence (xε, tε) such that
uε − ϕ takes a maximum at (xε, tε) and that

∂tϕ(xε, tε) ≤ R(Iε(tε))

+
∫

M≥k≥0

[

e
ϕ(xε+eεk−1,tε)−ϕ(xε,tε)

ε + e
ϕ(xε−eεk+1,tε)−ϕ(xε,tε)

ε − 2

]

ek

|ek−1|1+αdk

+
∫

k≥M

[

e
uε(xε+eεk−1,tε)−uε(xε,tε)

ε + e
uε(xε−eεk+1,tε)−uε(xε,tε)

ε − 2

]

ek

|ek−1|1+αdk.
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Again following similar arguments as above, the second term of the r.h.s. of the above inequality
converges to

∫

M≥k≥0

[

eDxϕ(x0,t0)·k + e−Dxϕ(x0,t0)·k − 2
] ek

|ek − 1|1+α
dk.

Moreover, from (45) we obtain

∫

k≥M

[

e
uε(xε+eεk−1,tε)−uε(xε,tε)

ε + e
uε(xε−eεk+1,tε)−uε(xε,tε)

ε − 2

]

ek

|ek − 1|1+α
dk

≤
∫

k≥M

[

2e
A log(1+eεk−1)

ε − 2

]

ek

|ek − 1|1+α
dk ≤ 2

∫

k≥M

e(A+1)k

|ek − 1|1+α
dk.

Combining the above arguments and Theorem 3.2 we deduce that

∂tϕ(x0, t0) ≤
∫

M≥k≥0

[

eDxϕ(x0,t0)·k + e−Dxϕ(x0,t0)·k − 2
] ek

|ek − 1|1+α
dk + 2

∫

k≥M

e(A+1)k

|ek − 1|1+α
dk.

Letting M go to infinity, and in view of A < α, we obtain

∂tϕ(x0, t0) ≤
∫

k≥0

[

eDxϕ(x0,t0)·k + e−Dxϕ(x0,t0)·k − 2
] ek

|ek − 1|1+α
dk.

Step 3. (Convergence of (uε)ε to the unique solution of (27)) From the above steps we ob-
tain that u and u are respectively viscosity supersolution and viscosity subsolution of (27). Moreover,
combing the above arguments with (24), we also obtain that u and u are viscosity supersolution and
viscosity subsolution of (27) up to the boundary R × {0}. Finally, in the one hand, from the strong
comparison principle satisfied by (27) (see for instance [2]), we obtain that u ≤ u. In the other hand,
by definition we also have u ≤ u. It follows that (uε)ε converges locally uniformly to u = u = u.

Step 4. (Proof of (28)) Firstly, the first part of (28) is a consequence of (46) and the uniform con-
vergence of (uε)ε to u. We next deduce from (44) that 0 ≤ maxx∈R u(x, t), for all t ∈ R

+. Finally, we
obtain from the upper bound in (34) and the first part of (28) that maxx∈R u(x, t) ≤ 0, for all t ∈ R

+,
and hence the second part of (28).

(ii) We first deduce from (34) that, along subsequences as ε → 0, nε converges in L∞
(

w ∗ (0,∞);M1(R)
)

to a measure n. Next, we use (12) and the fact that (uε)ε converges locally uniformly to u to obtain
that, supp n ⊂ {(x, t) |u(x, t) = 0}.

8 Proof of Theorem 2.5

To prove Theorem 2.5, we use the same scheme as in Section 7. We first prove that u is a viscosity
supersolution of (30). Next we prove that u is a viscosity subsolution of (30). Next, noticing that
(30) admits a comparison principle (see for instance [2] and [17]), we conclude that (uε)ε converges
locally uniformly to the unique viscosity solution of (30). Furthermore, (31) is a consequence of (52)
and the uniform convergence of (uε)ε to u. Finally we prove (32).

Step 1. (u is a viscosity supersolution of (30)) We first notice that if u(x0, t0) ≥ 0, the
supersolution criterion for (30) is obviously verified at (x0, t0). Therefore, it is enough to study only
the case u(x0, t0) < 0.
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Let ϕ ∈ C (R× R
+)∩C2 (Ω(x0, t0)), with Ω(t0, x0) an open neighborhood of (x0, t0), be a test function.

We assume that u− ϕ has a global minimum at (x0, t0). As previously, by classical arguments in the
theory of viscosity solutions we can assume that the minimum at (x0, t0) is strict and thus there exist
a sequence (xε, tε) such that (xε, tε) tends to (x0, t0), and uε(xε, tε) tends to u(x0, t0) as ε → 0 and
uε − ϕ takes a minimum at (xε, tε). Since uε solves (42), we find

∂tϕ(xε, tε)− 1 + e
uε(xε,tε)

ε ≥
∫

k≥0

[

e
uε(xε+eεk−1,tε)−uε(xε,tε)

ε + e
uε(xε−eεk+1,tε)−uε(xε,tε)

ε − 2

]

ek

|ek − 1|1+α
dk.

We then deduce, following similar arguments as in Step (i) in Section 7, that

∂tϕ(x0, t0)−
∫

k≥0

[

eDxϕ(x0,t0)·k + e−Dxϕ(x0,t0)·k − 2
] ek

|ek − 1|1+α
dk ≥ lim sup

ε→0

(

1− e
uε(xε,tε)

ε

)

.

Moreover, since uε(xε, tε) tends to u(x0, t0) as ε → 0 and u(x0, t0) < 0, the r.h.s. of the above
inequality is equal to 1. We deduce that

∂tϕ(x0, t0)−
∫

k≥0

[

eDxϕ(x0,t0)·k + e−Dxϕ(x0,t0)·k − 2
] ek

|ek − 1|1+α
dk − 1 ≥ 0.

Step 2. (u is a viscosity subsolution of (30)) We first notice from (33) that u(x, t) ≤ 0, for all
(x, t) ∈ R× R

+. Therefore, it is enough to prove that u is a viscosity subsolution of

∂tu−
∫ ∞

0

(

eDxu·k + e−Dxu·k − 2
) ekdk

|ek − 1|1+α
− 1 ≤ 0.

Let ϕ ∈ C (R× R
+)∩C2 (Ω(x0, t0)), with Ω(t0, x0) an open neighborhood of (x0, t0), be a test function.

We assume that u− ϕ has a global maximum at (x0, t0), which implies as previously that there exist
a sequence (xε, tε) such that (xε, tε) tends to (x0, t0) and uε(xε, tε) tends to u(x0, t0) as ε → 0, and
uε − ϕ takes a maximum at (xε, tε). We deduce that

∂tϕ(xε, tε) ≤ 1− nε(xε, tε) +
∫

k≥0

[

e
ϕ(xε+eεk−1,tε)−ϕ(xε,tε)

ε + e
ϕ(xε−eεk+1,tε)−ϕ(xε,tε)

ε − 2

]

ek

|ek−1|1+αdk.

≤ 1 +
∫

k≥0

[

e
ϕ(xε+eεk−1,tε)−ϕ(xε,tε)

ε + e
ϕ(xε−eεk+1,tε)−ϕ(xε,tε)

ε − 2

]

ek

|ek−1|1+αdk.

It then follows following similar arguments as in Step (i) in Section 7, that

∂tϕ(x0, t0) ≤ 1 +

∫

k≥0

[

eDxϕ(x0,t0)·k + e−Dxϕ(x0,t0)·k − 2
] ek

|ek − 1|1+α
dk,

and hence u is a viscosity subsolution of (30).

Step 3. (The proof of (32)) Let (x0, t0) be such that u(x0, t0) < 0. It follows easily from (12)
and the locally uniform convergence of (uε) to u, that nε goes to 0 locally uniformly, as ε → 0.
We now suppose that, there exists r, δ > 0 such that (x̃ − 2r, x̃ + 2r) × (t̃ − 2δ, t̃ + 2δ) ⊂ {(x, t) ∈
R × (0,∞) |u(x, t) = 0}. Let (x0, t0) ∈ (x̃ − r, x̃ + r) × (t̃ − δ, t̃ + δ). We consider the following test
function:

ϕ(x, t) = −A

r
(x− x0)

2 − (t− t0)
2.
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One can verify easily that u− ϕ has a local minimum at (x0, t0). We show that this minimum point
is indeed global with respect to x. We first find from (51) that

−A log (1 + |x− x0|) ≤ u(x, t), for all (x, t) ∈ R× (t0 − δ, t0 + δ).

Next, we notice that

−A

r
(x− x0)

2 < −A log (1 + |x− x0|) , for all |x− x0| > r.

Combining the above inequalities and the fact that (x0 − r, x0 + r) × (t0 − δ, t0 + δ) ⊂ {(x, t) ∈
R × (0,∞) |u(t, x) = 0}, we deduce that u − ϕ has a minimum at (x0, t0) which is global with
respect to x. Moreover, this is a strict minimum. It follows that there exist points (xε, tε) ∈
(x0 − r, x0 + r) × (t0 − δ, t0 + δ) such that uε − ϕε has a local in t and global in x minimum at
(xε, tε) and such that (xε, tε) → (x0, t0).

Since uε − ϕ has a local in t and global in x minimum at (xε, tε), we have

∂tuε(xε, tε) = ∂tϕε(xε, tε) = −2(tε − t0),

∫ ∞

0

(

e
uε(xε+eεk−1,tε)−uε(xε,tε)

ε + e
uε(xε−eεk+1,tε)−uε(xε,tε)

ε − 2

)

ekdk

|ek − 1|1+α

≥
∫ ∞

0

(

e
A((xε−x0)

2−(xε−x0+eεk−1)2)
rε + e

A((xε−x0)
2−(xε−x0−eεk+1)2)

rε − 2

)

ekdk

|ek − 1|1+α
≥ o(1).

Combining the above lines with (42) we deduce that nε(xε, tε) ≥ 1+ o(1). Moreover, following similar
arguments as in the proof of Theorem 2.1, part (ii), we obtain that nε(x0, t0) ≥ nε(xε, tε), and hence

lim inf
ε→0

nε(x0, t0) ≥ 1, uniformly in (x0 − r, x0 + r)× (t0 − δ, t0 + δ).

Finally, we conclude from the above inequality and Lemma 3.1 that nε(x0, t0) → 1 uniformly in
(x0 − r, x0 + r)× (t0 − δ, t0 + δ), as ε → 0.

9 The multi-dimensional case

In this section we show how the above results can be generalized to the multidimensional case x ∈ R
N .

9.1 The long range/long time rescaling

To introduce the rescaling for the multidimensional case, we define the following mapping

p(z) =

{

z
|z| for z ∈ R

N \ {0},
0 for z = 0.

We then introduce the following rescaling

x 7→ |x| 1ε p(x), t 7→ t

ε
, nε(x, t) = n

(

|x| 1ε p(x), t
ε

)

.
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We replace this in (1) with x ∈ R
N , and obtain,















ε∂tnε(x, t) =
∫∞
0

∫

ν∈SN−1

(

nε

(∣

∣

∣
|x| 1ε p(x) + hν

∣

∣

∣

ε
p(|x| 1ε p(x) + hν), t

)

− nε(x, t)
)

dS dh
|h|1+α

+nε(x, t)R(nε, Iε)(x, t),

ne(x, 0) = n0
ε(x),

(55)

where Iε(t) = I( tε). With this rescaling, we can obtain the macroscopic behavior of the dynamics as
before and extend Theorems 2.1 and 2.2 to the case with x ∈ R

N :

Theorem 9.1 Let x ∈ R
N and nε be the solution of (55) with (3) and uε = ε log nε.

(i) Under assumption (13), as ε → 0, (uε)ε converges locally uniformly to u defined as below

u(x, t) = min(0,−(1 + α) log |x|+ t).

(ii) Moreover, as ε → 0,

{

nε → 0, locally uniformly in A = {(x, t) ∈ R
N × (0,∞) | t < (1 + α) log |x|},

nε → 1, locally uniformly in B = {(x, t) ∈ R
N × (0,∞) | t > (1 + α) log |x|}.

Theorem 9.2 Let x ∈ R
N and nε be the solution of (55) with (4) and uε = ε log nε.

(i) Under assumptions (13), (18), (19) and (20), as ε → 0, (uε)ε converges locally uniformly to
u ∈ C(RN ) defined as below

u(x, t) = min(0,−(1 + α) log |x|).

(ii) Moreover, nε converges, along subsequences as ε → 0, in L∞ weak-∗ to a function n ∈ L∞(RN ×
R
+), such that supp n ⊂ {(x, t) ∈ R

N × R
+ |u(x, t) = 0} = {(x, t) ∈ R

N × R
+ | |x| ≤ 1}.

Proof. [Proof of Theorems 2.1 and 2.2] Note that the proofs of Theorems 2.1 and 2.2 are based on
Lemma 4.1. We claim that an equivalent lemma holds in the multidimensional case.

Lemma 9.3 Let gN : RN → R be given by gN (x) = 1
1+|x|1+α . Then, there exists a positive constant

CN , independent of x, such that

|(−∆)
α
2
NgN (x)| ≤ CNgN (x), (56)

where (−∆)
α
2
N is the N -dimensional fractional laplacian, such that

(−∆)
α
2
NgN (x)

gN (x)
=

∫ ∞

0

∫

ν∈SN−1

(

1 + |x|1+α

1 + |x+ hν|1+α
− 1

)

dSdh

|h|1+α
. (57)

One can easily verify that, replacing the result of Lemma 4.1 by Lemma 9.3, the other parts of the
proofs will be easily adapted for x ∈ R

N . We prove Lemma 9.3 in Appendix A.
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9.2 Diffusion with small steps and long time

In the case x ∈ R
N , the rescaling with small diffusion steps and long time, is given by

{

ε∂tnε(x, t) =
∫∞
0

∫

ν∈SN−1

(

nε(x+ (eεk − 1)ν, t)− nε(x, t)
)

ekdSdk
|ek−1|1+α + nε(x, t)R(nε, Iε)(x, t),

ne(x, 0) = n0
ε(x),

(58)
with

Iε(t) =

∫

nε(x, t)dx,

Note that, in the case N = 1, we retrieve (22). Replacing (22) by (58), and assumption (26) by

u0ε(x+ hν) ≤ u0ε(x) +A log (1 + |h|) , for all x ∈ R
N , h ∈ R

+ and ν ∈ SN−1, (59)

Theorems 2.3 and 2.5 hold true for x ∈ R
N :

Theorem 9.4 Let x ∈ R
N and nε be the solution of (58) with (4) and uε = ε log nε. Assume (18),

(19), (20), (24), (25) and (59). (i) Then, as ε → 0, (Iε)ε converges locally uniformly to I0 and (uε)ε
converges locally uniformly to a continuous function u which is Lipschitz continuous with respect to x
and continuous in t. Moreover, u is the unique viscosity solution to the following equation

{

∂tu−
∫∞
0

∫

ν∈SN−1

(

ekDxu·ν − 1
)

ek dS dk
|ek−1|1+α = 0,

u(x, 0) = u0(x),

and

‖Dxu‖L∞(RN×R+) ≤ A, max
x∈R

u(x, t) = 0.

(ii) Finally, along subsequences as ε → 0, nε converges in L∞
(

w ∗ (0,∞);M1(RN )
)

to a measure n,
such that, supp n ⊂ {(x, t) |u(x, t) = 0}.

Theorem 9.5 Let x ∈ R
N and nε be the solution of (22) with (3) and uε = ε log nε. Assume (24),

(25), (59) and (29).

(i) Then, as ε → 0, (uε)ε converges locally uniformly to a function u that is Lipschitz continuous with
respect to x and continuous in t. Moreover, u is the viscosity solution to the following Hamilton-Jacobi
equation

{

max
(

∂tu−
∫∞
0

∫

ν∈SN−1

(

ekDxu·ν − 1
)

ekdSdk
|ek−1|1+α − 1, u

)

= 0,

u(x, 0) = u0(x),

and

‖Dxu‖L∞(RN×R+) ≤ A.

(ii) Moreover, as ε → 0,

{

nε → 0, locally uniformly in {(x, t) ∈ R
N × (0,∞) |u(t, x) < 0},

nε → 1, locally uniformly in Int {(x, t) ∈ R
N × (0,∞) |u(t, x) = 0}.
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Proof. [Proof of Theorems 9.4 and 9.5] The proofs of Theorems 2.3 and 2.5 can be easily adapted
to prove Theorems 9.4 and 9.5. We only show the differences in the arguments for the regularity
estimates. The remaining parts of the proofs are similar to the one-dimensional case.

(i) Uniform bounds from above and below. Same type of inequalities as in (43) and (50) can be
proved for the equations above. By analogy to the proofs of Theorems 5.1 and 6.1, the key point is to
show that the following integral

S =

∫

k≥0

∫

ν∈SN−1





(

|x|2 + 1
)

A
2ε

(|x+ ν(eεk − 1)|2 + 1)
A
2ε

− 1





ek

|ek − 1|1+α
dSdk

is bounded. We show how this can be proved. The other parts of the proofs are similar.

We split the integral term above to two parts

S =

∫ ∞

0

∫

ν∈SN−1, ν·e1>0





(

|x|2 + 1
)

A
2ε

(|x+ ν(eεk − 1)|2 + 1)
A
2ε

+

(

|x|2 + 1
)

A
2ε

(|x− ν(eεk − 1)|2 + 1)
A
2ε

− 2





ek

|ek − 1|1+α
dSdk.

Note that
∣

∣

∣
|x| − (eεk − 1)

∣

∣

∣
≤ |x+ (eεk − 1)ν| ≤

∣

∣

∣
|x|+ (eεk − 1)

∣

∣

∣
,

and
∣

∣

∣
|x| − (eεk − 1)

∣

∣

∣
≤ |x− (eεk − 1)ν| ≤

∣

∣

∣
|x|+ (eεk − 1)

∣

∣

∣
.

Using the above inequalities and following the arguments in the proof of Theorem 5.1 we obtain that,
for a large positive constant CN ,
∣

∣

∣

∣

∣

∣

∫

k≥1

∫

ν∈SN−1, ν·e1>0





(

|x|2 + 1
) A

2ε

(|x+ ν(eεk − 1)|2 + 1)
A
2ε

+

(

|x|2 + 1
) A

2ε

(|x− ν(eεk − 1)|2 + 1)
A
2ε

− 2





ek

|ek − 1|1+α
dSdk

∣

∣

∣

∣

∣

∣

≤ 1

2
CN .

To control the remaining part of the integral, that is
∣

∣

∣

∣

∣

∣

∫

0≤k≤1

∫

ν∈SN−1, ν·e1>0





(

|x|2 + 1
)

A
2ε

(|x+ ν(eεk − 1)|2 + 1)
A
2ε

+

(

|x|2 + 1
)

A
2ε

(|x− ν(eεk − 1)|2 + 1)
A
2ε

− 2





ek

|ek − 1|1+α
dSdk

∣

∣

∣

∣

∣

∣

,

we first fix ν, then use a Taylor expansion as in the proof of Theorem 5.1. Finally we integrate in ν,
to obtain,
∣

∣

∣

∣

∣

∣

∫

0≤k≤1

∫

ν∈SN−1, ν·e1>0





(

|x|2 + 1
)

A
2ε

(|x+ ν(eεk − 1)|2 + 1)
A
2ε

+

(

|x|2 + 1
)

A
2ε

(|x− ν(eεk − 1)|2 + 1)
A
2ε

− 2





ek

|ek − 1|1+α
dSdk

∣

∣

∣

∣

∣

∣

≤ 1

2
CN .

Combining the above arguments we obtain that S is bounded.

(ii) Logarithmic growth of uε. We prove that

uε(x+ hν, t) ≤ uε(x, t) +A log (1 + |h|) , for all x ∈ R
N , t ∈ R

+, h ∈ R
+ and ν ∈ SN−1. (60)
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For all h ∈ R, ν ∈ SN−1 and ε > 0, we define

wε,h,ν(x, t) = uε(x+ hν, t)− uε(x, t), for t ≥ 0 and x ∈ R
N .

We then compute

∂twε,h,ν(x, t) =

∫

k≥0

∫

ν′∈SN−1

[

e
uε(x+hν+(eεk−1)ν′,t)−uε(x+hν,t)

ε − e
uε(x+(eεk−1)ν′,t)−uε(x,t)

ε

]

ekdSdk

|ek − 1|1+α
.

Using a convexity inequality as before, we deduce that

∂twε,h,ν(x, t) ≤
∫

k≥0

∫

ν′∈SN−1

[

e
uε(x+hν+(eεk−1)ν′,t)−uε(x+hν,t)

ε

(

wε,h,ν(x+(eεk−1)ν′,t)−wε,h,ν(x,t)
ε

)

]

ekdS dk
|ek−1|1+α .

Therefore, by the maximum principle and (26) we obtain that for all t > 0, ε > 0 and h, x ∈ R,

wε,h,ν(x, t) ≤ sup
x

wε,h,ν(x, 0) ≤ A log(1 + |h|),

and hence (60) follows.

A The proofs of Lemma 4.1 and Lemma 9.3

A.1 The proof of Lemma 4.1

In this section, we prove Lemma 4.1. To this end, we let δ < 1
2 be a positive constant and suppose

that x > 0. The case with x < 0 can be studied following similar arguments. We compute
∣

∣

∣

∣

(−∆)
α
2 g(x)

g(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞

0

(

1 + |x|1+α

1 + |x+ h|1+α
+

1 + |x|1+α

1 + |x− h|1+α
− 2

)

dh

|h|1+α

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫

R+\[0,δ]∪[(1−δ)x,(1+δ)x]

(

1 + |x|1+α

1 + |x+ h|1+α
+

1 + |x|1+α

1 + |x− h|1+α
− 2

)

dh

|h|1+α

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ (1+δ)x∨δ

(1−δ)x∨δ

(

1 + |x|1+α

1 + |x+ h|1+α
+

1 + |x|1+α

1 + |x− h|1+α
− 2

)

dh

|h|1+α

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ δ

0

(

1 + |x|1+α

1 + |x+ h|1+α
+

1 + |x|1+α

1 + |x− h|1+α
− 2

)

dh

|h|1+α

∣

∣

∣

∣

= I1 + I2 + I3.

We first notice that by easy computations one can obtain I1 ≤ C
δ(1+2α) . To control the second integral

we write

I2 ≤
∫ (1+δ)x∨δ

(1−δ)x∨δ

(

C +
1 + |x|1+α

1 + |x− h|1+α

)

dh

|h|1+α
=

∫ (1+δ)x∨δ

(1−δ)x∨δ






C +

1

|x|−(1+α) +
(

|x−h|
|x|

)1+α







dh

|h|1+α
.

Letting µ be an arbitrary small positive constant, we then use the Young’s inequality to obtain that
there exists a positive constant C such that

1

|x|−(1+α) +
(

|x−h|
|x|

)1+α ≤ C

|x|−(µ+α)
(

|x−h|
|x|

)1−µ = C
|x|1+α

|x− h|1−µ
.
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and hence,

I2 ≤ C

∫ (1+δ)x∨δ

(1−δ)x∨δ

(

1 +
|x|1+α

|x− h|1−µ

)

dh

|h|1+α
≤ C

1

|δ|α + C

∫ (1+δ)x

(1−δ)x

1

|x− h|1−µ
dh ≤ C

(

1

|δ|α + (δ|x|)µ
)

.

Since this is true for arbitrarily small µ we obtain that

I2 ≤ C

(

1

|δ|α + 1

)

.

To control I3, we define

f(x, h) =
1 + |x|1+α

1 + |x+ h|1+α
.

We compute
∂

∂h
f(x, h) = −(1 + α)

|x+ h|α
(

1 + |x|1+α
)

(1 + |x+ h|1+α)2
.

It is easy to verify that for all η1, η2 ∈ [0, h],

| ∂
∂h

f(x, η1)−
∂

∂h
f(x,−η2)| ≤ C|h|α,

for some constant C independent of |x| and h. It follows that

|f(x+ h) + f(x− h)− 2| ≤ C|h|1+α.

and hence I3 ≤ Cδ.
Fixing 0 < δ < 1

2 , and combining the above inequalities we obtain that there exists a positive constant
C independent of x, such that

∣

∣

∣

∣

∣

(−∆)
α
2 g(x)

g(x)

∣

∣

∣

∣

∣

≤ C.

A.2 The proof of Lemma 9.3

Note that Lemma 9.3 is the generalization of Lemma 4.1 to the multidimensional case. We show that
this generalization can be done easily.

To this end, we split (57) to two parts

∫ ∞

0

∫

ν∈SN−1, ν·e1>0

(

1 + |x|1+α

1 + |x+ hν|1+α
+

1 + |x|1+α

1 + |x− hν|1+α
− 2

)

dS dh

|h|1+α
.

Note that
||x| − h| ≤ |x+ hν| ≤ ||x|+ h| , ||x| − h| ≤ |x− hν| ≤ ||x|+ h| .

We fix 0 < δ < 1
2 as in the proof of Lemma 4.1. Then, using the above inequalities and following the

arguments in the proof of Lemma 4.1 we obtain that, for a large positive constant CN independent of
x,

∣

∣

∣

∣

∫ ∞

δ

∫

ν∈SN−1, ν·e1>0

(

1 + |x|1+α

1 + |x+ hν|1+α
+

1 + |x|1+α

1 + |x− hν|1+α
− 2

)

dS dh

|h|1+α

∣

∣

∣

∣

≤ 1

2
CN .
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To control the remaining term of the integral, that is

∫ δ

0

∫

ν∈SN−1, ν·e1>0

(

1 + |x|1+α

1 + |x+ hν|1+α
+

1 + |x|1+α

1 + |x− hν|1+α
− 2

)

dS dh

|h|1+α
,

we first fix ν, then do the same computation as in the proof of Lemma 4.1. Finally we integrate in ν,
to obtain,

∫ δ

0

∫

ν∈SN−1, ν·e1>0

(

1 + |x|1+α

1 + |x+ hν|1+α
+

1 + |x|1+α

1 + |x− hν|1+α
− 2

)

dS dh

|h|1+α
≤ 1

2
CN .

Combining the above arguments we obtain (56).
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