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Abstract

Bluetongue (BT) can cause severe livestock losses and large direct and indirect costs for farmers. To propose
targeted control strategies as alternative to massive vaccination, there is a need to better understand how BT virus
spread in space and time according to local characteristics of host and vector populations. Our objective was to
assess, using a modelling approach, how spatiotemporal heterogeneities in abundance and distribution of hosts
and vectors impact the occurrence and amplitude of local and regional BT epidemics. We built a reaction–diffusion
model accounting for the seasonality in vector abundance and the active dispersal of vectors. Because of the scale
chosen, and movement restrictions imposed during epidemics, host movements and wind-induced passive vector
movements were neglected. Four levels of complexity were addressed using a theoretical approach, from a
homogeneous to a heterogeneous environment in abundance and distribution of hosts and vectors. These
scenarios were illustrated using data on abundance and distribution of hosts and vectors in a real geographical
area. We have shown that local epidemics can occur earlier and be larger in scale far from the primary case rather
than close to it. Moreover, spatial heterogeneities in hosts and vectors delay the epidemic peak and decrease the
infection prevalence. The results obtained on a real area confirmed those obtained on a theoretical domain.
Although developed to represent BTV spatiotemporal spread, our model can be used to study other vector-borne
diseases of animals with a local to regional spread by vector diffusion.
Introduction
There is significant concern regarding the resurgence or
emergence of vector-borne diseases of animals with ser-
ious consequences for animal health and economics
[1-3]. Climate change and socio-economic change are
both believed to contribute to the emergence and spread
of such diseases [4]. A recent example is the unexpected
introduction of the serotype 8 of the bluetongue virus
(BTV) in northern Europe in 2006. Bluetongue is a non-
contagious vector-borne disease affecting domestic and
wild ruminants with high direct and indirect economic
consequences [5,6]. It spread for three years with an
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reproduction in any medium, provided the or
annual epidemic peak followed by the disappearance of
clinical cases.
A better understanding of the temporal and spatial

spread of BTV has direct consequences for the disease
prevention and control. The recent incursion of BTV in
Europe has been controlled using a massive vaccination.
To propose alternative to such a massive strategy if BTV
incursions were to occur, we need to better identify where
and when targeted strategies should be implemented.
Therefore, the occurrence and amplitude of both local
(a few km2) and regional epidemics should be more pre-
cisely predict.
The spatiotemporal heterogeneity in abundance and

distribution of hosts and vectors generally has a strong
impact on pathogen spread and persistence [7,8]. In a
seasonal environment such as in Europe, bluetongue is
characterized by strong seasonal variations in incidence
related to the seasonality of the vector population [9,10],
l Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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whose lifecycle largely depends on environmental fac-
tors, such as humidity and temperature. As a result, clin-
ical cases almost disappear during the unfavourable
season for the vector. In addition to the temporal het-
erogeneity in vector abundance, the heterogeneity in the
spatial distribution of vectors and hosts may also impact
bluetongue spread [11,12]. Such heterogeneities in vec-
tor and host abundance and distribution can differ be-
tween geographic areas. In livestock populations, they
relate to the landscape structure as well as to farming
practices as animal populations are managed by farmers.
Mathematical modelling is a relevant approach for in-

vestigating the spread of vector-borne diseases [8,13-16].
As hosts and vectors are mobile entities, a spatial com-
ponent in vector-borne disease models should be taken
into account to better consider the evolution of the bio-
logical system [17-19]. This spatial component is not
only due to space structuring in terms of density and lo-
cation of host and vector populations, but also to host
and vector movements over space. Different methods of
various levels of complexity exist to include this spatial
component in epidemiological models. To study the
spread of vector-borne diseases, spatially explicit models
are generally preferred [13,20]. They permit to take into
account both vector active and passive movements and
host movements that occur at different scales. Moreover,
such models have been used also to describe the velocity
of travelling waves of epidemics [8,14,16].
Such a modelling approach has been used to represent

the spatiotemporal BTV spread in specific areas [21-24].
If the published models took into account the hetero-
geneity in distribution and abundance of livestock popu-
lations, they tend to assume uniform densities of vectors
(i.e. the same number per farm) or uniform host: vector
ratio (i.e. more midges on bigger farms) [21-24]. Re-
cently, it has been shown that these are probably unreal-
istic [25]. Therefore, models that take full account of
vector heterogeneity both in space and time have to be
developed.
Our objective was to assess, using a modelling ap-

proach, how spatiotemporal heterogeneities in abun-
dance and distribution of hosts and vectors impact the
occurrence and amplitude of local and regional BT epi-
demics. We first studied different hypothetical scenarios
of spatial heterogeneity in host and vector populations,
and then illustrated the theoretical results in a real geo-
graphic area.
mV+kV(t)VP mV+kV(t)VPmV+kV(t)VP

Figure 1 Conceptual model of BTV8 spread. Flow diagram
describing the model used for BTV8 spread in midge and cattle
populations. Squares represent the health states of hosts (H), circle
those of vectors (V), with S for susceptible, E for latent, I for
infectious, R for recovered. The descriptions, values and sources of
all parameters in the epidemiological model are found in Table 1.
Material and methods
Model description
Three actors are necessary for bluetongue spread: the
virus (here BTV8), the vector (a midge, here Culicoides),
and the host (a ruminant, here cattle). As the virus is
not excreted, we have assumed all transmission is vec-
torial. The developed model is based on a more complex
model of the seasonal temporal spread of bluetongue in
cattle [26]. This model has been simplified and made
spatial. Here, the vertical transmission (in utero) has not
been taken into account, as this hypothesis has not been
shown to influence the infection [26]. The temporal dy-
namics of the vector population has been modified using
a more flexible function. We used a standard compart-
ment model (Figure 1) to describe the transmission of a
pathogen between a vertebrate host population (HP) and
a vector population (VP). The parameters of this model
are defined in Table 1. The host population (HP) is di-
vided into three health states: susceptible (SH), infec-
tious (IH), and immune (RH). It is assumed to remain
constant: the entry rate (bH) compensates the exit rate
(mH). The vector population (VP) is divided into three
health states: susceptible (SV), exposed (EV), and infec-
tious (IV). For vectors, a latency period (1/ρE; Table 1)
was taken into account as it is of the same order as life
expectancy. At the disease-free state and with seasonal-
ity, the vector population was assumed to have a logistic
growth with K(t) = (bV-mV)/kV(t) (Table 1), the carrying
capacity of the environment depending on the vector
fertility (bV), mortality (mV) and density-dependant mor-
tality (kV) rates. In periods favourable for vectors, the K
function is a sinusoidal function with a maximum h. In
unfavourable periods, the K function is constant and
equal to Nb. The vectorial transmission takes place when
an infectious vector (IV) bites a susceptible host (SH)



Table 1 Parameters of the model of BTV8 spread in
midge and cattle populations

Host
parameters

Description Value References

bH Birth rate (per day) 6,94.10-4 a

mH Exit rate (mortality, selling, culling)
(per day)

bH

1/αI Duration of viremia (days) 60 [43]

cVH Probability of transmission
from vector to host

0.92 [44,45]

Vector
parameters

Description Value References

cHV Probability of transmission
from host to vector

0.15 [46,47]

n Biting rate (per day) 0.25 [45]

bV Fertility rate (per day) 6.1 [45]

mV Mortality rate (per day) 1/21 [34,45]

K(t) Carrying capacity *

kV Density-dependence
mortality rate (per day)

(bV-mV)/K
(t)

h Maximum of K(t) variable

d Duration of
favourable period (days)

243

Nb Number of vectors during
the unfavourable period

100

1/ρE Duration of extrinsic
incubation period (days)

10 [4,45]

D Diffusion coefficient (km2/day) 1,25.10-2

* K(t) = 1[1 ; d](t)*[ h*sin(|π(365-t)/d|)] + 1[d+1;365](t)*Nb.
a: agricultural statistics.
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which becomes infectious (IH), or when a susceptible
vector (SV) bites an infectious host (IH) and then be-
comes exposed (EV). Incidence functions were frequency
dependant for hosts and vectors. The mean host viremia
duration (i.e. the time spent in IH) was 1/αI. With recov-
ery, animals move from state IH to RH.
Let Ω be the square spatial domain. X = X (x, y, t) rep-

resents time dependant population densities in (x, y) ∈
Ω. During the epidemic, host movements are controlled,
therefore the spatial spread of the epidemic is due to
vector movements rather than host movements. More-
over, we focus on a local to regional scale, and therefore
assume that the spatial spread of BTV8 is exclusively
due to local movements of vectors. BTV8 having no det-
rimental impact on vectors, thereby the diffusion process
is similar whatever the health state. Therefore, the diffu-
sion process follows the first Fick’s law:
q→ x; y; tð Þ ¼ −D x; yð Þ:∇SV x; y; tð Þ; where q→ x; y; tð Þ is

the diffusion flux of the vector population and D(x,y), the
positive diffusion matrix. Appling the conservation law (i.e.
the variation of the amount of species in a volume is equal
to the balance of entering and outgoing flux), we obtain
the second Fick’s law: ∂SV x;y;tð Þ
∂t þ div q→ x; y; tð Þ ¼ 0:

Combining these two laws, we obtain: ∂SV x;y;tð Þ
∂t ¼ −div q→

x; y; tð Þ ¼ −div −D x; yð Þ:∇SV x; y; tð Þð Þ: We consider that
the dispersion of vectors is homogeneous in space; therefore

D(x,y) = D. Then, ∂SV x;y;tð Þ
∂t ¼ D div ∇SV x; y; tð Þð Þ ¼ DΔSV

x; y; tð Þ.
By adding the reaction term, we obtain the following

system of equations (Eq. 1) describing the spatiotempo-
ral spread of the BTV8, for (x, y)∈ Ω and t > 0:

∂SH
∂t

¼ −cVHn
IV
HP

SH þ bHHP−mHSH

∂IH
∂t

¼ cVHn
IV
HP

SH− αI þmHð ÞIH
∂RH
∂t

¼ αI IH−mHRH

∂SV
∂t

¼ DΔSV−cHVn
IH
HP

SV− mV þ kVVPð ÞSV þ bVVP

∂EV
∂t

¼ DΔEV þ cHVn
IH
HP

SV− mV þ kVVPð ÞEV−ρEEV

∂IV
∂t

¼ DΔIV þ ρEEV− mV þ kVVPð ÞIV

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð1Þ
The initial time corresponds to the first day of the

favourable season for the vector population. The spatial do-
main (Ω) is discretized into cells; each cell of surface area
of 1 km2. Initially, all hosts and vectors are susceptible, ex-
cept the primary case which corresponds to an infected
host, placed in the centre of the grid, in a cell where there
are hosts. We set non-negative initial conditions (Eq. 2).
The flow of individuals across the domain boundary is as-
sumed to be zero, i.e. we do not consider immigration or
emigration of individuals and set Neumann boundary
conditions (Eq. 2).

SH x; y; 0ð Þ ¼ SH0 x; yð Þ; SV x; y; 0ð Þ ¼ SV 0 x; yð Þ
IH x; y; 0ð Þ ¼ 0∀ x; yð Þ≠ 21; 21ð Þ; IH 21; 21; 0ð Þ ¼ 1
RH x; y; 0ð Þ ¼ EV x; y; 0ð Þ ¼ IV x; y; 0ð Þ ¼ 0
∂SH
∂n

¼ ∂IH
∂n

¼ ∂RH
∂n

¼ ∂SV
∂n

¼ ∂EV
∂n

¼ ∂IV
∂n

¼ 0; ∀ x; yð Þ∈∂Ω; t > 0

8>>><
>>>:

ð2Þ
To discretize the problem (Eq. 1 and 2) we used the fi-

nite difference method in space, and we converted the
continuous time model into a discrete time one by using
the semi-implicit Euler method, that we implemented in
Scilab 5.1.
Hypotheses of spatial heterogeneities in hosts and
vectors
Assumptions are described by increasing level of complex-
ity in Table 2. A first reference hypothesis (H1) considers
a homogeneous spatial distribution and abundance in
hosts and vectors. Four scenarios were studied for four
maxima of the carrying capacity in vectors (h1 to h4).



Table 2 Hypotheses of spatial heterogeneities in abundance and distribution of hosts and vectors

H Host Vectors Results figure

Homogeneous
in hosts and

vectors
(4 Scenarios)

H1 500 S/C 1 I in central
cell Total number of
hosts = 840 501

100 S/C h1=106, or h2=107 or
h3=108, or h4= 109

5

Heterogeneous
in hosts

Homogeneous
in vectors

(16 scenarios)

H2 Total number of hosts
S≈ 840 501 Four densities
of occupied cells (Figure 2):
90% OC: 554 S/OC75%
OC: 666 S/OC50% OC:
1000 S/OC25% OC:
2025 S/OC 1 I in
central cell

H1 6 and 7

Heterogeneous
in vectors

Homogeneous
in hosts

(2 scenarios)

H3 H1 100 S/C Grid divided into
four sub-areas of different
maximum carrying capacities
(h1, h2, h3 and h4) (Figure 3a)

8

H4 100 S/C 25% C: h1, 25% C: h2, 25% C:
h3, 25% C: h4 (Figure 3b)

9 and 10

Heterogeneous
in hosts and

vectors
(6 scenarios)

H5 Crossing hypotheses: H2-H4 10 and 11

H6 Real area
(Figure 4b)

Real area (Figure 4a)
Multiplication of the
number of trapped vectors
by 100 or 1000

12

We set H hypothesis, C cell, OC occupied cell. S susceptible individual, I infected individual.
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From this assumption, four levels of heterogeneity were
analyzed and compared.
First, a heterogeneous distribution of hosts was consid-

ered (H2), vectors being homogeneously distributed. We
kept the total number of hosts on the grid constant. We
tested five densities of occupied cells from 25% to 100%,
where H1 is 100% of cells occupied (Figure 2). For each
density, we randomly drew the occupied cells among the
1681 grid cells. For each scenario, three draws of occupied
cells were compared. Results were identical whatever the
distribution; therefore it did not influence the spatiotem-
poral spread of the virus on the grid. Thereafter, only one
distribution was kept (Figure 2).
Secondly, a heterogeneous distribution of vectors was

considered (H3 and H4), hosts being homogeneously
distributed. In H3, the domain (Ω) consisted of four
90% of occupied cells 75% of occupied cells

Figure 2 Spatial distribution of cells occupied by hosts for four densi
occupied cells; white cells correspond to empty cells; the yellow and cross
sub-areas, each having a different maximum of the car-
rying capacity in vectors (h1 to h4, Figure 3a). In H4, we
considered a random equiprobable distribution of the
same four maxima of the carrying capacity in vectors on
the grid (Figure 3b).
Thirdly, we considered a heterogeneous distribution of

hosts and vectors simultaneously (H5). This hypothesis
crosses previous hypotheses H2 and H4.
Fourth, a last hypothesis (H6), based on real data,

served to illustrate this theoretical work, in particular
hypothesis H5.

Data
The Culicoides trap catches used for modelling were col-
lected in the Welsh province of Bala, situated in Snow-
donia National Park (for full methods, see [25]). The
50% of occupied cells 25% of occupied cells

ty levels (hypotheses H2 and H5). Black cells correspond to
ed cell corresponds to the cell wherein the primary case occurs.



h1 h2

h4 h3

a b

Figure 3 Spatial distribution of the four maximum carrying
capacities in vectors. a) Hypothesis H3, b) Hypotheses H4 and H5.
Yellow cells correspond to cells having a maximum carrying capacity
in vectors given by h1 = 106, orange cells correspond to cells having
a maximum carrying capacity in vectors given by h2 = 107, red cells
correspond to cells having a maximum carrying capacity in vectors
given by h3 = 108, brown cells correspond to cells having a
maximum carrying capacity in vectors given by h4 = 109. The black
cell corresponds to the cell wherein the primary case occurs.
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trapping farms were selected using a 6 × 6 km grid,
whereby one farm was selected from each grid square (36
in total, Figure 4). Each farm was sampled for three nights
using Onderstepoort-type down draught black light traps
positioned as close to livestock as possible. Large collec-
tions were sub-sampled [27] and only females were con-
sidered in the analyses as males do not take blood meals
or, consequently, transmit disease between vertebrates.
The maximum trap-catch of Culicoides per farm, out of
the three trapping nights, was used for modelling purposes
(Figure 4a). Due to the nature of the terrain, two squares
contained no properties. Culicoides counts for these grid
squares were estimated using the models of [25]. The vec-
tor abundance is difficult to quantify. Therefore, we con-
sidered two scenarios, one multiplying the number of
vectors per cell by 100, and another by 1000. The numbers
of cattle per farm were recorded on questionnaires during
data collection (Figure 4b). For farms with unknown
> 10 000

> 5 000

> 1 000

> 300

Vectors
1 2 3 4 5 6

F
E

D
  

C
  

B
A

a

Figure 4 Vector (a) and host (b) spatial distribution in the real area (i
numbers of individuals (white: empty cells); the cell with the star correspon
numbers of cattle, values were interpolated using the
known values of farms in adjacent grid squares.

Outputs
The date and the prevalence at the epidemic peak in
each cell were analysed, as well as the total prevalence
on the grid over time. Thereafter, these three outputs
are respectively named peak date, local prevalence and
total prevalence. The peak dates were compared among
the cells located on the four lines between the central
cell (the half-diagonal), i.e. the cell of virus introduction,
and the corners of the grid. This enabled us to numeric-
ally calculate an effective speed of the virus spread. We
calibrated the diffusion coefficient (D) and the initial
conditions (SH000 and SV0) to have an effective speed of
the virus spread similar to the estimated velocity by Pioz
et al. [28], for hypothesis H1 and a maximum of the car-
rying capacity in vectors equals to 107. The theoretical
grid is a 41 × 41 km square, each half-diagonal measur-
ing about 29 km. For hypotheses H3 to H6, peak dates
and local prevalences were studied for comparable cells,
i.e. equidistant and having the same maximum of the
carrying capacity in vectors.

Results
Homogeneous in abundance and distribution of hosts
and vectors (H1)
For the lowest maximum of carrying capacity in vectors
(h1 = 106), there is no epidemic. For the other values
tested, there is an epidemic peak in all grid cells. A larger
maximum of carrying capacity in vectors leads to an earl-
ier peak and a faster speed of virus spread (Figure 5). For
h2 = 107, five days are necessary for the virus to cover the
half-diagonal from the cell of the virus introduction, with
the epidemic peak occurring in the central cell and in the
cells at the end of the half-diagonals at 96 and 101 days re-
spectively after virus introduction. As expected in such a
homogeneous environment, results are identical for the
four half-diagonals. For h3 = 108 and h4 = 109, only two
> 200

> 100

> 50

> 0

Hosts 
b

n the Welsh province of Bala). From yellow to brown, increasing
ds to the cell wherein the primary case occurs.
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and one day, respectively, are necessary for the virus to
cover the half-diagonals, the epidemic peak occurring 36
days (19 days, respectively) after virus introduction. A lar-
ger maximum of carrying capacity in vectors leads to lar-
ger local prevalences (Figure 5). Local prevalences are
almost constant over different cells of the grid and are
worth 78%, 90% and 94% for h2, h3 and h4 respectively.
The total prevalence on the grid over time confirms these
results. A larger maximum of carrying capacity in vectors
leads to an earlier and larger epidemic peak (Figure 6).

Heterogeneous in abundance and distribution of hosts
and homogeneous in abundance and distribution of
vectors (H2)
For all maxima of carrying capacity in vectors (except h1
whatever the density of occupied cells and h2 for a dens-
ity of occupied cells equal to 25%, for which there is no
epidemic) a smaller density of occupied cells leads to a
later epidemic peak and a smaller local prevalence in all
grid cells. For example, for a density of occupied cells
h2 = 107

h4 = 109
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equal to 75% and a maximum carrying capacity of h2,
the epidemic peak was 37 days later than in H1, occur-
ring at day 133 in the central cell and at day 139 in the
cell at the end of the half-diagonal. Indeed, we kept the
total number of hosts on the grid constant, so the num-
ber of hosts per occupied cell increases when the density
of occupied cells decreases. As incidence functions are
frequency dependent for hosts and vectors (Eq. 1), this
increase in the number of hosts per occupied cell has lit-
tle effect on the frequency of infection. However, the
number of unoccupied cells increases, and therefore the
virus transmission slows. The local prevalence is almost
constant in all grid cells but is decreased by 9% com-
pared with H1. For a maximum carrying capacity of h3
and h4, the epidemic peak was respectively 9 and 2 days
later than in H1 (Figure 7). Similarly, the local preva-
lence is decreased by about 2% and 1%, respectively,
compared with H1 (Figure 7).
The total prevalence on the grid over time confirms

these results. A delay of the epidemic is observed as the
density of host-occupied cells decreases. There is also a
decrease of the total prevalence compared with H1
(Figure 6).

Heterogeneous in abundance and distribution of vectors
and homogeneous in abundance and distribution of
hosts (H3, H4)
Hypothesis 3: definition of four subareas
Compared with H1, an epidemic peak is observed in all
grid cells, even for the lowest maximum of carrying cap-
acity, h1 (Figure 8). The further the distance from the
grid centre, the more the epidemic peak is delayed and
the more the local prevalence decreases. For the carrying
capacity h2, the observed epidemic peaks are earlier than
for H1, including in the cell at the end of the half-
diagonal. The local prevalence slightly decreases with
increasing distance from the grid centre, to reach an equi-
librium equal to the observed infection prevalence at the
epidemic peak for H1 (Figure 8). For the two largest max-
ima of carrying capacity in vectors, h3 and h4, the peak
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dates and the local prevalences are similar to H1 results
(Figure 8). This hypothesis highlights the influence of dif-
fusion in each subarea on the diffusion in others.

Hypothesis 4: variable maximum of carrying capacities in
vectors
Compared with H1, an epidemic peak is observed in all
grid cells, even for the lowest maximum of carrying cap-
acity, h1 (Figure 9). However, the peak dates are delayed.
Indeed, epidemic peaks in cells having the same max-
imum of carrying capacity and equidistant ranged be-
tween 96 and 134 days after virus introduction, with no
effect of distance on the peak date, (Figure 3, Figure 9).
Therefore, cells near the introduction cell can be
infected later than cells more distant (Figure 9). While
the distribution of the maximum of carrying capacity in
vectors is random, clusters of peak dates and of local
prevalence arise (Figure 9). The local prevalences vary
between 63% and 82% whatever the maximum of the
carrying capacity and the distance from the introduction
cell (Figure 9). A balance is observed between the peak
dates and the local prevalences (Figure 9).
The total prevalence on the grid over time confirms

these results. A delay of the epidemic and a decrease in
the total prevalence are observed compared with H1
(Figure 10).

Heterogeneous in abundance and distribution of hosts
and vectors (H5, H6)
Hypothesis 5: theoretical landscape
As for H2, although later, peak dates are delayed as the
density of host-occupied cells decreases (Figure 11).
Likewise, the local prevalence decreases when the density
of occupied cells in hosts decreases. However, for a density
of occupied cells equal to 25%, there is no epidemic; and
for a density of occupied cells equal to 50%, the epidemic
is small. By comparison with H2 and H4, the same tenden-
cies are observed, with a delay in peak dates and a decrease
in local prevalences. The distance has no effect on the peak
date, unlike the maximum of carrying capacity in vectors.
By comparing the distribution of the maximum of carrying
capacity in vectors (Figure 3) with the peak dates and the
local prevalences (Figure 11), a balance is observed. Cells
with the highest maximum of carrying capacity have an
earlier peak date and a larger local prevalence, and vice
versa for cells with the lowest maximum of carrying cap-
acity. This is true whatever the distance to the primary
case.
The total prevalence on the grid over time confirms

these results. A delay in the epidemic is observed as the
density of host-occupied cells decreases, as well as a de-
crease in the total prevalence compared with H1 (Figure 7,
Figure 10). A balance is observed between H2-H5 and
H4-H5. As for H2 and for a maximum of carrying
capacity in vectors of h2, the lower the density of host-
occupied cells, the longer the peak date is delayed and
the lower is the total prevalence (Figure 7, Figure 10).
However, the total prevalence for the highest density of
occupied cells is similar with hypothesis H4 (Figure 10).
Therefore, as soon as the distribution and the abundance
of vectors are heterogeneous, they strongly influence the
global epidemic dynamics.

Hypothesis 6: application to a real landscape
As in the theoretical case, for realistic distribution and
abundance of hosts and vectors on a grid, the peak dates
and the local prevalences are affected by the maximum of
the carrying capacity in vectors in each cell (Figure 12).
For roughly equal numbers of hosts and for a high max-
imum of carrying capacity in vectors (compared to other
cells) (cells: A3 and F1, Figure 4), the peak dates and the
local prevalences are close (e.g. cells A3 and F1; Figure 12).
On the contrary, for roughly equal number of hosts but
different maximum of carrying capacity in vectors (e.g.
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cells C4 and C5; Figure 4), cells with the highest max-
imum of carrying capacity in vectors have an earlier peak
date and a higher local prevalence (e.g. cells C4 and C5;
Figure 12). These trends are observed even if the observed
number of vectors is multiplied by 100 or 1000, although
the peak dates are earlier and the local prevalences higher.
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Figure 10 Total prevalence over time. In green results when
hypothesis H1 holds (same curves as in Figure 6, given here to help
for comparison among hypotheses); solid lines correspond to a
maximum carrying capacity in vectors given by h4 = 109, dashed
lines correspond to a maximum carrying capacity in vectors given
by h3 = 108, dotted lines correspond to a maximum carrying
capacity in vectors given by h2 = 107. In thick black results when
hypothesis H4 holds, in black results when hypothesis H5 holds;
solid lines correspond to the case where 90% of cells are occupied,
dashed lines correspond to the case where 75% of cells are
occupied, dashed-dotted lines correspond to the case where 50% of
cells are occupied and dotted lines correspond to the case where
25% of cells are occupied.
Indeed, in our mathematical model, multiplying the ob-
served number of vectors by 100 or 1000 is equivalent to
multiplying the maximum carrying capacity of vectors in
each cell; that is, to divide kV by 100 or 1000 in Eq. 1. This
has a scaling effect on the model: it does not modify the
time periodicity in the population dynamics, but it does
change the abundance of vectors. This causes an earlier
increase in the number of available infectious vectors and,
therefore, the peak dates occur earlier together with higher
local prevalences.
In addition, the number of hosts in each cell has an

impact on the peak date and the local prevalence. For
equidistant cells having the same maximum of the carry-
ing capacity in vectors (e.g. cells A2 and C1; Figure 4a),
the cell having the largest number of hosts (C1) shows a
later peak date and a lower local prevalence than the cell
having the lowest number of hosts (A2; Figure 12).

Discussion
A mathematical modelling approach allowed us to assess
the impact of spatiotemporal heterogeneities in abundance
and distribution of hosts and vectors on the spatiotempo-
ral spread of BTV8. Individually and jointly, the heteroge-
neities in abundance and distribution of hosts and vectors
delay the peak date and decrease the total infection preva-
lence. The different hypotheses of heterogeneity that we
have tested allowed us to highlight the importance of the
maximum of the carrying capacity in vectors and its influ-
ence on the spread of BTV8 within each cell. Indeed, cells
next to the primary case can become infected later than
more distant cells, if the maximum of carrying capacity is



Charron et al. Veterinary Research 2013, 44:44 Page 10 of 12
http://www.veterinaryresearch.org/content/44/1/44
lower. Moreover, the density of cells occupied by hosts
plays an important role in cases where the maximum car-
rying capacity in vectors is low (for homogeneous condi-
tions for vectors) and when hosts and vectors are
heterogeneous.
The spatial heterogeneity in host and/or vector abun-

dances influences the infection frequency [7,17,29]. In our
study, a decrease in the density of cells occupied by hosts
results in a delay of the peak date and a decrease in the in-
fection prevalence if vectors are homogeneously distrib-
uted and their population is large. In the case where hosts
are homogeneously distributed, the same trend is observed
for cells where the maximum of carrying capacity in vec-
tors is large. However, for cells where this maximum is the
lowest, an epidemic can occur, in contrast to the case with
homogeneous vector and host populations. The coupling
of heterogeneities in hosts and vectors increases the delay
of the epidemic and decreases the prevalence.
Different models of the spatial spread of bluetongue

have previously been published for specific geographic
areas [21-24]. Szmaragd’s model describes the BTV spread
within and between farms in Great Britain via a generic
kernel, which includes both animal and vector move-
ments. Ducheyne’s model was calibrated with data from
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Figure 11 Spatial distribution of peak dates and prevalence.
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to the cell wherein the primary case occurs; rounds correspond to
cells having the same maximum carrying capacity. From yellow to
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the BTV1 and BTV8 epidemics in Southern France. It de-
scribes the spatiotemporal BTV spread between farms as-
suming that the number of new cases per week is half
attributable to local dispersion (active) of vectors, and half
to long-distance dispersion (passive) of vectors by the
wind. Graesboll’s model describes the BTV spread with a
high spatial resolution, which includes both animal and
vector movements and the seasonality of vectors. Turner’s
model is a network model. It takes into account explicitly
the spatial dispersal of both hosts and vectors and a sea-
sonal vector to host ratio [24]. It studies the BTV spread
between farms in England. Taking into account climatic
and environmental data, all of these models consider the
spatial heterogeneity of the landscape. Our model ad-
vances the field by representing spatial heterogeneity in
both hosts and vectors. Here, we highlighted how such
heterogeneities concretely impact BTV spread. Moreover,
the seasonality of the vector population is managed by a
simple function that can be easily related to observed data
of vector abundance.
We chose to model the spatiotemporal BTV8 spread by

a reaction–diffusion model. Several shapes of the trans-
mission kernel are possible, but it is difficult to choose the
most appropriate one to describe the dynamics of a patho-
gen spread. Indeed, Szmaragd et al. showed that a Gauss-
ian kernel was the most appropriate to describe the BTV8
spread in northern Europe during 2006 [21]. If this kernel
shape, comparable to reaction diffusion models, has been
shown to underestimate the probability of the long-
distance transmission, and thus is not appropriate to de-
scribe the pathogen spread on a larger scale [30], it can be
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a real area. When hypothesis H6 holds. Multiplication of the
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corresponds to the cell wherein the primary case occurs. From
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used on a smaller scale. Graesboll et al. used a Gaussian
kernel too, but coupled this approach with the wind dis-
persion [23]. In our study, the theoretical spatial domain is
a 41 × 41 km square. The primary case is always located
in the centre of the square, i.e. at 29 km from the domain
edges. One limitation is that long-distance dispersal has
been neglected; the wind dispersal responsible for the pas-
sive movements of vectors generating dispersal up to sev-
eral hundred kilometres [31,32]. Coupling short and long-
distance dispersal is necessary to study arbovirus spread in
animal populations once the spatial scale is large enough
that host movements and passive movements of vectors
cannot be neglected anymore [33-35].
Observational studies have been conducted to assess

risk areas and to predict the spatiotemporal spread of
BTV in BTV-free areas [11,36,37]. These studies have
shown that the landscape heterogeneity, climatic condi-
tions, the distribution and the density of host populations
and the abundance of vectors were linked and influenced
BTV spatiotemporal spread. Our model highlights similar
findings but also allows us to distinguish between the im-
pact of vector versus host heterogeneity. Maps of the basic
reproduction number have highlighted the link between
vector abundance and BTV spread [12]. However, the vec-
tor abundance is difficult to quantify. Hartemink et al.
have used trapping data, multiplying the number of
trapped Culicoides by 100 to obtain a local density of vec-
tors [12]. Our real geographic area illustrates these differ-
ences in local abundance. On a small scale, large
differences may exist between cells, whether they are oc-
cupied by hosts or not. Entomological studies identify and
quantify the different vector species present in different
geographic locations [9,10,38]. However, the real number
of vectors remains difficult to approximate. As shown in
our results, the abundance in vectors has a significant im-
pact on the date and on the observed prevalence at the
epidemic peak. However, by multiplying the number of
vectors by 100 or 1000, we obtained the same qualitative
findings on the real geographic area.
Modelling is a relevant approach to investigate the

concept of spatiotemporal heterogeneities on the dy-
namics of virus spread. The distribution of hosts and
vectors, and vector abundance strongly influence the
dynamics of BTV spread. The application of our model
on a real geographic area, although of limited size,
allowed us to illustrate the conclusions drawn from a
theoretical domain. The reaction–diffusion models are
classically used in plant epidemiology [39-41], with the
modelled movements generally being for highly volatile
entities, and the short versus long-distance movements
being taken into account via different diffusion coeffi-
cients [40,42]. Although developed to represent BTV8
spatiotemporal spread at a local to regional scale, our
model can be used to study other vector-borne
diseases of animals and its extension to a larger area
remains possible.
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