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Abstract—This paper studies control strategies for load car-
rying drones. Load carrying drones not only have to fly in a
cooperative way but also are mechanically interconnected. Due
to these characteristics the control problem is an interesting and
challenging issue to deal with. Throughout this paper, a dynamic
model based on first principles is developed. To that end, it
is proposed to model this system as a ball and beam system
lifted by two drones. Afterwards, different control techniques are
implemented and compared by simulations. Specifically, linear-
quadratic regulator (LQR) and model predictive control (MPC)
are studied. Both control techniques belong to the optimal control
methodology. This comparison is interesting since LQR permits
to perform an optimal control law with short execution times
while MPC deals with physical constraints and predictions, being
the execution time and the physical constraints important issues
to handle in this kind of systems. Finally, simulation results and
open issues are discussed.

I. INTRODUCTION

Interest in using drones (that is, unmanned aerial vehicles

-UAVs- with the capacity to fly semi- or fully autonomously

thanks to an onboard computer and sensors [1]) for scientific

investigations dates back to the 1970s. Since then, billions

of dollars have been poured into research and development

of military and experimental drones. Indeed, during the last

years, an increased use of flying drones has been noticed. The

invention of light materials, low energy consumption machines

and high performance processing units led to the construction

of flexible flying robots. They can be used in a variety of

applications such as vehicle tracking, traffic management and

fire detection [2], [3]. Within the family of the vertical take-off

and landing (VTOL) drones, unmanned quadrotor helicopters

[4] that base their operation in the appropriate control of

four rotors have received a growing attention, mainly due

to their capability to outperform most of other types of

helicopters on the issues of maneuver-ability, survivability,

simplicity of mechanics and increased payloads [5]. In fact,

there are several advantages to quadcopters over comparably-

scaled helicopters: the simplicity of their mechanical structure;

the use of four small propellers resulting in a more fault-

tolerant mechanical design capable of aggressive maneuvers

at low altitude; good maneuver ability; and increased payload

[6]. Untapping the potential of quadrotors requires, however,

advanced control designs so as to achieve precise trajectory

tracking combined with effective disturbance attenuation, par-

ticularly since quadrotor’s model is highly non linear and

their flight performance can be influenced by sudden wind

gusts especially during flights in low altitudes. Moreover,

the application studied in this paper, which is the control

of multiple quadrotor robots that cooperatively grasp and

transport a payload in two dimensions, adds difficulty to

the problem. Although the problem associated to quadrotor

control has been addressed by many publications (such as

those focused in PID control [7], sliding mode control [8], Hinf

control [9] and bounded control [10]), the novelty of the work

presented herein is the application and subsequent comparison

of Model Predictive Control (MPC) [11] and Linear-Quadratic

Regulator (LQR) control techniques. To the best knowledge of

the authors of this article this has not been realized before, a

fact which further supports the interest of this work. Such

a comparison is valuable since LQR permits to perform an

optimal control law with short execution times while MPC

deals with physical constraints and predictions. Execution

time and physical constraints being important issues to take

into account while facing the control problem discussed in

this paper, the proposed application and comparison of MPC

and LQR techniques therefore represents a useful framework

aimed to provide researchers in the area with additional control

possibilities.

To reach these ends, the paper is organized as follows:

Section II describes the system under study while Section III

presents the dynamic model. In Section IV, the control prob-

lem is motivated and control methodologies are developed.

Section V shows and discusses the simulation results. Finally,

the conclusions are exposed in Section VI.

II. SYSTEM UNDER STUDY

The system under study is composed of two drones which

aim to carry a load. The main feature of this system is that load

carrying drones present mechanic links. These mechanic links

depend on the way the drones carry the load. Therefore, it is

proposed to describe this kind of system as a ball and beam

system lifted by the drones. The mass center of the ball and

beam models the load mass center. Figure 1 shows a scheme

of the proposed system.

As observed in Figure 1, drones are assumed to be quadro-

tors. The quadrotors comprises four propellers each one. The

quadrotor trajectory is regulated by the angular speeds of the

propellers resulting in a lift force which is referred to as f1
for drone 1 and f2 for drone 2 in Figure 1. The ball and

beam system is lifted by the couple of drones by means of

rigid cables with a fixed length equal to h. The beam length
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Fig. 1. Drone ball and beam system

is equal to 2L. In addition, it is supposed that the beam is

non-deformable.

For sake of simplicity, in this work it is assumed that

the drones only move in the XZ plane. Specifically, the x

position of the drones is fixed while the degree of freedom

is the altitude z1 for drone 1 and z2 for drone 2. Thus, the

longitudinal distance between the drones is fixed to the value

of the beam length (2L). The angles formed by the vertical

axis and the rigid cables are denoted as φ1 for drone 1 and

φ2 for drone 2 and the angle formed by the beam and the

horizontal axis is denoted θ.

It is defined two different coordinate reference systems

x0Oz0 and xBOBzB . The global coordinate reference system

x0Oz0 is located in the ground fixed in the x position

corresponding to the middle distance between the drones. The

local frame xBOBzB is located in the beam mass center.

Variables related to the gyroscopic effects are not included

in this study since the control is divided in two levels.

The control structure based on two control levels has been

previously proposed for tracking positioning of quadrotors [9].

In our case, the high-level control calculates the references for

the lift forces f1 and f2 while the low-level control is dedicated

to the drone stabilization. Herein, the drone stabilization is

assumed to be perfectly controlled to be focused on the high-

level control.

The main parameters of the system are listed in Table I.

TABLE I
SYSTEM PARAMETERS

Parameter Value

Ball mass 0.1 kg
Beam mass 4 kg
Beam length 2 m
Drone 1 10 kg
Drone 2 10 kg
Rigid cable length 1 m
Damping factor 0.5

III. DYNAMIC MODEL

The system under study presented in the previous section is

modeled with first principles equations. To that end, the kine-

matics equations are developed and afterwards the Lagrange-

Euler equations are obtained.

A. Kinematics equations

As previously mentioned, two different coordinate reference

systems are defined. The local frame position, OB , at the

global frame is:

OB =

[

L− h sinφ2 − L cosθ

z2 − h cosφ2 − Lsinθ

]

. (1)

This matrix represents the transformation from local frame to

global frame. The local frame speed, ȮB , at the global frame

is obtained by deriving the position with respect to the time:

ȮB =

[

−h φ̇2 cosφ2 + L θ̇ sinθ

ż2 + h φ̇2 sinφ2 − L θ̇ cosθ

]

. (2)

The ball position and speed at local frame are denoted x and

ẋ and by using the transformation matrices Eqs. (1) and (2),

the position and speed at global frame, x0 and z0, are:

[

x0

z0

]

=

[

L− hsinφ2 − Lcosθ − xcosθ

z2 − hcosφ2 − Lsinθ − xsinθ

]

, (3)

[

ẋ0

ż0

]

=

[

−h φ̇2cosφ2 + (L+ x)θ̇sinθ − ẋcosθ

ż2 + hφ̇2sinφ2 − (L+ x)θ̇cosθ − ẋsinθ

]

.

(4)

Given that the longitudinal distance between the drones is

fixed, the angle θ can be expressed as a function of angles

φ1 and φ2:

[

sinθ

cosθ

]

=
1

2L

[

z2 − z1 + hcosφ1 − h cosφ2

2L− hsinφ1 − hsinφ2

]

. (5)

Replacing θ in Eq. 4, the ball position and speed at global

frame result in:

[

x0

z0

]

=

[

x+ hsφ1−hsφ2

2 − x(hsφ1+hsφ2)
2L

z2+z1−hcφ1−hcφ2

2 + x(z2−z1+hcφ1−hcφ2)
2L

]

.

(6)

[

ẋ0

ż0

]

=







(x−L)hφ̇1cφ1−(x+L)hφ̇2cφ2

2L − ẋ(2L+hsφ1+hsφ2)
2L

(
(L+x)(ż2+hφ̇2sφ2)+(L−x)(ż1+hφ̇1sφ1)

2L +

+ ẋ(z2−z1+hcφ1−hcφ2)
2L

)







,

(7)

where cθ and sθ correspond to cosθ and sinθ, respectively.
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B. Lagrange-Euler equations

The motion equations can be expressed by the Lagrange-

Euler formulation based on the kinetic and potential energy

concepts:











d
dt

∂L
∂ẋ

− ∂L
∂x

d
dt

∂L
∂ż1

− ∂L
∂z1

d
dt

∂L
∂ż2

− ∂L
∂z2

d
dt

∂L

∂φ̇1

− ∂L
∂φ1

d
dt

∂L

∂φ̇2

− ∂L
∂φ2











=











0

f1

f2

0

0











, (8)

where L is the Lagragian of the system. The Lagragian is

calculated as the difference between kinetic and potential en-

ergies. The equations are obtained by the software MAXIMA.

The system kinetic and potential energies are the addition of

the ball, beam and drone kinetic and potential energies. The

ball kinetic energy, Tb, beam kinetic energy, TB , and drone

kinetic energies, Td1 and Td2 are:

Tb =
1

2
mb

[
x0 y0

]

[

x0

y0

]

, (9)

TB =
1

2
ρ

∫ l

−l

∥Ṡ0(s)∥
2 ds , (10)

Td1 =
1

2
md1ż

2
1 , (11)

Td2 =
1

2
md2ż

2
2 , (12)

being mb the ball mass, l the beam volume, md1 the drone

1 mass, md2 the drone 2 mass and ρ the beam density. The

beam density ρ is equal to the ratio between the beam mass,

mB , and the beam volume l. The variable ṠO corresponds

to the speed of a generic point of the beam at the global

coordinate reference system. The ball potential energy, Ub, the

beam potential energy, UB , and the drone potential energies,

Ud1 and Ud2, are expressed as:

Ub = mb g yo , (13)

UB = mB g OB,z , (14)

Ud1 = md1 g z1 , (15)

Ud2 = md2 g z2 , (16)

where g is the acceleration of gravity and OB,z is the z position

of the local frame which is placed at the beam mass center.

C. State-space model

The previous model is linearized at an operating point for

control purposes. The operating point corresponds to a ball

position equal to (0,0), drone altitudes z1, z2 equal to 0
and null system speeds (ball, beam and drones). Moreover,

it is considered new variables F1 and F2 to represent the lift

forces. These variables are equal to zero at equilibrium, and

are calculated as:

F1 = f1 −md1 g −
mb +mB

2
g , (17)

F2 = f2 −md2 g −
mb +mB

2
g . (18)

As a result, the linear model in matrix form is:










ẍ(t)

z̈1(t)

z̈2(t)

φ̈1(t)

φ̈2(t)











︸ ︷︷ ︸

Γ̇

= A











x(t)

z1(t)

z2(t)

φ1(t)

φ2(t)











︸ ︷︷ ︸

Γ̇

+B

[

F1(t)

F2(t)

]

︸ ︷︷ ︸

U

, (19)

where matrices A and B are detailed in Equation (III-C).

From Equation (19), the following state-space model is

obtained:
[

Γ̈

Γ̇

]

︸ ︷︷ ︸

Ẋ

=

[

M AT

I 0

]

︸ ︷︷ ︸

Asys

[

Γ̇

Γ

]

︸ ︷︷ ︸

X

+

[

BT

0

]

︸ ︷︷ ︸

Bsys

[

F1

F2

]

︸ ︷︷ ︸

U

.

(20)

Vector X is the state vector which contains the speeds and

positions of the ball and drones and the system is represented

by matrices Asys and Bsys. Matrix M includes damping

factors which affects the angular movement of the rigid cables

modeled by variables φ1 and φ2. The damping factors avoid

infinitive bouncing associated to ideal pendulum problem.

Thus, this matrix is:

M =






0 0

0

[

−µ 0

0 −µ

]




 . (21)

IV. CONTROL PROBLEM

The control objective of this system is to maintain the ball in

the equilibrium point on the beam by means of regulating the

drone altitudes. As previously mentioned, the system control

is divided in two levels. The high-level control calculates the

lift force to track an altitude reference that depends on the ball

position and the altitude of the other drone while the low-level

control is dedicated to the drone stabilization. The low-level

control is integrated in each drone and calculates the angular

speeds of the four rotors to obtain a total lift force equal to

the reference provided by the high-level control. The control

problem is schemed in Figure 2.

High-level

control

Drone 1

Drone 2

+

-

yref yU

f1
f2

Stabilization 

control

Stabilization 

control

ωi
ωi

Ball and beam

Fig. 2. Control scheme

As observed in Figure 2 it is considered that the stabilization

controllers are feedback control strategies. The angular speeds,
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A =



















0
g(2mB+mb)

4LmB

−
g(2mB+mb)

4LmB

g(mB+mb)
4mB

−
g(mB+mb)

4mB

a1 0 0 0 0

−a2 0 0 0 0

0 −
gmb

4LhmB

gmb

4LhmB

−
g(mB+mb)

hmB

−
g(mB+mb)

2hmB

0 gmb

4LhmB

−
gmb

4LhmB

−
g(mB+mb)

2hmB

−
g(mB+mb)

hmB



















, B =

















0 0
8mB+3mb+12md2

p
−

4mB+3mb

p

−
4mB+3mb

p

8mB+3mb+12md1

p

0 0

0 0

















,

a1 =
3gmb(2mB+mb+2md2)

p
, a2 =

3gmb(2mB+mb+2md1)
p

,

p = L(2mBmb + (8mB + 3mb)(md1 +md2) + 12md1md2 + 4m2
B
) ,

(20)

ωi, of the four rotors are measured and the lift force, f1 or f2,

is estimated. Then, the control loop is closed by obtaining the

error between the reference of the lift force and the estimated

lift force. This work focuses on the high-level control and it

is assumed that the drone stabilization is perfectly controlled.

In addition, the closed-loop scheme of the high-level control

receives a reference vector, Yref , to be tracked. The system

output vector, Y, comprises all the states that are measured.

We assumed that all the states included in vector X are

measured, that is, the ball position, x, and speed, ẋ, the drone

altitudes, z1 and z2, and speeds, ż1 and ż2, and the angles φ1

and φ2 and its angular speeds φ̇1 and φ̇2.

It is proposed herein to compare different optimal control

techniques to evaluate the difficulties associated to this system.

In particular, linear-quadratic regulator (LQR) and model

predictive control (MPC) are developed. LQR allows to solve

on-line optimization control problems with fast execution time

and low computational effort while MPC deals with physi-

cal constraints and predictions. Both control methodologies

present interesting features for this control problem. For aerial

application, short execution times with low computation effort

are demanding but at the same time, handling physical con-

straints is required to avoid collisions and instable scenarios

caused by disturbances. These controllers are detailed in the

next subsections.

Moreover, controllers are implemented in CPUs on-board

and therefore, discrete control laws are studied. The sampling

time is a design parameter which has to be appropriately

chosen. It is important to remark that in this control scenario

composed by two control levels, each control level may

present different sampling time. Specifically, the low-level

control is performed faster than the high-level control for this

application. Accounting for possible hardware limitations, a

sampling time of 200 ms is set for this study. Note that the

optimal controllers require the system model for design. The

dynamic model presented in Eq. (20) is in continuous time and

it has to be discretized for a 200-ms sampling time resulting

in:

X(k + 1) = Ad X(k) +Bd U(k) , (22)

Y(k) = Cd X(k) +Dd U(k) , (23)

A. Linear quadratic regulator

LQR is an optimal and feedback control law which min-

imizes every sampling time the following objective function

J :

J =
∞∑

k=0

(
X(k)TQX(k) +U(k)TRU(k)

)
, (24)

where X(k) and U(k) are the state and input vectors at instant

k and matrices Q and R are weighting matrices. Given that

the system is modeled by the discrete-time state-space model

presented in Eq. (23), the analytical optimal control sequence

results in:

U(k) = −F (X(k)−Xref (k)) , (25)

where

F =
(

R+Bd
T P Bd

)−1

Bd
T P Ad , (26)

being P the unique positive definite solution to the discrete

time algebraic Riccati equation (DARE):

P = Q+Ad
T

(

P−PBd

(

R+Bd
TPBd

)−1

BdP

)

Ad .

(27)

B. Model predictive control

Model predictive control has been successfully applied to

many industrial processes [11] and drone applications such

as [9]. The controller calculates the optimal control action

taking future predictions and constraints into account. The

optimization is repeated each sampling time with a moving

horizon. MPC is generally formulated with state-space models

as:

min
ϵ(k+m+1),U(k+m)

N−1∑

m=1

ϵ(k +m+ 1)T Q ϵ(k +m+ 1)+

+U(k +m)T R U(k +m) , (28)

where

ϵ(k +m+ 1) = X(k +m+ 1)−Xref (k +m+ 1) ,
(29)

being N the prediction horizon, Q and R the weighting

matrices. The error ϵ is defined as the difference between the

state vector X and the reference Xref since the output vector

Y is equal to the state vector. The optimization problem is

subject to the system dynamic model presented in Eq. (23)

and the following system constraints:

X ≤ X(k) ≤ X , (30)
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U ≤ U(k) ≤ U , (31)

Y ≤ Y(k) ≤ Y . (32)

The variable vectors denoted with an over line contain the

upper limits while the variable vectors with an under line

contains the lower limits. Particulary, the constraints included

in this problem are the beam length that limits the ball position,

x, and maximum and minimum values for the lift forces, f1
and f2, imposed by rotor physical constraints. Values of 30
N and −35 N are chosen for the upper and lower lift force

bounds, respectively.

V. SIMULATION RESULTS

This section is dedicated to compare and discuss the simula-

tion results for LQR and MPC. First, preliminary simulations

are performed in order to tune the weighting matrices, Q

and R, for the controllers with the objective to achieve fast

performance with non-aggressive control actions. The best

values for both matrices and both controllers correspond to:

Q = Inx×nx
, (33)

R = 0.004 Inu×nu
. (34)

Furthermore, for the MPC the prediction horizon, N , is

another design parameter. The prediction horizon directly

influences on the computational demand, that is, the higher

the prediction horizon the higher the computational demand

is. Otherwise, MPC and LQR have the same performance for

a sufficiently higher N . Then, it is achieved a tradeoff with a

prediction horizon set at 12 samplings.

Figure 3 compares LQR and constrained MPC simulated

for initial drones altitudes equal to 4.5 m and 3.5 m for drone

1 and drone 2.
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Fig. 3. LQR and MPC comparison

In Figure 3 (a) shows the performance of the ball position

for LQR in red, for MPC in blue and bounds in magenta dash

lines. Note that both controllers are able to regulated the ball

position and stabilized the ball in the equilibrium point set

at x = 0. However, LQR violates the constraints imposed by

the beam length and at time 1.75 s the ball falls from the

beam. Figures 3 (b) and (c) show the drone altitudes, z1 and

z2. The altitude references for both altitudes are maintained

constant at 2 m during all the simulation. LQR and MPC

appropriately regulate the altitudes. As seen in the figures,

MPC is slightly slower due to the constraints. Figures 3 (d)

and (e) present the simulation results for the drone lift forces.

MPC performs inside the bounded region for all the simulation

while LQR violates the constraints at the beginning of the

simulation imposed to the drone 1 lift force.

In order to test in more detail the LQR, several simulations

are performed and presented in Figure 4. The weighting

matrices are modified and the lift forces are saturated to

the maximum and minimum values only for the case of the

LQR. In Figure 4 (a), the ball position performances are

presented where red, magenta and green dash lines correspond

to the LQR performance with a weighting matrix R equal

to 0.008Inu×nu
, 0.004Inu×nu

and 0.001Inu×nu
, respectively.

Matrix Q is kept constant and equal to the identity matrix.

Moreover, red, magenta and green solid lines are the LQR

performances for the previous weighting matrices including

saturations on the maximum and minimum values of the lift

forces. As observed in the figure, only the LQR performance

for a weighting matrix R of 0.004Inu×nu
without saturation

avoids the ball to fall. However, after studying Figures 4 (d)

and (e), LQR with a weighting matrix R of 0.004Inu×nu

requires to implement lift forces for drone 1 out of bounds.

Therefore, it is demonstrated that even though LQR is a good

candidate to regulate this system due to its fast execution time,

the system performance under the bounds is not guaranteed.
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Fig. 4. Saturated and non-saturated LQR with different weighting matrices
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A. Disturbances

LQR and MPC are tested under disturbances. To that end,

simulations are performed with disturbances in the ball posi-

tion and drone altitudes. In addition, changes in the references

are also included in the simulation. The results are compared

in Figure 5. The initial conditions are the same as presented

in the previous simulations. The ball position is modified to

a value of x equal to 0.5 m at time 15 second as seen in

Figure 5 (a). The altitude of drone 1 is modified to values of

z1 equal to 1.2 and 2.7 at time 20 and 28 seconds as shown

in Figure 5(b). The altitude references are at the beginning of

the simulation equal to 2 m and simultaneously change to a

value of 3.5 m at time 30 second and again to 2 m at time

40 second. The references are shown in Figures 5 (b) and (c)

as cyan dash lines. In Figure 5, blue solid lines correspond to

the MPC while red solid lines correspond to the LQR with

lift forces saturated. As mentioned in the previous subsection,

LQR is not able to perform under the bounded region and the

ball falls from the beam at times 1.75, 21 and 29 seconds.

MPC performs under bounds during all the simulation and

faster than the saturated LQR as seen in Figure 5 (a) at time

21 second. For both cases, the altitude references are perfectly

tracked with a similar rise time.
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Fig. 5. LQR and MPC with disturbances

B. Execution times

Finally, executions times are obtained during simulation to

test the suitability of the real-time implementation of MPC

for this application. Note that the controllers are simulated

by using MATLAB in PC with i7-260M CPU under 64 bits

Windows platform. Table II lists the average, maximum and

minimum execution times for LQR and MPC. The average

time for LQR is 0.01225 ms while MPC is 5.8 ms. Both

average times are far from 200 ms which is the sampling

time and thus, a robust on-line implementation is feasible.

Note that the hardware on-board with a real time software

may execute the control laws faster. Due to the fast execution

times, the sampling time could be reduced in order to obtain

better performance in terms of response speed. Then, the

prediction horizon for MPC needs to be recalculated for the

new sampling time. The prediction horizon depends on the

system rise time. Therefore, if the sampling time is reduced

the prediction horizon increases. Also, the MPC execute time

increases with the prediction horizon. The reduction of the

sampling time needs to be carefully studied.

TABLE II
EXECUTION TIMES

Controller Average
(ms)

Maximum
(ms)

Minimum
(ms)

LQR 0.01225 0.0338 0.00798
MPC 5.8 6.8 4.9

VI. CONCLUSION

In the present paper we have presented, modeled and

analyzed a novel application of multi-agent drone system

dealing with load carrying. The main problem related to this

application comes from the mechanical links between the load

and the drones which carry it. This system was proposed to

be modeled as a ball and beam lifted by to drones and a

mathematical model based on first principles was developed.

Under the assumption that all the states are measured, LQR

and MPC controllers have been analyzed by simulations. LQR

presented very fast execution times but it is not guaranteed a

performance in the bounded area, that is, that the ball does

not fall from the beam as seen in different simulations. On

the other hand, MPC deals with constraints and regulates the

ball position without violating the constraints imposed in the

problem. Moreover, Execution times are short enough for this

application to guarantee the on-line implementation.

This work has presented only a preliminary study with

centralized controllers which have the knowledge of all the

states variables. In future work we aim at considering a more

general setup with a higher number of drones and where only

part of the states are locally measured on each drone. In order

to reduce the execution time of the MPC and to make the

problem scalable in a easy way distributed MPC strategies

should be studied. In addition, a uncertainties and aerodynamic

disturbances need to be included in future studies.
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