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Consensus Control Laws with Guaranteed Performance in Presence of

Fixed Delays

Prathyush P Menon, Alexandre Seuret, and Christopher Edwards

Abstract— This paper deals with the design of optimal
consensus control laws for a set of identical first and second
order agents. Delayed versions of the relative states with respect
to neighbours is used in the proposed consensus laws. Two
different approaches are adopted: (i) assuming no delay is
present in the exchange of information, design an optimal
consensus law and for those gains, determine the maximum
bound on the acceptable delay before stability deteriorates (ii)
develop optimal consensus laws using a novel algorithm which
explicitly accounts for a known fixed delay at the time of design
itself. Optimal designs for a network of first and second order
agents obtained using the two different approaches.

I. INTRODUCTION

Recently, there has been significant research effort to

analyze the impact of different types of delays on the stability

and performance of network level dynamics - references [1]-

[12] are few examples, however the list is not exhaustive. 1

Necessary and sufficient conditions for average consensus

problems in networks of linear agents in the presence of

communication delays have been derived in [1], also see

[2] for the development of sufficiency conditions for the

existence of average consensus in the presence of bounded

delay, both constant and time varying, from the perspective

of a time-delay partial difference equation. Stability criteria

for the consensus dynamics in networks of agents in the

presence of communication delays was subsequently devel-

oped in [3] using Lyapunov Krasovskii techniques and the

strong dependence of the magnitude of delay and the initial

conditions on the consensus value was also established.

In [4], a network of second order dynamical systems with

heterogeneously delayed exchange of information between

agents is considered, and flocking or rendezvous is obtained

using decentralized control. This can be tuned locally, based

only on the delays associated with the local neighbours.

Both frequency and time domain approaches are utilized in

[4] to establish delay dependent and independent collective

stability. Subsequently the theory in [4] was extended in [6]
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1Another research area involving the stabilization of time-delay systems
is networked control systems [13], [14]. This is not the class of problems
considered in this paper.

to the case of a network formed from a certain class of

nonlinear systems. The robustness of linear consensus algo-

rithms and conditions for convergence subject to node level

self delays and relative measurement delays were developed

and reported in [5] building on the research described in [4]

and [6]. ‘Scalable’ delay dependent synthesis of consensus

controllers for linear multi agent networks making use of

delay dependent conditions is proposed in [5].

Reference [7] reports an independent attempt to achieve

second order consensus using delayed position and veloc-

ity information. Recently another methodology, based on a

cluster treatment of characteristic roots, has been proposed

in [8] to study the effect of large and uniform delays in

second order consensus problems with undirected graphs.

In [9] the performance of consensus algorithms in terms of

providing a fast convergence rate involving communication

delays, was studied for second order multi agent systems. In

[10] consensus problem was studied based on using position

information and delayed relative position information only.

In this paper, two distinct approaches are proposed to

synthesize consensus laws in linear multi agent systems

ensuring a certain level of performance in the presence of

homogenous self delays. In the first approach, the delay is

first ignored, and consensus laws are developed minimizing

a performance cost associated with consensus. Subsequently,

the maximum acceptable delay that could be accommodated

is assessed, not violating the stability condition, using the

traditional Nyquist theory. In the second approach, it is

proposed to explicitly account the delay in communication

while designing the consensus law that ensure a level of

LQR-like performance.

A. Notations and Preliminaries

Standard notations are employed in the paper. The set of

real numbers is denoted by IR, and IRn and IRn×n represent

the set of n dimensional vectors, and the set of n × m
matrices, where n and m are positive integers. The set of

symmetric positive definite matrices are represented by S
+
n .

For all M ∈ R
n×n, the notation He{M} stands for M+MT .

The representations Col(.) and Diag(.) denote a column

vector and diagonal matrix respectively. For x ∈ R
n, |x|

is the euclidian norm of the vector x. An n × n identity

matrix is denoted by In. The Kronecker product is denoted

by the symbol ⊗.

The notations for time delay systems are standard. For τ >
0, the notation xt refers to a function defined over the time

interval [−τ, 0] such that for all θ ∈ [−τ, 0], xt(θ) = x(t+
θ). Additionally, the norm ‖xt‖τ = supθ∈[−τ, 0]|x(t+ θ)|.



Details on graph theory can be found in standard texts

such as [15]. However, the relevant basic concepts used

in this paper are described in this section. Bidirectional

communication among agents is assumed, and these net-

works are represented in terms of undirected graphs. The

adjacency matrix for the graph A(G) = [aij ], is defined by

aij = 1 if i and j are adjacent nodes of the graph, and

aij = 0 otherwise. The degree matrix is represented by the

symbol ∆(G) = [δij ]. ∆(G) is a diagonal matrix, and each

element δii is the degree of the ith vertex. The difference

∆(G)−A(G) defines the Laplacian of G, written as L. For

an undirected graph, L is symmetric positive semi-definite.

The smallest eigenvalue of the Laplacian L is zero and the

corresponding eigenvector is given by 1 = Col(1, . . . 1). The

Laplacian is always rank deficient and the rank of L is n−1
if and only if G contains a spanning tree. The maximal

eigenvalue of the L is bounded by 2maxi δii [16].

II. PROBLEM FORMULATION

A. System description

Consider a network of N identical single/double integrator

agents represented as

ẋi(t) = Axi(t) +Bui(t), (1)

for i = 1, . . . , N , where xi(t) ∈ IRn and ui(t) ∈ IR
are the states and control inputs respectively. Each agent

(node) is assumed to share relative state information with

its neighbours, according to

zi(t) =
∑

j∈Ni

(xi(t− τ)− xj(t− τ)). (2)

In (2), the scalar self delay term τ is assumed to be known,

fixed, and identically present in the communication of the

relative information. The set Ni ⊂ {1, 2, . . . , N}/{i} is the

neighbourhood set of the ith agent, and consists of all those

agents with which the ith agent can communicate.

B. Design Objectives

The intention is to design control laws of the form

ui(t) = −Kzi(t), (3)

to obtain consensus such that the performance cost

Ji:=

∞∫

0

∑

j∈Ni

(
(xi(t)−xj(t))

TQ(xi(t)−xj(t))
)
+ui(t)

TRui(t)dt, (4)

is minimized for all i = 1, . . . , N , where the matrix K ∈
IR1×n represents the gain and Q ∈ IRn×n and R ∈ IRm×m

are pre-specified symmetric positive definite matrices. The

first term of the performance cost function (4) (different to a

conventional LQR cost) is introduced to ensure consensus

performance. The second term in (4) is a standard term

associated with the control effort.

III. DESIGN APPROACH

A. Network representation

Using a Kronecker product representation, the system in

(1) at network level is

Ẋ(t) = (IN ⊗A)X(t) + (IN ⊗B)U(t), (5)

where the augmented state X(t) = Col(x1(t), . . . , xN (t))
and U(t) = Col(u1(t), . . . , uN (t)). The control law can be

written as

U(t) = −(L ⊗K)X(t− τ), (6)

where L is the Laplacian matrix representing the topology

of the network characterized by the sets Ni. Substituting (6)

into (5), the closed loop system is

Ẋ(t) = (IN ⊗A)X(t)− (L ⊗BK)X(t− τ). (7)

B. Model transformation

Since L is symmetric positive semi-definite, by spectral

decomposition L = V ΛV T where V ∈ IRN×N is an

orthogonal matrix formed from the eigenvectors of L and

Λ = Diag(λ1, . . . , λN ) is the matrix of eigenvalues of L,

all of which are real and ordered such that λ1 = 0 <
λ2 ≤ . . . ≤ λN . As in [10], considering an orthogonal state

transformation,

X → (V T ⊗ In)X =: X̃, (8)

the network level closed loop system can be represented in

terms of N decoupled systems

˙̃xi(t) = Ax̃i(t)− λiBKx̃i(t− τ), (9)

for i = 1, . . . , N , where x̃i ∈ IRn represents the states of

the ith agent in the new coordinates.

C. Performance cost at network level

At network level, the performance cost can be represented

in terms of the augmented state vector X(t) by using (6) for

the control vector U(t) as

J =

∫ ∞

0

X(t)T
(
(L ⊗Q) + (L2 ⊗KTRK)

)
X(t)dt. (10)

In the coordinates of (8), and since V TL2V = Λ2, the

performance cost (10) can be written as

J =

∫ ∞

0

X̃(t)T
(
(Λ⊗Q) + (Λ2 ⊗KTRK)

)
X̃(t)dt. (11)

The matrix Λ2 is diagonal since Λ is diagonal, and therefore

J =

N∑

i=2

J̃i, (12)

where

J̃i =

∫ ∞

0

x̃i(t)
T
(
λiQ+ λ2

iK
TRK

)
x̃i(t)dt, (13)

by noting that λ1 = 0.



For design purpose, the plants in (9) will be considered as

belonging to the polytopic system

P̃(ρ) : ˙̃xi(t) = Ax̃i(t) + ρÃix̃i(t− τ), (14)

where 1 ≤ ρ ≤ λN/λ2 and Ãi = λ2BK. Note that the

upper-bound λN/λ2, is often associated with performance

of synchronization[17].

Two distinct approaches are now considered to synthesize

control laws subject to the performance cost in (13):

• Approach 1: The delay τ in (2) is assumed to be zero,

and a conventional LQR approach is followed to syn-

thesis the gain K ensuring the performance cost in (10)

is minimised. Then based on Nyquist theory, explicit

bounds on the maximum delay, τ , for which the control

laws ensure stability/performance are determined. The

LQR framework automatically provides phase margin

guarantees, which are important to this methodology.

• Approach 2: The delay τ is explicitly accounted for

when designing the gains K to ensure a sub optimal

level of performance with respect to the (LQR-like) cost

in (10). Novel linear matrix inequality conditions are

derived.

IV. DESIGN APPROACH 1

Under the assumption τ = 0, the systems in (9) become

˙̃xi(t) = A(ρ)x̃i(t), (15)

where A(ρ) := A − ρλ2BK for ρ ∈ [1, λN/λ2]. Note that

in (12) the x1 dynamics play no part in the choice of the

gain K. Choose a quadratic Lyapunov function candidate

V (x̃i(t)) = x̃i(t)
TPx̃i(t) where P ∈ S

+
n . For the systems

in (15), for i = 2, . . . , N , consider the matrix inequality

PA(ρ) +A(ρ)TP + ρλ2Q+ ρ2λ2
2K

TRK < 0. (16)

If (16) is satisfied then

V̇ (x̃i(t)) ≤ −x̃i(t)
T ρλ2Qx̃i(t)− ui(t)

T ρ2λ2Rui(t), (17)

and integrating with respect to time along the trajectories of

(15) yields

V (t)−V (0)≤−
∫ t

0

x̃i(s)
T
(
ρλ2Q+ρ

2λ2
2K

TRK
)
x̃i(s)ds. (18)

The performance inequality (16) ensures the closed loop

system is stable and according to Lyapunov theory V (t) → 0
as t → ∞ and thus J̃i ≤ V (x̃i(0)).

The inequality (16) is bilinear, and a congruence transfor-

mation P̃ = P−1 followed by a Schur complement argument

yields an LMI form





1
ρλ2

(
AP̃ + P̃AT

)
− (BL+LTBT) P̃ LT

P̃ −Q−1
0

L 0 − 1
ρλ2

R−1






︸ ︷︷ ︸

Ψ(ρ)

< 0,

(19)

where L = KP̃ and ρ ∈ {1, λ3/λ2, . . . , λN/λ2}. Formally

the LMI optimization problem associated with (19) is posed

as:

minimize
Z

trace(Z)

subject to

[ −Z I

I −P̃

]

< 0, (20)

Ψ(ρ) < 0, ρ ∈ {1, λN/λ2}. (21)

Inequality (20) implies Z > P̃−1 and so minimising

trace(Z) minimises trace(P̃−1) = trace(P ).

A. Delay analysis of single integrator network

In the case of single integrator dynamics, for the ith node

in (15) (for i = 2 . . . , N ) the choice of K which minimises

the cost Ji is

K̂i =
Pi

ρiλ2R
,

where Pi =
√
ρiλ2QR and ρi = λi/λ2. Since 1 ≤ ρi ≤ ρN

for i = 2 . . . N , it follows that K̂i ≥ K̂N for i = 2 . . . N .

From the gain margin properties of the LQR solution, the

system A − BK is stable for all K ≥ K̂N and hence the

optimal solution to the minimisation problem in (20)-(21) is

given by

K̂N =

√

Q

ρNλ2R
.

Since the node level dynamics are SISO systems, it is pos-

sible to exploit Nyquist stability arguments to compute the

maximum acceptable delay before instability occurs when

(15) is replaced by (14) [5]. As in [5], an appropriate loop

transfer function to assess stability of the systems in (14) in

the presence of delays is given by

L(s) =
λNK̂N

s
e−τs. (22)

For the system L(s) in (22) the gain cross-over frequency is

ωc = λNK̂N and the phase at this cross over frequency is

−(π/2+τλNK̂N ). Hence, to ensure a positive phase-margin

(and hence stability)

(π/2 + τλNK̂N ) < π ⇔ τ <
π

2λNK̂N

.

To preserve a phase margin of φm radians, it follows that

(π/2 + τλNK̂N ) < (π − φm) ⇔ τ <
(π − 2φm)

2λNK̂N

.

B. Delay analysis of double integrator network

In the double integrator case, an analytical solution to the

optimization problem does not exist. Suppose the control

gain obtained by solving the LMIs (20)-(21) is represented

as K̂N =
[
K0 K1

]
. As in the single integrator case,

the level of delay which can be tolerated will be established

using Nyquist arguments. The loop transfer function of the

double integrator system in the presence of the delay is

L(s) =
K1s+K0

s2
e−τs. (23)



The gain crossover frequency for L(s) in (23) is given by

ωc =

√

λ2
NK2

1 +
√

λ4
NK4

1 + 4λ2
NK2

0

2
, (24)

and the phase margin is

φc = tan−1

(
ωcK1

K0

)

. (25)

Arguing as before, to ensure a positive phase margin (and

hence stability in the presence of delays), we have τωc <
φc ⇔ τ < φc

ωc

. To preserve a phase margin of φm radians,

τωc < φc − φm ⇔ τ < φc−φm

ωc

. Note that since the gains

K0 and K1 are obtained from an LQR synthesis, it follows

φc > π/3 [19] and so a certain level of tolerance to delays

is automatically present.

V. DESIGN APPROACH 2

In this section, the delay τ , which is assumed to be fixed

and known, is explicitly accounted in the design of the gains

K in (3), to ensure a sub optimal level of performance

with respect to the (LQR-like) cost in (4). According to

Section IV, the dynamics of the multi-agents systems can

be considered as a single polytopic uncertain system

ẋ(t) = Ax(t)− λBu(t),
u(t) = −Kx(t− τ),

(26)

where x ∈ IRn and the associated cost function J∗ is given

by

J∗ =

∞∫

0

x(t)TλQx(t) + u(t)Tλ2Ru(t)dt, (27)

where λ ∈ [λ2, λN ], and the bounds depends on the topology

of the network.

Consider the Lyapunov-Krasovskii functional

V (xt) = xT (t)Px(t) +
∫ t

t−τ
xT (s)Sx(s)ds

+τ
∫ t

t−τ
(τ − t+ s)ẋT (s)Zẋ(s)ds.

(28)

where P ∈ S
+
n , S ∈ S

+
n and Z ∈ S

+
n . Differentiating the

functional w.r.t. time along the trajectories of (26) yields

V̇ (xt)= 2ẋT (t)Px(t)+xT (t)Sx(t)+τ2ẋT (t)Zẋ(t)

−xT (t−τ)Sx(t−τ)−τ
∫ t

t−τ
ẋT (s)Zẋ(s)ds.

(29)

By applying Jensen’s inequality [20] to the last integral term

in (29) leads to

V̇ (xt) ≤ 2ẋT (t)Px(t) + xT (t)Sx(t)
− xT (t− τ)Sx(t− τ) + τ2ẋT (t)Zẋ(t)
− (x(t)− x(t− τ))TZ(x(t)− x(t− τ)).

(30)

In order to achieve a sub-optimal control design, the cost in

(27) is manipulated by a modified functional

W (xt) = V̇ (xt) + λxT (t)Qx(t) + uT (t)λ2Ru(t), (31)

where the matrices Q and R are symmetric positive definite

matrices associated with the cost (27).

Note that, for any matrix Y ∈ R
3n×n, the equality

ξT (t)Y (Ax(t) +Bλu(t)− ẋ(t)) = 0

holds, where ξ(t)T :=
[
x(t)T x(t− τ)T ẋ(t)T

]
. Since

u(t) = −Kx(t−τ), the right hand side of (31) can be written

in terms of ξ(t) as

W (xt) ≤ ξT (t)





S − Z +Q Z P
Z −S − Z 0
P 0 τ2Z



 ξ(t)

+ξT (t)





0
λKT

0



R





0
λKT

0





T

ξ(t)

+2ξT (t)Y
[
A −λBK −I

]
ξ(t).

(32)

Assume that the matrix Y has the following structure

Y T =
[
(̄Y −1)T 0 ǫ(̄Y −1)T

]
, where ǫ is a positive

scalar and the matrix Ȳ in R
n×n is nonsingular.

This manipulation corresponds to the use of the

descriptor approach proposed in [21]. Define ξ̄(t)T =
[
(Ȳ −1x(t))T (Ȳ −1x(t− τ))T (Ȳ −1ẋ(t))T

]
. Then

W (·) can be rewritten as

W (xt) ≤ ξ̄T (t)









S̄ − Z Z̄ P̄

Z̄ −S̄ − Z̄ 0
P̄ 0 τ2Z̄





+ 2





I
0
ǫI









Ȳ TAT

−λȲ TKTBT

−Ȳ T





T

+





0

λȲ TKTR
0



R−1





0̄

λȲ TKTR
0





T

+





Ȳ TQ
0
0



Q−1





Ȳ TQ
0
0





T


 ξ̄(t),

(33)

where P̄ = Ȳ TPȲ , S̄ = Ȳ TSȲ , Z̄ = Ȳ TZȲ . Finally,

defining the matrix variable K̄ = KȲ and applying the

Schur complement ensures that the functional (33) is negative

definite provided the LMI condition

Π(λ) :=











Π0(λ)





λȲ TQ
0
0









0

λK̄TR
0





∗ −λQ 0
∗ ∗ −R











< 0

(34)

for all values of λ ∈ [λmin, λmax] where

Π0(λ) =





S̄ − Z̄ Z̄ P̄

Z̄ −S̄ − Z̄ 0
P̄ 0 τ2Z̄





+ He















I
0
ǫI









Ȳ TAT

−λK̄TBT

−Ȳ T





T










(35)

Since the LMI is affine in the parameter λ, the condition

Π(λ) < 0 is equivalent to solving the two LMIs Π(λmin) <
0 and Π(λmax) < 0. Then if these two conditions hold, the

functional W (·) is negative definite. Integrating W (·) in (33)

over the interval [0, T ] ensures that

V (xT )−V (x0)+

T∫

0

(xT (t)λQx(t)+uT (t)λ2Ru(t))dt < 0.

Since V (xT ) > 0, a bound of the performance index is given

by letting T tend to infinity

∞∫

0

(xT (t)λQx(t) + uT (t)λ2Ru(t))dt < V (x0) (36)



From the definition of the Lyapunov-Krasovskii functional,

V (x0) = xT (0)Ȳ −T P̄ Ȳ −1x(0)

+
∫ 0

−τ
xT (s)Ȳ −T S̄Ȳ −1x(s)ds

+
∫ 0

−τ
(τ + s)ẋT (s)Ȳ −T Z̄Ȳ −1ẋ(s)ds.

(37)

From (36) and (37)

J∗ ≤ µP̄ |x(0)|2 + τµS̄‖x0‖2τ + µZ̄τ
2/2‖ẋ0‖2τ , (38)

where, for M = P̄ , S̄, Z̄, µM is the largest eigenvalue

Ȳ −1M̄Ȳ .

Optimization: The optimization corresponds to the min-

imization of µP̄ , µS̄ and µZ̄ . Consider first the matrix P̄ .

Introduce the parameter µ such that µP̄ ≤ µ which can be

re-written in the form of a matrix inequality as follows:

Ȳ −T P̄ Ȳ −1 ≤ µI. (39)

Applying the Schur complement yields
[

µI I
I Ȳ T P̄−1Ȳ

]

> 0.

Since (Ȳ T − P̄ )P̄−1(Ȳ − P̄ ) ≥ 0, it follows that

Ȳ T P̄−1Ȳ ≥ Ȳ + Ȳ T − P̄ (40)

This means that if condition (40) holds, then (39) holds.

Formally the LMI optimisation problem associated with

(34) is posed as:

minimize
P̄ ,S̄,Z̄,Ȳ ,ǫ

µ

subject to Π(λmin) < 0, (41)

Π(λmax) < 0, (42)

Ψ(P̄ ) > 0, (43)

Ψ(S̄) > 0, (44)

Ψ(Z̄) > 0. (45)

where P̄ , S̄ and Z̄ in S
+
n and

Ψ(M) =

[
µI I
I Ȳ + Ȳ T −M

]

, ∀M ∈ S
+
n . (46)

The solution of this convex optimisation problem is obtained

using the standard mincx solver in the MATLAB LMI

toolbox. The gain matrix K is computed by K = K̄Ȳ −1,

and the associated control law

ui(t) = −Kzi(t),

guarantees that the closed loop system (7) is asymptotically

stable for the known fixed delay τ > 0. Moreover the cost

functions (4) satisfy

Ji ≤ µ
(
|x(0)|2 + τ‖x0‖2τ + τ2/2‖ẋ0‖2τ

)
.

VI. RESULTS

The computations have been done in the MAT-

LAB/SIMULINK environment. All the simulations are car-

ried out using an ODE1 (Euler) integration scheme with

a step size fixed at 0.001.
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Fig. 1: Time evolution of states, showing average consensus

A. Single integrator type consensus laws

For single integrator type consensus laws, the control law

(3) is designed to minimise the cost defined in (4), where the

constants associated with the performance costs are chosen as

Q = 5 and R = 1. A nearest neighbour topology is assumed

for the network with five identical nodes. Following the

design Approach 1 (assuming τ = 0), the consensus control

gain in (3) is determined as K =
√

Q
λNR

= 1.1756, where

λN = 3.618 is the maximum eigenvalue of the Laplacian ma-

trix corresponding to the network of five nodes with nearest

neighbour coupling. An identical solution can be determined

by solving the formal polytopic LMI optimization problem

in (20)-(21). Furthermore, from the delay margin analysis

in section IV-A, a positive phase margin, i.e., stability, is

ensured for all delays τ < 0.3693.

Consider two cases associated with required phase margins

of φm = 30◦ and φm = 60◦. Following the analysis in

section IV-A, to preserve the phase margins φm = 30◦ and

φm = 60◦, the acceptable delay bounds are τφm=30◦ =
0.2462 and τφm=60◦ = 0.1231 respectively. For each of these

desired delay limits (delay τ is fixed and known), the design

Approach 2 is followed and the optimisation problem (41)-

(45) is solved (with the same Q and R values) to obtain

the consensus control gain K = 0.4859 (corresponds to 30◦

phase margin) and K = 0.5170 (corresponds to 60◦ phase

margin) respectively.

In figure 1, the time evolution of the dynamics of the

network of 5 agents defined in (1) for the case of 30◦ phase

margin is shown. The time responses depicted in the upper

subplot of figure 1 is associated with the consensus control

gain K = 1.1756 obtained by the classical LQR-like design

Approach 1, but in the presence of a delay τ = 0.2462. The

time responses in the lower subplot of figure 1 correspond

to the consensus control gain K = 0.4859 synthesized

by design Approach 2; an identical delay τ = 0.2462 is

present, but the time responses are significantly better (less

oscillatory) to that from the initial design.
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Fig. 2: Comparison of state history achieving average con-

sensus with different designs in double integrator case

B. Double integrator type consensus laws

For the double integrator case, the consensus control law

(3) is designed to minimise the cost defined in (4), where the

constants associated with the performance cost are chosen

as Q = [1 0; 0 10] and R = 1. An identical network as

in the single integrator case is considered. As in the single

integrator case (scalar design problem), it is not trivial to find

the gain using an analytical expression. Following, the LMI

optimization problem in (20) - (21), the consensus control

gain in (3) is determined as K = [0.6260 2.0241]. Following

the delay margin analysis in section IV-B, a positive phase

margin, i.e., stability, is ensured for all delays τ < 0.2086.

Two cases of phase margins φm = 30◦ and φm = 15◦

are considered. Following the analysis in section IV-A, to

preserve the phase margins φm = 30◦ and φm = 15◦,

the acceptable delay bounds are τφm=30◦ = 0.1371 and

τφm=15◦ = 0.1728 respectively. For each of these desired

fixed delay limits, design approach 2 is followed (with

identical Q and R matrices as used in design 1); the optimisa-

tion problem in (41)-(45) is solved to obtain the consensus

control gain K = [0.1925 0.6158] (corresponding to 30◦

phase margin) and K = [0.1877 0.6129] (corresponding to

15◦ phase margin) respectively. The time evolution of the

dynamics of the network of 5 agents defined in (1) for the

different cases (see the titles of each subplot) is depicted in

figure 2.

VII. CONCLUSIONS

In this paper two different approaches are proposed for

developing consensus control laws based on homogenous self

delayed relative information. One approach is rooted in a

classical LQR approach and the second one is based on a

novel linear matrix inequality condition developed explicitly

to address the LQR like performance problem in the presence

of fixed, known delay. Both have been compared by using

single and double integrator type consensus formulations.
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