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Abstract 40 

The duration of observation at a site of interest is generally too low to reliably estimate 41 

marine extremes. Regional frequency analysis (RFA), by exploiting the similarity between 42 

sites, can help to reduce uncertainties inherent to local analyses. Extreme observations in a 43 

homogeneous region are especially assumed to follow a common regional distribution, up to a 44 

local index. The regional pooling method, by gathering observations from different sites into 45 

a regional sample, can be employed to estimate the regional distribution. However, such a 46 

procedure may be highly affected by intersite dependence in the regional sample. This paper 47 

derives a theoretical model of intersite dependence, dedicated to the regional pooling method 48 

in a “peaks over threshold” framework. This model expresses the tendency of sites to display 49 

a similar behavior during a storm generating extreme observations, by describing both the 50 

storm propagation in the region and the storm intensity. The proposed model allows the 51 

assessment of i) the regional effective duration of the regional sample and ii) different 52 

regional hazards, e.g., return periods of storms. An application to the estimation of extreme 53 

significant wave heights from the numerical sea-state database ANEMOC-2 is provided, 54 

where different patterns of regional dependence are highlighted.  55 

Keywords: regional frequency analysis, pooling, intersite dependence, extremes, significant 56 

wave heights 57 
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1 Introduction  63 

The design of off-shore structures, or coastal protections preventing shoreline areas 64 

from marine flooding, particularly requires an accurate estimation of the probability of 65 

occurrence of extreme marine events (e.g., extreme storm surges or wave heights). High 66 

return levels can be inferred through a local statistical analysis of extremes, from a time series 67 

observed at a given site. However, a potential issue is the local duration of observation, 68 

generally too low to accurately estimate return levels of interest. For example, wave records 69 

from buoys are usually shorter than 20-30 years. 70 

Regional frequency analysis (RFA) can help to reduce these uncertainties, by 71 

exploiting the information shared by similar sites in a region. When based on the index-flood 72 

method [Dalrymple, 1960], RFA assumes that extreme observations in a homogeneous region 73 

follow a common regional probability distribution, up to a local index representing the local 74 

specificities of each site.  75 

A possible approach to estimate the parameters of the regional distribution is the 76 

regional pooling method [Bernardara et al., 2011]. The principle is to pool the data 77 

normalized by the local index in a single regional sample, the latter being used to fit the 78 

regional distribution. This method is also referred to as the station-year method [Buishand, 79 

1991] and illustrates the principle of “trading space for time”. However, it assumes intersite 80 

independence [Cunnane, 1988; Madsen and Rosbjerg, 1997; Stewart et al., 1999], which 81 

cannot be deemed realistic: indeed, for example, a storm is likely to generate dependent 82 

extremes at different sites. Thus, Dales and Reed [1989] and Stewart et al. [1999] questioned 83 

the relevance of regional pooling when intersite dependence is ignored, and showed its 84 

approximate nature.  Intersite dependence in regional pooling is actually closely related to the 85 

concept of regional effective duration [Bernardara et al., 2011].  86 



The regional effective duration, denoted by Deff, can be defined as the effective 87 

duration of observation of the regional sample filtered of any intersite dependence. For 88 

example, if the times series recorded in different sites from a given region are considered 89 

independent, pooling data from 10 sites, each having 30 years of observation, is equivalent to 90 

sample 300 years of “effective duration”. This is not the case in the presence of intersite 91 

dependence. At the same time, the highest independent normalized observation in the region 92 

is viewed as the largest in Deff years of record. It can be used to both reflect the relevance of 93 

RFA to a local analysis and to estimate empirical regional return periods. However, 94 

Kergadallan [2013] pointed out that one limitation of RFA is the difficulty to evaluate Deff. 95 

As an illustration, most of regional pooling studies are based on a simplifying hypothesis. For 96 

example, Hjalimarsom and Thomas [1992], Bernardara et al. [2011] and Bardet et al. [2011] 97 

assumed Deff as the sum of all the local durations, hence assuming intersite independency. 98 

Dalrymple [1958] expressed that records cannot be expanded to yield an effective duration 99 

equal to the sum of local durations. In this work, it is conversely assumed that Deff can be 100 

formulated as the typical local duration, implicitly considering perfect intersite dependence. 101 

The actual value is likely to lie between these two extreme cases. A realistic estimation of Deff 102 

requires a proper characterization of intersite dependence.  103 

A consequence of intersite dependence is a loss of information [Reed, 1994]. For 104 

example, when a storm impacts several sites, there is redundancy of information because 105 

observed extremes stem from the same meteorological event. Several studies assessed the 106 

effects of intersite dependence in the framework of RFA. For example, the effective size of 107 

samples is reduced [Bayazit and Önöz, 2004; Buishand, 1991; Kjeldsen and Rosbjerg, 2002; 108 

Madsen and Rosbjerg, 1997; Rosbjerg and Madsen, 1996]. Castellarin et al. [2008] also 109 

observed a decrease of the power of the homogeneity test proposed by Hosking and Wallis 110 

[1993]. Stedinger [1983], Hosking and Wallis [1988] and Rosbjerg and Madsen [1996] 111 



showed that ignoring intersite dependence in RFA leads to an underestimation of the variance 112 

of return levels estimates. When at-site distributions are the main interest, Smith [1990] 113 

suggests to initially ignore intersite dependence and then correcting a posteriori the regional 114 

variance.  115 

A simple way to take into account intersite dependence is to remove it. Some authors 116 

proposed its filtering through a spatial declustering procedure, where events impacting several 117 

sites are counted only once. To estimate extreme surges with RFA, Bernardara et al. [2011] 118 

and Bardet et al. [2011] formed the regional sample with the highest observations among 119 

extremes occurring within 72 hours in the study area. However, the major disadvantage of 120 

such an approach is a significant loss of information on the spatial dynamics of extremes 121 

generated by a single storm. Moreover, this approach does not introduce any technique to 122 

estimate Deff
.. 123 

Intersite dependence can also be modeled. Cooley et al. [2012] and Bernard et al. 124 

[2013] deplored the lack of an explicit modeling of intersite dependence for RFA. 125 

Nevertheless, Renard and Lang [2007] and Renard [2011] represented the dependence of 126 

extreme rainfalls at different sites with elliptical copulas. Extremes at two different sites were 127 

also regionally modeled by Buishand [1984], through bivariate extreme value theory. An 128 

alternative approach, dedicated to annual maxima, was proposed by Dales and Reed [1989]; it 129 

links distributions of the regional maximum and the typical regional data through an effective 130 

number of independent sites.  131 

Most of the papers cited above analyzed series of annual maxima. Yet, an alternative 132 

way is to consider exceedances over a high threshold with the “peaks over threshold” (POT) 133 

method [Davison and Smith, 1990]. Its superiority over methods based on annual maxima, for 134 

both local and regional estimation of extremes, was demonstrated by Madsen et al. [1997a], 135 

Madsen et al. [1997b] and Arns et al. [2013]. Besides, the POT framework is more physically 136 



appealing to handle intersite dependence. For annual maxima, this one is characterized on a 137 

yearly basis, and may thus be difficult to interpret: for example, series of annual maxima 138 

observed at two distinct sites can be highly statistically correlated, without necessarily being 139 

caused by the same meteorological phenomena. Conversely, the POT framework allows 140 

reasoning at the scale of the physical event, provided that the concurrence of observations at 141 

different sites can be carefully defined [Mikkelsen et al., 1996; Stewart et al., 1999]. In 142 

particular, storms generating extreme observations offer an intuitive framework to deal with 143 

intersite dependence in a POT approach. Weiss et al. [2014] characterized storms through the 144 

gathering of extremes neighbors in space and time, and described a procedure to detect them 145 

in the context of marine extremes. These storms allow to naturally define the concurrence of 146 

observations at the scale of the physical event. 147 

Thus, very few studies addressed the issue of intersite dependence for RFA in a POT 148 

framework. Roth et al. [2012] used the model of Dales and Reed [1989] by grouping POT 149 

data into seasonal blocks. It can be argued, that defining the concurrence of observations 150 

through a wide temporal block (the season) may result in a loss of information on both the 151 

spatial coverage and the intensity of the physical events generating extremes. Mikkelsen et al. 152 

[1996], Rosbjerg and Madsen [1996], Madsen and Rosbjerg [1998] and Madsen et al. [2002] 153 

proposed regional regression models, which are not based on the index-flood procedure used 154 

in this paper. Similar to geostatistics, their models explicitly account for intersite correlation, 155 

where the concurrence of observations is defined through the overlap of POT data in a short 156 

time window. Madsen and Rosbjerg [1997] corrected the variance of the regional distribution 157 

parameters with an effective number of independent sites, based on a regional average 158 

correlation coefficient. However, in the latter references, although the concurrence of 159 

observations is defined in a physically appealing way, only the pairwise dependence is 160 

modeled. Moving towards a more global model of intersite dependence indicating, for 161 



example, the tendency of sites in a region to behave similarly during a storm, would help to 162 

characterize different regional hazards.  163 

The estimation of extreme events by RFA allows to tackle the open question of the 164 

difference between regional and local return period. In particular, note that to estimate the 165 

return period of a storm affecting a given area, synoptic variables are usually defined first. 166 

Della-Marta and Pinto [2009] characterized a storm by the minimum central pressure and the 167 

maximum vorticity reached during its track; Pinto et al. [2012] used the wind speed 168 

maximum; a more general spatial index, reflecting both the magnitude and the spatial extent, 169 

was defined by Della-Marta et al. [2009], who then estimated the return period from these 170 

synoptic variables. By construction, such an estimate corresponds to a “regional” return 171 

period, namely the return period of a storm which can occur anywhere in the study area. 172 

However, for practical applications (e.g., protection design), a local return period must be 173 

estimated. For example, it is clear that a storm whose regional return period is 50 years will 174 

not generate everywhere in the area wave heights (or storm surges) corresponding to a 50-175 

year return period. In particular, the link between the regional return period of a storm and the 176 

return period of a given observed variable generated by the storm at a particular location 177 

remains unknown. Note that Della-Marta et al. [2009] showed that regional return periods 178 

share up to about half of the variability of the local return periods. In this study, we will show 179 

how a proper treatment of intersite dependence can help to describe the relation between the 180 

regional and the local return period of a storm. 181 

The objective of this paper is to develop a global model of intersite dependence for 182 

RFA, specifically dedicated to the regional pooling method and POT data, by reasoning at the 183 

storm scale. Distributions of the regional storm maximum and the typical regional storm data 184 

are linked through a function of regional dependence, describing both the propagation of 185 



storms and their regional intensity. The proposed model allows the derivation of different 186 

regional hazards and the regional effective duration.  187 

The model of regional dependence is developed in section 2, including its implications 188 

on the regional pooling method (section 2.4). An application to the estimation of extreme 189 

significant wave heights from the numerical database ANEMOC-2 is shown in section 3. 190 

2 Methodology  191 

2.1 Extraction of storms 192 

To characterize the intersite dependence, it is first necessary to define the simultaneity 193 

of observations in space. If data are sampled every hour, the reference for simultaneity can be, 194 

for example, the hourly scale. However, as extreme oceano-meteorological conditions can last 195 

from several hours to several days, the temporal dimension should be added to describe the 196 

spatial dependence. In this paper, the scale of the physical events generating marine extremes 197 

(storms) is taken as the reference to define the simultaneity of observations in space. 198 

A storm is thus directly characterized through the variable of interest (e.g., wave 199 

height or storm surge), being defined as a physical event generating marine extremes in at 200 

least one site in the study area. In the literature, the tracking of storms often relies on a nearest-201 

neighbor search in space and time [e.g., Leckebusch et al., 2008; Renggli et al., 2010]. A spatio-202 

temporal declustering procedure is thus employed to detect storms and to reflect their 203 

propagation in space and time. In particular, extremes neighbors in space and time are 204 

supposed to stem from the same storm. The storm extraction algorithm in the context of 205 

marine extremes is described in Weiss et al. [2014], trying to reproduce at best the physical 206 

dynamics of the storms, while taking into account the spatio-temporal resolution of 207 

observations. Moreover, a “double-threshold” approach is employed to separate physical 208 

considerations from statistical ones [Bernardara et al., 2014]. 209 



At a given site, the impact of a storm is characterized by observations exceeding the 210 

“physical threshold” qp, defined as the p-quantile of the initial time series, with p close to 1. In 211 

order to get independent data at site scale, only the peak value i
sW  is retained to summarize 212 

the storm s at site i (which implies that all other extremes occurring during that storm are 213 

discarded).  214 

Only the most intense storm events are now considered for statistical aspects. New 215 

thresholds, denoted u and higher than the quantiles qp, are selected corresponding to the 216 

occurrence of λ storms per year on average at each site. In particular, if di years of data are 217 

available at site i, the ni = λdi highest i
sW  are retained to form the ni-sample i

sX . The 218 

“statistical threshold” ui, exceeded on average λ times per year, is then defined as the smallest 219 

observation from i
sX  (minus an infinitesimal quantity). Storms are then statistically redefined: 220 

if site i was impacted by storm s, it is from now on impacted by s if and only if ui is exceeded. 221 

2.2 Regional frequency analysis 222 

Extreme events are estimated in this paper from exceedances over a high threshold. 223 

According to Pickands [1975], the Generalized Pareto Distribution (GPD) represents the 224 

natural distribution for such exceedances. For ease of notation, the index s denoting the storm 225 

is omitted in this section. For site i, let ui be the storm threshold which is exceeded on average 226 

λ times per year. The ni-sample Xi, denoting the exceedances of ui, is assumed to be drawn 227 

from a GPD: Xi ~ GPD(ui, αi, ki), where αi > 0 and ki are, respectively, a scale and a shape 228 

parameter. In particular, the p-quantile of Xi is: 229 
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The right tail of the GPD is bounded when ki < 0, and unbounded when ki ≥ 0. The T-year 230 

return level, i.e., the value exceeded on average once every T years, is given by i Tλx 1–1  231 

[Rosbjerg, 1985].  232 

A homogeneity hypothesis is required for RFA based on the index-flood method. 233 

Observations from sites coming from a homogeneous region are supposed to follow the same 234 

regional probability distribution, up to a local index representing the local specificities of a 235 

site. In this paper, homogeneous regions are formed following Weiss et al. [2014], where 236 

typical storm footprints are identified with a clustering algorithm based on a criterion of storm 237 

propagation. In particular, sites from a given region are likely to be impacted by the same 238 

storms, and any storm impacting a region is likely to remain enclosed in this region. 239 

For a homogenous region of N sites, let ȝi be the local index of the site i = 1,…,N.  The 240 

normalized variable Y = Xi / ȝi is supposed to be independent of i, with cumulative distribution 241 

function (c.d.f.) Fr. Roth et al. [2012] showed that dealing with exceedances over a high 242 

threshold necessarily implies that the local index has to be a multiple of this threshold. Here, 243 

as in Roth et al. [2012] and Weiss et al. [2014], ȝi is therefore chosen as the threshold ui. This 244 

implies that Y ~ GPD(1, Ȗ, k), where: i) the regional scale parameter satisfies Ȗ = αi / ui and ii) 245 

the shape parameter ki =  k is constant over the region. From these relationships, Xi ~ GPD(ui, 246 

Ȗui, k). For site i, the T-year return level is obtained by multiplying the regional T-year return 247 

level by the local index: Tλi
i

Tλ yux 1–11–1 = . 248 

The two regional parameters (Ȗ, k) can be estimated with the regional pooling method. 249 

However, as sites in a region are likely to be impacted by the same storms, a strong intersite 250 

dependence is expected. If ignored, this may affect the estimation process. Thus, this 251 

dependence is firstly modeled as outlined in section 2.3, before the regional pooling method is 252 

described in section 2.4. 253 



2.3 Modeling of regional dependence 254 

2.3.1 Notations 255 

Let λr be the mean annual number of storms in the region andi
sZ  the Bernoulli variable 256 

which is 1 if storm s impacts site i and 0 otherwise. When storm s impacts site i, the observed 257 

normalized extreme with c.d.f. Fr is denoted by i
i
s

i
s uXY /= . Note that i

sY ≥ 1. The storm s can 258 

be summarized in the region by the multivariate random variable ),...,(= 1 N
sss ηηη , where 259 

i
s

i
s

i
s ZYη = . The storm regional maximum is then defined as i

s
Ni

s ηM
,..,1=

max= . As at least one site 260 

is impacted by the storm s, M s ≥ 1. 261 

2.3.2 Distribution of the storm regional maximum 262 

First, note that due to the statistical redefinition of storms at the end of section 2.1, i
sZ  263 

takes the value 1 with probability λ / λr, independently of i. Moreover, by the regional 264 

homogeneity hypothesis from section 2.2, the distribution of i
sη  does not depend on i:  265 
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For x ≥ 1, the distribution of M s can be obtained through the following decomposition:  266 
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Now, as the distribution of i
sη  is independent of i: 267 
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From (2), this leads to:  268 
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The distribution of Ms can be thus written in terms of the regional distribution Fr and φ.  270 

2.3.3 Characterization of the regional dependence 271 

 The function φ reflects the regional dependence. Situations of independence and 272 

perfect dependence, illustrating extreme cases of dependence, can be reinterpreted through 273 

equation (6) with x = 1. In particular, the region is regional-independent (r −⫫) if and only if 274 

φ ≡ N; in that case, a storm impacts only one site in the region, whatever its intensity. 275 

Conversely, the region is perfectly regional-dependent (p−rd) if and only if φ ≡ 1; a storm 276 

impacts every site in the region and, whatever its intensity, the generated (normalized) 277 

extremes vary the same way. Between these two extremal situations, φ takes values between 1 278 

and N.  279 

By construction, φ relates both the storm propagation in the region and the storm 280 

intensity. It expresses the tendency of sites to display a similar behavior during a storm. The 281 

regional dependence is stronger when φ is small, hence indicating that most of the sites are 282 

impacted by a storm, and are likely to react the same way in terms of normalized extremes.  283 

φ is influenced by the number N of sites in the region. In order to compare φ between 284 

different regions, the effect of N can be removed through the following adimensional 285 

function:  286 
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where Φ, lying between 0 and 1, is near to 1 when regional dependence is strong.  287 



2.3.4 Assessment of regional hazards 288 

A regional hazard is an event occurring at the regional scale, whose probabilistic 289 

description is related to collective risk assessment. The following examples of regional 290 

hazards are expressed in terms of the function of regional dependence φ.   291 

A first example is the mean number βs(x) of impacted sites with normalized intensity 292 

larger than x ≥ 1 when the storm regional maximum is larger than x:  293 
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From equation (5):  294 
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In particular, the mean number of impacted sites during any storm is given by βs(1) = N / φ(1). 295 

Note that this is coherent with the definitions of regional-independence and perfect regional-296 

dependence.  297 

Another example is the evaluation of the regional return period of a particular storm, 298 

and how it is related to its local return period. Let s be a given storm, and denote by x ≥ 1 its 299 

corresponding normalized intensity. The regional return period of s, Tr, is defined as the 300 

average time between storms impacting at least one site in the region with a normalized 301 

intensity greater than x, i.e.:  302 

 
)>(

1
=

xMPλ
T

sr
r  (10)   

The local return period of s, T, is defined as the average time between storms 303 

impacting a given site in the region with a normalized intensity greater than x:  304 
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From (5), Tr and T are related through:  305 



 
)(

=
xφ

T
Tr  (12)   

2.4 Regional pooling method  306 

2.4.1 Construction of the regional sample  307 

The regional pooling method is used to estimate the regional distribution Fr. However, 308 

due to the presence of intersite dependence, events impacting several sites must be counted 309 

only once. Storms presented in section 2.1 are a convenient way to filter intersite dependence, 310 

as each storm describes the regional footprint of a particular event generating extremes.  311 

In particular, the distribution of the storm regional maximum Ms is now assumed to be 312 

the same as the regional distribution Fr. This assumption was implicitly made in Bernardara 313 

et al. [2011] and Bardet et al. [2011], where the regional distribution was estimated from the 314 

highest normalized surges occurred within 72 hours in the region. In other words, the 315 

distribution of the maximum of a regional cluster is identical to the distribution of a generic 316 

element of this cluster. The same assumption is often made in a POT time series framework, 317 

as explained by Anderson in the discussion of the paper by Davison and Smith [1990]:  “this 318 

apparent paradox is a consequence of length-biased sampling: a randomly chosen 319 

exceedance has a disproportionate chance of coming from a large cluster, and in large 320 

clusters there tend to be large excesses.” However, in practice, the validity of this assumption 321 

must be verified. For example, the two-sample Anderson-Darling test [Scholz and Stephens, 322 

1987] can be performed at each site i to evaluate the null hypothesis that i
sY  and Ms have the 323 

same distribution.  324 

If nr independent storms are observed in the region, the regional sample is thus formed 325 

by the nr-sample of storm regional maxima Ms, and corresponds to Deff years of regional 326 

effective duration.  327 



The assumption that the storm regional maximum Ms is the same as the regional 328 

distribution Fr depends on the data at hand. When this hypothesis is not verified, the 329 

following alternative strategies nevertheless allow to perform a RFA:  330 

i) Remove sites of which Anderson-Darling p-values are too low (for example, lower 331 

than 0.01) to accept this hypothesis. The application of the model of regional 332 

dependence and the estimation of Fr can then be performed on the remaining sites. 333 

ii)  Form the regional sample with random (normalized) observations from each storm, 334 

instead of using the storm regional maxima Ms. Fr can still be estimated by pooling, 335 

directly from this new regional sample. However, the simplified model of 336 

dependence (section 2.4.3) is not valid anymore, as φ is not a constant function. It 337 

would be possible to update equation (14) by letting the regional effective duration 338 

depend on regional quantiles.  339 

iii)  Use another method to perform the RFA, e.g., the regional L-moments method of 340 

Hosking and Wallis [1997]. The model of regional dependence developed in this 341 

paper, dedicated to the pooling method, does not apply anymore in this case. 342 

2.4.2 Estimation of the regional distribution Fr. 343 

The two regional parameters (Ȗ, k), see section 2.2, are estimated from the regional 344 

sample. Penalized maximum likelihood estimation (PMLE) [Coles and Dixon, 1999] is used 345 

in this study. The principle is to combine the efficiency of maximum likelihood estimators for 346 

large sample sizes and the reliability of the probability weighted moment estimators for small 347 

sample sizes. In particular, high estimates of the shape parameter k are penalized. PMLE is 348 

implemented in the function fitgpd of the POT package [Ribatet, 2007], in the statistical 349 

computing environment R (R Development Core Team, 2013). Uncertainties on estimates of 350 

(Ȗ, k) are here assessed with a bootstrap procedure: 10,000 replications of the (Ȗ, k) values are 351 

obtained with PMLE from resamples of the regional sample.  352 



2.4.3 Simplification of the model of regional dependence 353 

The regional pooling method presented in this paper assumes that the distribution of 354 

the storm regional maximum Ms is the same as the regional distribution Fr. The model of 355 

regional dependence in section 2.3 can thus be simplified. Indeed, from (5), this assumption 356 

implies that φ becomes a constant function:  357 
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As φ is constant, the way sites react during a storm does not depend on the intensity of the 358 

storm.  Similarly, Dales and Reed [1989] applied their model to rainfall annual maxima and 359 

observed that the effective number of sites, summarizing the spatial dependence, did not seem 360 

to depend on a particular regional intensity.  361 

2.4.4 The regional effective duration Deff 362 

The pooling procedure yields Deff years of regional effective duration. Deff is closely 363 

related to the degree of regional dependence; in particular, Deff is expected to be low when 364 

regional dependence is strong.  365 

First, the two simplistic situations of regional dependence (section 2.3.3) are 366 

considered. Let d  = ∑di / N be the mean local duration, where di is the local duration of 367 

observation at site i and N is the number of sites in the region. If the region is r −⫫, a storm 368 

impacts only one site in the region. In that case, each observation from any site brings new 369 

information, and Deff can be written as the sum of all the local durations: Deff  = Nd . 370 

Conversely, if the region is p−rd, a storm impacts every site in the region. Here, the typical 371 

local duration of one site constitutes Deff, as the information from other sites is purely 372 

redundant. This can be reflected by taking, for example, Deff as the mean local duration: Deff  = 373 

d . It is now assumed that, between these two extremal cases, Deff can be more realistically 374 

expressed by:   375 



 Deff  = φ d  (14)   

where φ, lying between 1 and N, is the degree of regional dependence. Note that the situations 376 

of p−rd and r −⫫ are respectively obtained for φ = 1 and φ = N. From equation (13), stating 377 

that φ = λr / λ, its theoretical value is Deff  = λr d  / λ. 378 

The mean annual number of storms in the region λr can be naturally estimated by nr /379 

d , where nr is the number of observed storms. An estimate of Deff is then:  380 

 
λ
n

D r
eff =ˆ  (15)   

Let nr,t be the number of observed storms during year t = t1,…,tĲ in the region, where t1 and tĲ 381 

indicate the first and the last year of observation in the region, respectively. The overall 382 

number of observed storms nr is obtained by summing the nr,t for t = t1,…,tĲ. By assuming that 383 

the nr,t are independent and identically distributed with common mean λr and standard 384 

deviation ır, the central limit theorem followed by the Slutsky’s lemma allow to derive new 385 

confidence intervals for Deff :  386 
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where 2/–1 αz  is the quantile of order 1−α/2 of the standard normal distribution, rı̂  is the 387 

empirical standard deviation of the nr,t, and Ĳ is the number of years of observation in the 388 

region. 389 

Note that (15) can be used even if periods of observations are different, and in the 390 

presence of missing data. This formula also guarantees that i
Ni

eff dD
,..,1=

max˻ˆ , coherently with 391 

what might be expected from the regional effective duration. Besides, it reflects the 392 

importance to extract storms such that their mean annual occurrence λ at the local scale is 393 

common to all sites. 394 



As Fr is estimated from Deff years of pooled data, the underlying principle is that any 395 

site in the region can be indifferently impacted by a given storm. Parenthetically, with no 396 

preferential storm track in the region, the regional pooling method is coherent with the 397 

identification of storms footprints to form homogeneous regions. In particular, the regional 398 

sample illustrates that, for a generic site, λ storms per year, on average, were observed during 399 

Deff years. Deff thus helps to reflect the relevance of RFA to a local analysis. Indeed, pooling 400 

enables to estimate extreme events at site i from Deff years of data, compared to di years for a 401 

local analysis.  402 

2.4.5 Evaluation of storm return periods 403 

The regional pooling method allows to distinguish between local and regional return 404 

periods of normalized storm events (see section 2.3.4 for the corresponding definitions), both 405 

at the empirical and theoretical levels. Let s be a given storm from the regional sample, and 406 

denote by x its corresponding normalized intensity.  407 

Using the Weibull plotting position, its empirical local return period locsT ,
~

 is: 408 
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where rank(s) denotes the rank of s in the regional sample. For example, if  s is the most 409 

intense storm observed in the regional sample, then locsT ,
~

 is about Deff years. Besides, the 410 

theoretical local return period locsT ,  of s is given by equation (11). We recall that locsT ,  411 

corresponds to the theoretical return period of storm s at site scale (i.e., at any site of the 412 

region). Using (12) and (13), the theoretical regional return period regsT ,  is given by:  413 

 locs
r

regs T
λ
λ

T ,, =  (18)   

The empirical regional return period regsT ,
~

is linked with locsT ,
~

 through a similar relation. 414 



3 Application 415 

3.1 Data used 416 

ANEMOC-2 (Atlas Numérique d’États de Mer Océaniques et Côtiers - Numerical 417 

Atlas of Oceanic and Coastal Sea states) is a numerical sea-state hindcast database covering 418 

the Atlantic Ocean over the period 1979-2009 (31 years). It has been developed at Saint-419 

Venant Laboratory for Hydraulics and EDF R&D LNHE [Laugel, 2013]. The simulations of 420 

wave conditions have been carried out with the third-generation spectral wave model 421 

TOMAWAC [Benoit et al., 1996] forced by wind fields from the CFSR reanalysis database 422 

[Saha et al., 2010]. 423 

The spatial resolution of the so-called “oceanic mesh” of ANEMOC-2 ranges from 424 

about 120 km over the Northern part of the Atlantic Ocean down to about 20 km along the 425 

European coast and 10 km along the French coast. Note this grid is supplemented by a 426 

“coastal mesh” whose resolution is finer on the continental shelf, in the Channel and along the 427 

French coast. For the present study, however, only data from the oceanic mesh is used, and 428 

only a subset of 1847 nodes amongst the 13426 nodes of the full oceanic mesh is selected, at 429 

locations plotted in Figure 1. 430 

Among the wave parameters available with an hourly resolution in ANEMOC-2, we 431 

consider here the significant wave height, denoted Hs, which is usually the preferred 432 

parameter to summarize sea state intensity. TOMAWAC computes this wave height from the 433 

zero-order moment of the wave spectrum. Hourly series of significant wave heights Hs over 434 

the period 1979-2009 are thus extracted for the 1847 selected sites. The objective here is to 435 

apply the proposed methodology i) to characterize the regional dependence over this area and 436 

ii)  to estimate extreme Hs by the regional pooling method. 437 



3.2 Preparation of data for RFA 438 

More details for this section may be found in Weiss et al. [2014], where the same 439 

dataset was used. 440 

The physical extraction of storms generating extreme Hs, described in the beginning of 441 

section 2.1 with p = 0.995, leads to 5939 storms. Weiss et al. [2014] performed a sensitivity 442 

analysis and found that storms are properly detected when p = 0.995. A quick analysis reveals 443 

that, on average: i) there are 192 storms per year in the study area, ii) a storm impacts 38 sites 444 

and iii) a storm lasts 12.5 hours at site scale. These storms serve to form physically 445 

homogeneous regions, by detecting the most typical storms footprints in the study area.  The 446 

footprints of the storms of 15-18 February 1986, 11-13 December 1990 and 23-24 January 447 

2009 (Klaus) are shown in Figure 2. 448 

Storms are then statistically redefined, following the methodology presented in section 449 

2.1. In particular, λ = 1 storm per year are now observed, on average, at each site; 1340 storms 450 

are thus retained among the 5939 initial ones. Site i is therefore characterized by the sample 451 

of Hs over the threshold ui exceeded on average once per year; the sample size is 31, as 31 452 

years of data are available. These thresholds, represented in Figure 3, are also the local indices 453 

used for RFA (section 2.2). These storms serve to i) check the statistical homogeneity of the 454 

physically homogeneous regions, ii) deal with regional dependence and iii) estimate extreme 455 

events with the regional pooling method. 456 

RFA can thus be performed on each of the six homogeneous regions delineated in 457 

Weiss et al. [2014], see Figure 4.  458 

3.3 Regional pooling method 459 

For each of the six regions, the regional sample is constructed by pooling the observed 460 

normalized storm regional maxima, following section 2.4.1. To check whether the storm 461 

regional maxima are sampled from the regional distribution Fr, the two-sample Anderson-462 



Darling test is performed. The p-values for the null hypothesis that i
sY  and Ms have the same 463 

distribution, for each site i from a given region, are higher than 0.01 for 95% of all sites. 464 

Therefore, it may be reasonably assumed that i) the model of regional dependence can be 465 

simplified and ii) Fr can be estimated from the regional sample. 466 

3.3.1 Measures of regional dependence 467 

For each region, Table 1 provides some measures of regional dependence defined in 468 

sections 2.3.3, 2.3.4 and 2.4.4. Note that there are no missing values in ANEMOC-2 data, and 469 

periods of observations are the same for all sites (with a common local duration of d = 31 470 

years). 471 

Storms are, respectively, most and least most frequent in regions 2 and 6, with 25.2 472 

and 2.7 storms per year on average. This is explained here by their size: regions 2 and 6 are, 473 

respectively, the largest and the smallest in terms of the number of sites. To compare the 474 

degree of regional dependence between regions, this size effect can be removed through the 475 

adimensional function Φ defined in equation (7). The regional dependence is thus the 476 

strongest in region 5, meaning that sites in this region tend to behave highly similarly during a 477 

storm: a large proportion of them are impacted, and the normalized extremes are likely to vary 478 

the same way. Conversely, the regional dependence is the weakest in region 2. This can be 479 

precised by considering the mean number βs(1) of impacted sites during a storm, see equation 480 

(9). Indeed, on average, a storm in region 2 only impacts 18.9 sites (4% of the region), 481 

whereas a storm in region 5 impacts 56.6 sites (24% of the region).  482 

The regional effective duration Deff and its corresponding 95% confidence interval are 483 

estimated following equations (15) and (16). For example, pooling data from the 234 sites of 484 

region 5 enables to get a regional sample with Deff = 128 years of independent observations. 485 

Note that taking into account the regional dependence considerably reduces what would be 486 

obtained under the assumption of intersite independence (in that case, Deff = Nd = 7254 years).  487 



Figure 5 shows the evolution of the regional return period Tr against the local return 488 

period T for each region, see equation (12). Note that curves for regions 3 and 4 are very close 489 

to each other, giving the impression of being superimposed. The simplified model of regional 490 

dependence implies that Tr and T are linearly related. For fixed T, Tr is, respectively, the 491 

lowest and the highest in regions 2 and 6. For example, Table 1 gives 100r, i.e., Tr 492 

corresponding to T = 100 years. 100r = 3.964 years in region 2: about every four years on 493 

average, a storm in this region causes at least one local 100-year event. Besides, although 494 

region 1 is much larger that region 3, note that their 100r estimates are similar (about 10 495 

years). If intersite dependence was assumed, then this quantity would have been, in 496 

proportion, much higher in region 3 than in region 1. However, the compensation is due to a 497 

stronger regional dependence in region 1. Thus, modeling the regional dependence allows a 498 

more realistic assessment of regional hazards. 499 

3.3.2 Estimation of extreme Hs  500 

For each of the six homogeneous regions, the regional GPD parameters (Ȗ, k) are 501 

estimated following the procedure outlined in section 2.4.2. These quantities are given in 502 

Table 2, as well as the 100-year regional return level y0.99. The shape parameter k is positive 503 

(corresponding to an unbounded GPD) in regions 1, 4 and 6, suggesting a higher intensity of 504 

extreme Hs. The return level plots for each of the six regional distributions, together with the 505 

95% confidence intervals obtained by bootstrap, are given in Figure 6. Note that the plotting 506 

position depending on the regional effective duration (equation (17)) is used to represent 507 

observations from the regional sample, hence allowing the estimation of empirical return 508 

periods (see section 3.3.3 for an application to the most intense storms observed).   509 

At-site return levels are obtained by multiplying regional return levels by the local 510 

indices. Figure 7 shows the map of the estimated at-site 100-year Hs. Estimates for coastal 511 

areas are not shown because, as mentioned in section 3.1, the present analysis uses data from 512 



the oceanic model of ANEMOC-2, whose resolution is not sufficient for these coastal areas 513 

and which includes only parts of the shallow-water effects. In a follow-up of this study, data 514 

from the coastal model may improve the simulated sea states in coastal areas. One can note on 515 

Figure 7 that 100-year Hs estimates display a coherent spatial pattern, with lower values near 516 

the West European coasts. The highest return levels are obtained for sites located in the north-517 

central part of the study area (up to 29.65 m). Note that these estimates are comparable to 518 

those from Caires and Sterl [2005] and Weiss et al. [2014]. 519 

Compared to a local statistical analysis, the regional pooling method can help to 520 

reduce uncertainties in the estimation of extreme events, at a given site. Indeed, extrapolations 521 

from a local analysis would be based here on d = 31 years of observations; the regional 522 

pooling makes available Deff  > d years of data for any site. 523 

3.3.3 Return periods of the most intense storms observed 524 

From the numeric database ANEMOC-2, storms with the highest normalized intensity 525 

were observed on February 1986, February 1979, December 1990, February 1988, December 526 

1989 and January 2009, respectively in region 1, 2, 3, 4, 5 and 6. Figure 2 displays these 527 

storms which occurred in regions 1, 3 and 6.  528 

As an application of section 2.4.5, return periods of these storms are provided in Table 529 

3, both at the local and regional scales (empirical and theoretical). For example, in region 3, 530 

the empirical local return period locsT ,
~

 of the storm of 11-13 December 1990 is estimated at 531 

280 years. Its theoretical counterpart is quite close (locsT , = 367 years), as indicated by the 532 

return level plot for this region (Figure 6). As such a storm was observed only once in 31 533 

years of observations in this region, its empirical regional return period regsT ,
~

 is logically 534 

estimated at 31 years. From equation (18), the model of regional dependence predicts a 535 

theoretical regional return period regsT ,  of 41 years.  536 



4 Conclusions 537 

By exploiting the information shared by statistically similar sites, regional frequency 538 

analysis (RFA) can reduce uncertainties in the estimations of high return levels, when at-site 539 

durations of observations are short. It is assumed that, in a homogeneous region, extreme 540 

observations follow a common regional probability distribution, up to a local index 541 

representing the local specificities of a site.  542 

The method of regional pooling is employed in this paper, where normalized 543 

observations from different sites are gathered into a regional sample to estimate the regional 544 

distribution. In particular, this pooling procedure allows to define Deff years of regional 545 

effective duration. Deff is actually closely related to the degree of intersite dependence: for 546 

example, Deff is expected to be low when the dependence is strong. Intersite independence is a 547 

usual assumption in the literature and practice, although unrealistic: a storm is likely to 548 

generate dependent extremes at different sites. We have therefore proposed a theoretical 549 

frame to model intersite dependence for the regional pooling method.  550 

Storms are here identified by detecting physical events generating extremes in at least 551 

one site in the study area; their spatio-temporal propagation is taken into account through the 552 

gathering of extremes neighbors in space and time. Storms allow to naturally define the 553 

concurrence of observations at the scale of the physical event, hence enabling to perform a 554 

RFA within a “peaks over threshold” framework. These storms represent a convenient way to 555 

describe regional dependence. In particular, they are the basis to i) construct the regional 556 

sample, by filtering the redundancy of information and ii) model the regional dependence.  557 

The distribution of the storm regional maximum is linked to the regional distribution 558 

through a function of regional dependence. This function, describing both the storm 559 

propagation in the region and the storm intensity, expresses the tendency of sites to display a 560 

similar behavior during a storm. The proposed model allows i) a proper evaluation of Deff and 561 



ii) the assessment of different regional hazards: for example, the mean number of impacted 562 

sites during a storm, or return periods of storms both at the local and regional scales can be 563 

theoretically derived.  564 

An application to significant wave heights from the numerical sea-state database 565 

ANEMOC-2 has been provided to demonstrate the capabilities of the model. Six 566 

homogeneous regions, corresponding to the most typical storms footprints were delineated in 567 

the North-East part of the Atlantic Ocean. Different patterns of regional dependence have 568 

been characterized in this area, before applying the regional pooling method to estimate 569 

extreme significant wave heights.  570 

Although the proposed example considers significant wave heights, the method can 571 

easily be applied to other marine variables. Indeed, it is variable-oriented, in the sense that 572 

storms are specifically defined through to the variable of interest only. Moreover, Deff can also 573 

be estimated when periods of observations are not the same for all sites, and/or in the 574 

presence of missing values. Future works could, for example, apply the proposed model to 575 

other marine hazards (e.g., storm surges) to compare how regional dependence manifests 576 

compared to significant wave heights. 577 
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 723 
7 Table captions 724 
 725 

Table 1. Measures of regional dependence for each region (with the number of sites N 726 

indicated between parentheses): λr is the mean annual number of storms in the region, Φ is 727 

the adimensional function of regional dependence, βs(1) is the mean number of impacted 728 



sites during a storm, 100r is the regional return period (in years) of the storm causing at 729 

least one local 100-year event (equation (12) with T = 100) and Deff is the regional 730 

effective duration (in years, along with the 95% confidence interval). 731 

Table 2. Parameters of the regional distribution: Ȗ (GPD scale parameter), k (GPD 732 

shape parameter), y0.99 (100-year regional return level). 733 

Table 3. Return periods (in years) of the storms with the highest normalized intensity 734 

observed in each region: locsT ,
~

,
 

locsT , , regsT ,
~

 and
 

regsT ,  are respectively the empirical local 735 

return period, the theoretical local return period, the empirical regional return period and 736 

the theoretical regional return period. 737 

 738 

8 Figure captions 739 
 740 

Figure 1. Location of the 1847 sites extracted from the oceanic mesh of the ANEMOC-2 741 

sea-state database.  742 

Figure 2. Footprints of the storms of a) 15-18 February 1986, b) 11-13 December 1990 743 

and c) 23-24 January 2009 (Klaus), where red dots indicate the impacted sites. 744 

Figure 3. Map of threshold values of Hs exceeded on average once per year (m). 745 

Figure 4. Division into six homogeneous regions.  746 

Figure 5. Regional return period Tr against the local return period T for each region, as 747 

defined in equation (12). Curves for regions 3 and 4 are superimposed. 748 

Figure 6. Return level plots of the regional distributions (crosses represent observations 749 

from each regional sample), together with the 95% confidence intervals obtained by 750 

bootstrap. 751 

Figure 7. Map of estimated 100-year Hs (m).  752 



 

 

Figure 1. Location of the 1847 sites extracted from the oceanic mesh of the ANEMOC-2 

sea-state database. 

 

 

 

 

 

 



 

 

Figure 2. Footprints of the storms of a) 15-18 February 1986, b) 11-13 December 1990 and c) 23-24 January 2009 (Klaus), where red dots 

indicate the impacted sites. 

 



 

 

Figure 3. Map of threshold values of Hs exceeded on average once per year (m). 



 

 

Figure 4. Division into six homogeneous regions. 

 



 

 

Figure 5. Regional return period Tr against the local return period T for each region, as 

defined in equation (12). Curves for regions 3 and 4 are superimposed. 

 

 



 

 

Figure 6. Return level plots of the regional distributions (crosses represent observations from each regional sample), together with the 95% 

confidence intervals obtained by bootstrap. 



 

 

Figure 7. Map of estimated 100-year Hs (m).  

 


