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THE DYNAMICAL HIERARCHY FOR ROELCKE PRECOMPACT POLISH GROUPS

TOMÁS IBARLUCÍA

Abstract. We study several distinguished function algebras on a Polish group G, under the assump-
tion that G is Roelcke precompact. We do this by means of the model-theoretic translation initiated
by Ben Yaacov and Tsankov: we investigate the dynamics of ℵ0-categorical metric structures under
the action of their automorphism group. We show that, in this context, every strongly uniformly con-
tinuous function (in particular, every Asplund function) is weakly almost periodic. We also point out
the correspondence between tame functions and NIP formulas, deducing that the isometry group of
the Urysohn sphere is Tame∩UC-trivial.
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Introduction

In a series of recent papers, Glasner and Megrelishvili [GM06, GM08, Meg08, GM12, GM13]
have studied different classes of functions on topological dynamical systems, arising from com-
pactifications with particular properties. Thus, for example, a real-valued continuous function
on a G-space X might be almost periodic, Hilbert-representable, weakly almost periodic, Asplund-
representable or tame, and this classes form a hierarchy

AP(X) ⊂Hilb(X) ⊂WAP(X) ⊂ Asp(X) ⊂ Tame(X) ⊂ RUC(X)

of subalgebras of the class of right uniformly continuous functions. These algebras can be defined
in different ways. The latter coincides with the class of functions that can be in some sense
represented through a Banach space, and from this point of view the previous subalgebras can be
identified, respectively, with the cases when the Banach space is asked to be Euclidean, Hilbert,
reflexive, Asplund or Rosenthal. When X = G and the action is given by group multiplication,
functions might also be left uniformly continuous, and if they are simultaneously in RUC(G) they
form part of the algebra UC(G) of Roelcke uniformly continuous functions.

We study these algebras for the case of Roelcke precompact Polish groups, by means of the
model-theoretic translation developed by Ben Yaacov and Tsankov [BT14]. As established in their
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work, Roelcke precompact Polish groups are exactly those arising as automorphism groups of ℵ0-
categorical metric structures. Moreover, one might turn continuous functions on the group into
definable predicates on the structure. Under this correlation, the authors showed, weakly almost
periodic functions translate into stable formulas: a most studied concept of topological dynamics
leads to one of the crucial notions of model theory. This provides a unified understanding of
several previously studied examples: the permutation group S(N), the unitary group U (`2), the
group of measure preserving transformations of the unit interval Aut(µ), the group Aut(RG)
of automorphisms of the random graph or the isometry group Iso(U1) of the Urysohn sphere,
among many other “big” groups, are automorphism groups of ℵ0-categorical structures, thus
Roelcke precompact. In the first three cases the structures are stable, thus WAP(G) = UC(G): their
WAP and Roelcke compactifications coincide. Using model-theoretic insight, the authors were
able to prove for example that, whenever the latter is the case, the group G is totally minimal.

The so-called dynamical hierarchy presented above has been partially described for some of the
habitual examples. For the groups S(N), U (`2) or Aut(µ) we have in fact Hilb(G) = UC(G); see
[GM14b, §6.3–6.4]. From [BT14, §6] we know, for instance, that the inclusion WAP(G) ⊂ UC(G)
is strict for the group Aut(Q,<) of monotone bijections of the rationals. More drastically, Megrel-
ishvili [Meg01] had shown that the group H+[0,1] of orientation preserving homeomorphisms of
the unit interval, also Roelcke precompact, has a trivial WAP-compactification: WAP(G) is the
algebra of constants; in [GM08, §10] this conclusion was extended to the algebra Asp(G) (and
indeed to the algebra SUC(G) of strongly uniformly continuous functions, containing Asp(G)). The
same was established for the group Iso(U1). If one drops the requirement of Roelcke precom-
pactness, all inclusions in the hierarchy are known to be strict in appropriate examples.

We show that in fact WAP(G) = Asp(G) = SUC(G) for every Roelcke precompact Polish groupG.
In addition, we observe that Roelcke uniformly continuous tame functions correspond to NIP for-
mulas on the model-theoretic side. Thus, for instance, Asp(G) ( Tame(G)∩UC(G) = UC(G) for
G = Aut(Q,<), while WAP(G) = Tame(G)∩UC(G) ( UC(G) for G = Aut(RG) or G = Homeo(2ω).
We also deduce that the Tame∩UC-compactification of Iso(U1) is trivial.

Our approach is model-theoretic, and we shall assume some familiarity with continuous logic
as presented in [BU10] or [BBHU08]; nevertheless, we give an adapted introduction toℵ0-categor-
ical metric structures that we hope can be helpful to an interested reader with no background
in logic. We will mainly study the dynamics of ℵ0-categorical structures, then derive the corre-
sponding conclusions for their automorphism groups.

The algebra Hilb(G) will not be addressed in this paper. Unlike the properties of stability
and dependence, which can be studied locally (that is, formula-by-formula), the model-theoretic
interpretation of the algebra Hilb(G) presents a different phenomenon, and will be considered in
a future work.

Acknowledgements. I am very much indebted to Itaï Ben Yaacov, who introduced me to his work
with Todor Tsankov and asked whether a topological analogue of model-theoretic dependence
could be found. I am grateful to Michael Megrelishvili for valuable discussions and observations,
particularly Theorem 4.15 below. I want to thank Eli Glasner and Adriane Kaïchouh for their in-
terest in reading a preliminary copy of this article and for their comments. Finally, I thank the
anonymous referee for his detailed suggestions and corrections; they helped to improve signifi-
cantly the exposition of this paper.

1. The setting and basic facts

1.1. G-spaces and compactifications. Most of the material on topology in this and subsequent
sections comes from the works of Glasner and Megrelishvili referred to in the introduction.

A G-space X is given by a continuous left action of a topological group G on a topological
space X. Then G acts as well on the space C(X) of continuous bounded real-valued functions
on X, by gf (x) = f (g−1x). If X is not compact, however, the action on C(X) need not be continuous
for the topology of the uniform norm on C(X). The functions f ∈ C(X) for which the orbit map
g ∈ G 7→ gf ∈ Gf ⊂ C(X) is norm-continuous are called right uniformly continuous (RUC). That is,
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f ∈ RUC(X) if for every ε > 0 there is a neighborhood U of the identity of G such that

|f (g−1x)− f (x)| < ε

for all x ∈ X and g ∈ U . When X = G is considered as a G-space with the regular left action,
we also have the family LUC(G) of left uniformly continuous functions, where the condition is
that |f (xg) − f (x)| be small for all x ∈ G and g close to the identity. The intersection UC(G) =
RUC(G)∩ LUC(G) forms the algebra of Roelcke uniformly continuous functions on G. The family
RUC(X) is a uniformly closed G-invariant subalgebra of C(X), and the same is true for LUC(G)
and UC(G) in the case X = G.

If X is compact, then RUC(X) = C(X); in the case X = G, UC(G) = C(G). Moreover, recall that
a compact Hausdorff space X admits a unique compatible uniformity (see, for example, [Bou71,
II, §4,№1]), and that any continuous function from X to another uniform space is automatically
uniformly continuous.

Note 1.1. Our spaces, when not compact, will be metric, and G will act on X by uniformly
continuous transformations (in practice, by isometries). In this case, we will usually restrict our
attention to those functions f ∈ RUC(X) that are also uniformly continuous with respect to the
metric on X; we denote this family of functions by RUCu(X). It is a uniformly closed G-invariant
subalgebra. The same subscript u might be added to the other function algebras in the dynamical
hierarchy, in order to keep this restriction in mind.

Our groups will be Polish. When we take X = G, we assume that a left-invariant, compatible,
bounded metric dL on G has been fixed; its existence is ensured by Birkhoff–Kakutani theorem,
see for example [Ber74, p. 28]. The subscript u will then refer to this metric, and one should
notice that RUCu(G) = UC(G). The algebra SUC(G), containing Asp(G) (both to be defined later),
is always a subalgebra of UC(G) (see Section 2); in particular, SUCu(G) = SUC(G) and Aspu(G) =
Asp(G). As pointed out to us by M. Megrelishvili, this is not the case for the algebra Tame(G)
(see the discussion after Theorem 4.15), so we will mind the distinction between Tame(G) and
Tameu(G) = Tame(G)∩UC(G).

From the equality RUCu(G) = UC(G) we see that RUCu(G) does not depend on the particular
choice of dL. Thus, so far, we could omit the metric dL and consider simply the natural unifor-
mities on G (see for instance [Bou71, III, §3, №1] for an explanation of these). However, our
approach will require to consider metric spaces, and in fact complete ones. This is why we will
consider the space (G,dL), and mainly its completion ĜL = ̂(G,dL), which is naturally a G-space.
We remark that the restriction map RUCu(ĜL)→UC(G) is a norm-preserving G-isomorphism.

A compactification of a G-space X is a continuous G-map ν : X → Y into a compact Hausdorff
G-space Y , whose range is dense in Y . In our context it will be important to consider compacti-
fications that are uniformly continuous: in this case we shall say, to make the distinction, that ν
is a u-compactification of X. A function f ∈ C(X) comes from a compactification ν : X → Y if there
is f̃ ∈ C(Y ) such that f = f̃ ν; note that the extension f̃ is unique.

If f comes from a compactification of X, then certainly f ∈ RUC(X). The converse is true.
In fact, there is a canonical one-to-one correspondence between compactifications of X and uni-
formly closed G-invariant subalgebras of RUC(X) (a subalgebra is always assumed to contain the
constants). The subalgebra Aν corresponding to a compactification ν : X → Y is given by the
family of all functions f ∈ C(X) that come from ν. Conversely, the compactification XA corre-
sponding to one such algebra A ⊂ RUC(X) is the space XA of maximal ideals of A together with
the map νA : X → XA, νA(x) = {f ∈ A : f (x) = 0}. We recall that the topology on XA is generated
by the basic open sets Uf ,δ = {p ∈ XA : |f̃ (p)| < δ} for f ∈ A and δ > 0; here, f̃ (p) is the unique
constant r ∈R such that f − r ∈ p.

In this way we always have the equality A =AνA and a unique G-homeomorphism jν : XAν →
Y with ν = jννAν . In particular, if f ∈ A, then f comes from νA (and the extension f̃ ∈ C(XA) is
defined as above). Finally, the correspondence is functorial, in the sense that inclusions A ⊂ B of
subalgebras correspond bijectively to continuous G-maps j : XB → XA such that νA = jνB . When
we say that a given compactification is minimal or maximal within a certain family, we refer
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to the order induced by these morphisms; in the previous situation, for example, νB is larger
than νA.

More details on this correspondence can be found in [dV93, IV, §5], particularly Theorem 5.18
(though the construction given there is quite different, not based on maximal ideal spaces; for
the basics on maximal ideal spaces see [Con90, VII, §8]).

We point out here that the correspondence restricts well to our metric setting, namely, it in-
duces a one-to-one correspondence between u-compactifications of X and uniformly closed G-
invariant subalgebras of RUCu(X). Of course, if ν is a u-compactification of X then any function
coming from ν is uniformly continuous, so Aν ⊂ RUCu(X). Conversely, we have the following.

Fact 1.2. If A is a uniformly closed G-invariant subalgebra of RUCu(X) then νA : X → XA is uni-
formly continuous.

Proof. Suppose to the contrary that there is an entourage ε of the uniformity of XA such that for
every n there are xn, yn ∈ X with distance d(xn, yn) < 1/n but such that (νA(xn),νA(yn)) < ε. We can
assume the entourage is of the form ε =

⋃
i<kUi ×Ui for some cover of XA by basic open sets

Ui = {p ∈ XA : |f̃i(p)| < δi}
given by functions fi ∈ A and positive reals δi .

Passing to a subnet we can assume that νA(xn) converges to p ∈ XA, say p ∈ Ui for some i < k.
SinceA is contained in RUCu(X) (not merely in RUC(X)) for n big enough we have |fi(xn)−fi(yn)| <
1
2 (δi − |f̃i(p)|), and also |fi(xn)− f̃i(p)| < 1

2 (δi − |f̃i(p)|). Thus for the same n we have |fi(xn)| < δi and
|fi(yn)| < δi . This implies (νA(xn),νA(yn)) ∈ ε, a contradiction. �

Remark 1.3. Let G be a Polish group. Every u-compactification of G factorizes through the left
completion ĜL, and we have a canonical one-to-one correspondence between u-compactifications
of G and of ĜL.

The maximal u-compactification of a Polish group G, that is, the compactification GUC asso-
ciated to the algebra UC(G), is called the Roelcke compactification of G. If we fix any g ∈ G, the
function dg (h) = dL(g,h) is in UC(G). This implies that the compactification G→ GUC is always a
topological embedding.

On the other hand, for any f ∈ RUC(X) there is a minimal compactification of X from which
f comes, namely the one corresponding to the closed unital algebra generated by the orbit Gf in
C(X). It is called the cyclic G-space of f , and denoted by Xf .

An important part of the project developed in [GM06, GM12, GM14b] has been to classify the
dynamical systems (and particularly their compactifications) by the possibility of representing
them as an isometric action on a “good” Banach space. Although we will not make use of it in
the present paper, the precise meaning of a representation of a G-space X on a Banach space V is
given by a pair

h : G→ Iso(V ), α : X→ V ∗,

where h is a continuous homomorphism and α is a weak∗-continuous bounded G-map with re-
spect to the dual action G × V ∗ → V ∗, (gφ)(v) = φ(h(g)−1(v)). The topology on Iso(V ) is that of
pointwise convergence. The representation is faithful if α is a topological embedding.

For a familyK of Banach spaces, a G-space X isK-representable if it admits a faithful represen-
tation on a member V ∈ K, and it is K-approximable if it can be topologically G-embedded into a
product of K-representable G-spaces.

1.2. Roelcke precompact Polish groups. Following Uspenskij [Usp02, §4], the infimum of the
left and right uniformities on a Polish group G is called the Roelcke uniformity of the group.
Accordingly, G is Roelcke precompact if its completion with respect to this uniformity is compact
—and thus coincides with the Roelcke compactification of G as defined above. This translates to
the condition that for every non-empty neighborhood U of the identity there is a finite set F ⊂ G
such that UFU = G.

LetG be a Polish group acting by isometries on a complete metric spaceX. Given a point x ∈ X,
we denote by [x] = Gx the closed orbit of x under the action. Then, we define the metric quotient
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X � G as the space {[x] : x ∈ X} of closed orbits endowed with the induced metric d([x], [y]) =
infg∈G d(gx,y).

In the rest of the paper, given a countable (possibly finite) set α, we will identify it with
an ordinal α ≤ ω and consider the power Xα as a metric G-space with the distance d(x,y) =
supi<α 2−id(xi , yi) and the diagonal action gx = (gxi)i<α . Of course, the precise choice of the
distance is arbitrary and we will only use that it is compatible with the product uniformity and
that the diagonal action is by isometries.

The action of G on X is approximately oligomorphic if the quotients Xα � G are compact for
every α < ω (equivalently, for α =ω). Then, Theorem 2.4 in [BT14] showed the following.

Theorem 1.4. A Polish group G is Roelcke precompact if and only if the action of G on its left comple-
tion ĜL is approximately oligomorphic or, equivalently, if G can be embedded in the group of isometries
of a complete metric space X in such a way that the induced action of G on X is approximately oligo-
morphic.

Recall that the group of isometries of a complete metric space is considered as a Polish group
with the topology of pointwise convergence.

Roelcke precompact Polish groups provide a rich family of examples of topological groups
with interesting dynamical properties. By means of the previous characterization, Ben Yaacov
and Tsankov initiated the study of these groups from the viewpoint of continuous logic.

1.3. ℵ0-categorical metric structures as G-spaces. Thus we turn to logic. We present the basic
concepts and facts of the model theory of metric structures. About the general theory we shall
be terse, and we refer the reader to the thorough treatments of [BU10] and [BBHU08]; in fact,
we will mostly avoid the syntactical aspect of logic. Instead, we will give precise topological
reformulations for the case of ℵ0-categorical structures. At the same time, we explain the relation
to the dynamical notions introduced before.

A metric first-order structure is a complete metric space (M,d) of bounded diameter together
with a family of distinguished basic predicates fi : Mni → R (ni < ω), i ∈ I , which are uniformly
continuous and bounded. (The structure may also have distinguished elements and basic func-
tions from finite powers of M into M, as is the case of the Boolean algebra B considered in the
examples; but these can be coded with appropriate basic predicates.) An automorphism of the
structure is an isometry g ∈ Iso(M) such that each basic predicate fi is invariant for the diagonal
action of g on Mni , that is, fi(gx) = fi(x) for all x ∈Mni . For a separable structure M, the space
Aut(M) of all automorphisms of M is a Polish group under the topology of pointwise conver-
gence.

If M is separable and isomorphic to any other separable structure with the same first-order
properties, then M is ℵ0-categorical. A classical result in model-theory (see [BBHU08], Theorem
12.10) implies that this is equivalent to say that M is separable and the action of Aut(M) on M is
approximately oligomorphic. In particular, by Theorem 1.4, Aut(M) is Roelcke precompact.

The structure M is classical if d is the Dirac distance and the basic predicates are {0,1}-valued.
In this case, M is ℵ0-categorical if and only if it is countable and the action of Aut(M) on M is
oligomorphic, i.e. the quotients Mn � Aut(M) are finite for every n < ω.

A definable predicate is a function f : Mα → R, with α a countable set, constructed from the
basic predicates and the distance by continuous combinations, rearranging of the variables, ap-
proximate quantification (i.e. suprema and infima) and uniform limits. Every definable predicate
is Aut(M)-invariant, uniformly continuous and bounded. IfM is ℵ0-categorical, then f : Mα→R

is a definable predicate if and only if it is continuous and Aut(M)-invariant; see for example
[BK13], Proposition 2.2.

Definition 1.5. In this paper, we shall use the term formula to denote a definable predicate in
two countable sets of variables, i.e. a function f : Mα ×Mβ → R, for countable sets α,β, which is
a definable predicate once we rewrite the domain as a countable power of M. We will denote it
by f (x,y) to specify the two variables of the formula. Given a formula f (x,y) and an a parameter
a ∈ Mα , we denote by fa ∈ C(Mβ) the continuous function defined by fa(b) = f (a,b). When we
make no reference to α or β, we will assume that α =ω and β = 1.
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Whenever we talk of a metric structure M as a G-space, we understand that the group is
G = Aut(M) and that it acts on M in the obvious way. This G-space comes with a distinguished
function algebra: the family of functions of the form fa for a formula f (x,y) and a parameter
a ∈Mω. We will denote it by Def(M), and it is in fact a uniformly closed G-invariant subalgebra
of C(M). More generally, if a ∈ Aω for a subset A ⊂ M (and the variable y is of any length β),
we will say that fa is an A-definable predicate in the variable y. A ∅-definable predicate is just a
definable predicate. The family of A-definable predicates in y is clearly a subalgebra of C(Mβ),
which is uniformly closed as the following shows.

Fact 1.6. A uniform limit of A-definable predicates is an A-definable predicate.

Proof. Say we have formulas f n(x,y) and parameters an ∈ Aω such that f nan converges uniformly;
without loss of generality we can assume that the tuples are the same, say a = an. Passing to a
subsequence we can assume that f nan converges fast enough, then define f (x,y) as the forced limit
of the formulas f n(x,y) (see [BU10, §3.2], and compare with Lemma 3.11 therein). Then the limit
of the predicates f na is fa. �

The starting point for our analysis is the following observation, based on the ideas from [BT14,
§5].

Proposition 1.7. For a metric structure M we have Def(M) ⊂ RUCu(M). If M is ℵ0-categorical, then
moreover Def(M) = RUCu(M).

Proof. For the first part consider a formula f (x,y) together with a parameter a ∈ Mω. Take a
neighborhood U of the identity such that d(a,ga) < ∆f (ε) for g ∈ U , where ∆f is a modulus of
uniform continuity for f (x,y). Thus ‖gfa − fa‖ = ‖fga − fa‖ < ε whenever g ∈ U . This shows that
every fa ∈Def(M) is in RUCu(M).

Now let h ∈ RUCu(M), and set a ∈Mω to enumerate a dense subset of M. We define f : Ga ×
M→R by

f (ga,b) = gh(b) = h(g−1b).

This is well defined because a is dense in M; note also that f is G-invariant and uniformly con-
tinuous. Indeed, we have

|f (ga,b)− f (g ′a,b′)| ≤ |gh(b)− gh(b′)|+ |gh(b′)− g ′h(b′)|.

The first term on the right side is small if b and b′ are close: simply observe that d(g−1b,g−1b′) =
d(b,b′), so we use the uniform continuity of h. For the second, given ε > 0 there is a neighborhood
U of the identity of G such that ‖gh − g ′h‖ < ε whenever g−1g ′ ∈ U , because h is RUC; since a is
dense, there is δ > 0 such that d(ga,g ′a) < δ implies g−1g ′ ∈ U ; thus if d(ga,g ′a) < δ we have
|gh(b′)− g ′h(b′)| < ε.

This means that f can be extended continuously to [a] ×M (we recall the notation [a] = Ga).
The extension remains G-invariant, so we may regard f as defined on ([a] ×M) �G, which is a
closed subset of the metric space (Mω ×M) �G. Then we can apply Tietze extension theorem to
get a continuous extension to (Mω ×M)�G. Composing with the projection we get a G-invariant
continuous function

f : Mω ×M→R.

Finally, if M is ℵ0-categorical then the G-invariant continuous function f is in fact a formula
f (x,y). Hence we have h = fa, as desired. �

In light of this result, if M is ℵ0-categorical, we can attempt to study the subalgebras of
RUCu(M) with model-theoretic tools; this is our aim.

Our conclusions will translate easily from structures to groups, the latter being the main sub-
ject of interest from the topological viewpoint. Indeed, if G is a Polish group, there is a canon-
ical construction (first described by J. Melleray in [Mel10, §3]) that renders the left completion
M = ĜL a metric first-order structure with automorphism group Aut(M) = G. It suffices to take
for I the set of all closed orbits in all finite powers of ĜL, that is I =

⊔
n<ωM

n�G, then define the
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basic predicates Pi : Mni → R (if i ∈Mni �G) as the distance functions to the corresponding or-
bits: Pi(y) = infx∈i d(x,y). By Theorem 1.4, if G is Roelcke precompact then G acts approximately
oligomorphically on its left completion and hence M is an ℵ0-categorical structure. In addition
we have the natural norm-preserving G-isomorphism RUCu(ĜL) ' UC(G). By this means, our
conclusions about the dynamics of ℵ0-categorical structures will carry immediately to Roelcke
precompact Polish groups.

Nevertheless, for the analysis of the examples done in Section 4 we shall use the approach
initiated in [BT14, §5–6] for the study of WAP(G). That is, we will describe the functions on G
in terms of the formulas of the “natural” structure M for which G = Aut(M) (see particularly
Lemma 5.1 of the referred paper). To this end we have the following version of Proposition 1.7.

Proposition 1.8. Let M be a metric structure, G = Aut(M). If f (x,y) is an arbitrary formula and
a,b are tuples from M of the appropriate length, then the function g 7→ f (a,gb) is in UC(G). If M
is ℵ0-categorical and h ∈ UC(G), then there are a formula f (x,y) in ω-variables x,y and a parameter
a ∈Mω such that h(g) = f (a,ga) for every g ∈ G.

Proof. The proof of Proposition 1.7 can be adapted readily. Alternatively, we remark that if a ∈
Mω enumerates a dense subset of M then [a] can be identified with ĜL (see [BT14], Lemma 2.3).
Thus the basic predicates Pi : (ĜL)ni → R defined above are simply the restrictions to [a]ni of the
functions fi(y) = infx∈i d(x,y) : (Mω)ni →R, which are definable predicates ifM is ℵ0-categorical;
similarly for the general definable predicates on ĜL. The second claim in the statement then
follows from this together with the identifications UC(G) ' RUCu(ĜL) = Def(ĜL). �

1.4. Types, extensions, indiscernibles. Before we go on, we recall some additional terminology
from model theory that we use in our expositions and proofs. Most of it could be avoided if
we decided to give a prevailingly topological presentation of our results, but we have chosen to
emphasize the interplay between the two domains.

Let M be a metric structure, A ⊂M a subset and let y be a variable of length β. A (complete)
type over A (in M) in the variable y can be defined as a maximal ideal of the uniformly closed
algebra of A-definable predicates of M in the variable y. The type over A of an element b ∈Mβ is
defined by

tp(b/A) = {fa : a ∈ Aω, f (x,y) a formula with f (a,b) = 0}.
For A = ∅ we denote tp(b/∅) = tp(b). A more model-theoretic presentation of types in continuous
logic is given in [BBHU08, §8] or in [BU10, §3]; there, a type is a set of conditions which an
element may eventually satisfy. A type p given as an ideal is identified with the set of conditions
of the form h(y) = 0 for h ∈ p.

The space of types over A (that is, the maximal ideal space of the algebra of A-definable pred-
icates, with its natural topology) is denoted by SMy (A), or by S(A) when β = 1 and the structure
is clear from the context. If A is G-invariant, then the algebra of A-definable predicates is G-
invariant and there is a natural action of G on SMy (A). Thus, for example, the type space S(M)

(together with the natural map tp: M → S(M)) is just the compactification MDef(M). In partic-
ular, if G is Roelcke precompact, then by Proposition 1.7, Remark 1.3 and the discussion about
the structure ĜL above, we have that S(ĜL) = GUC is just the Roelcke compactification of G.

Remark 1.9. Let f = f (x,y) be an arbitrary formula and let a ∈ Mα be a parameter. The cyclic
G-space of fa (as defined after Remark 1.3) also has a name in the model-theoretic literature,
at least for some authors: it coincides with the space of f -types over the orbit Ga as defined in
[TZ12, p. 132]. Their definition is in the classical setting, but we can adapt it to the metric case
by defining a (complete) f -type over A ⊂Mα to be a maximal consistent set of conditions of the
form f (a′ , y) = r for a′ ∈ A and r ∈ R. In other words, an f -type is a maximal ideal of the closed
unital algebra generated by {fa′ : a′ ∈ A}. The space of f -types over A is denoted by Sf (A), and
the identification Sf (Ga) = Xfa follows.

N.B. This does not coincide in general with the space Sf (A) as defined in [BU10], Defini-
tion 6.6, or in [Pil96, p. 14]. To make the comparison simpler, say A = Bα for some B ⊂M. The
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two definitions agree when B =M. In the case B ⊂M, the latter authors define Sf (A) (or Sf (B) in
their notation) as the maximal ideal space of the algebra of B-definable predicates inM that come
from the compactification Sf (M). This is larger than the one defined above, and it fits better for
the study of local stability.

We shall understand Sf (A) in the former sense (except in Lemma 4.2).

A tuple b ∈ Mβ realizes a type p ∈ SMy (A) if we have tp(b/A) = p. A set q of M-definable
predicates in the variable y is approximately finitely realized in B ⊂M if for every ε > 0 and every
finite set of predicates fi ∈ q, i < k, there is b ∈ Bβ such that |fi(b)| < ε for each i < k. Remark that
any p ∈ SMy (M) is approximately finitely realized in M: if for example fa ∈ p is bounded away
from zero in M, then 1/fa is an A-definable predicate, hence 1 = 1/fa · fa ∈ p and p is not a proper
ideal. Conversely, by Zorn’s Lemma, any set of A-predicates in y approximately finitely realized
in M can be extended to a type p ∈ SMy (A).

The following terminology is not standard, so we single it out.

Definition 1.10. We will say that a structure M is ∅-saturated if every type p ∈ SMy (∅) in any
countable variable y is realized in M.

Suppose M is ℵ0-categorical. Then the projection Mβ → Mβ �G is a compactification, and
the functions that come from it are precisely the continuous G-invariant ones, i.e. the ∅-definable
predicates. Hence the projection toMβ�G can be identified with the compactification tp: Mβ →
SMy (∅). A first consequence of this identification is the following homogeneity property: if tp(a) =
tp(b) for a,b ∈Mβ and we have ε > 0, then there is g ∈ G with d(a,gb) < ε. A further consequence
is the following.

Fact 1.11. Every ℵ0-categorical structure is ∅-saturated.

A stronger saturation property is true for ℵ0-categorical structures (they are approximately
ℵ0-saturated, see Definition 1.3 in [BU07]), but we will not use it.

Remark 1.12. The left completion M = ĜL, when seen as a metric structure as defined before, is
∅-saturated if and only if it is ℵ0-categorical. Indeed, if it is not ℵ0-categorical then the quotient
Mn �G is not compact for some n < ω, which means that there are ε > 0 and a sequence of orbits
(ik)k<ω ⊂Mn�G any two of which are at distance at least ε. We may moreover assume that (ik)k<ω
is maximal such, sinceMn is separable. If, as before, Pi : Mn→R denotes the distance to the orbit
i ∈Mn �G, then the conditions {Pik (y) ≥ ε}k<ω induce a type over ∅ not realized in M.

Now suppose that we have a metric structure M given by the basic predicates fi : Mni → R,
i ∈ I . An elementary extension of M is a structure N with basic predicates f̃i : Nni → R, i ∈ I , such
that: (i) M is a metric subspace of N , (ii) each f̃i extends fi , and (iii) every type p ∈ SNy (M) is
approximately finitely realized in M ⊂ N . One can deduce that the M-definable predicates of
M are exactly the restrictions to M of the M-definable predicates of N (essentially, because (iii)
ensures that approximate quantification over M and over N coincide), and the restriction is one-
to-one. Hence, the spaces SMy (M) and SNy (M) can be identified. A metric ultrapower construction
as in [BBHU08, §5] can be used to prove the following.

Fact 1.13. Every metric structure M admits an elementary extension N such that every type in Sy(M)
in any countable variable y is realized inN . (In particular, every structure has a ∅-saturated elementary
extension.)

Thus, for most purposes, we can refer to types overM or to elements in elementary extensions
ofM interchangeably. For example, if p ∈ S(M), fa ∈Def(M), and b is an element in an elementary
extension N of M realizing p, we may prefer to write f (a,b) instead of f̃a(p). We recall that the
formula f (x,y) of M extends uniquely to a formula of N , and we identify them.

An indiscernible sequence in a structure M is a sequence (ai)i<ω ⊂ Mβ such that, for any i1 <
· · · < ik < ω, we have tp(ai1 . . . aik ) = tp(a1 . . . ak). In a finitary version, if ∆ is a finte set of definable
predicates and δ is a positive real, then a sequence (ai)i<ω is ∆-δ-indiscernible if |φ(ai1 , . . . , aik ) −
φ(aj1 , . . . , ajk )| ≤ δ for every i1 < · · · < ik , j1 < · · · < jk and every definable predicate φ(y1, . . . , yk) ∈ ∆.



THE DYNAMICAL HIERARCHY FOR ROELCKE PRECOMPACT POLISH GROUPS 9

Finally, we shall say that a subset A ⊂Mα is type-definable if it is of the form {a ∈Mα : fj (a) =
0 for all j ∈ J} for a family of definable predicates fj (x), j ∈ J . In particular, every type-definable
set is G-invariant and closed. If M is ℵ0-categorical, then any G-invariant closed set is type-
definable, even by a single predicate, namely the (continuous G-invariant) distance function
PA(x) = d(x,A). In general, A is called definable precisely when the distance function PA is a
definable predicate. In the latter case, if f (x,y) is any formula, then F(y) = supx∈A f (x,y) is a
definable predicate too, and similarly for the infimum (see [BBHU08], Theorem 9.17). If A is
definable and N is an elementary extension of M, PA will denote the definable predicate that
coincides with d(x,A) on Mα ; thus an element a ∈Nα satisfying PA(a) = 0 need not be in A.

1.5. Almost periodic functions. We end this section with some comments about the smallest
function algebra presented in the introduction. A continuous bounded function h on a metric
G-space X is almost periodic (AP) if the orbit Gh is a precompact subset of C(X) (with respect to
the topology of the norm). As is easy to check, the family AP(X) of almost periodic functions
on X is a uniformly closed G-invariant subalgebra of RUC(X). Moreover, if h comes from a
compactification ν : X → Y , it is clear that h is AP if and only if its extension to Y is AP. By the
Arzelà–Ascoli theorem, we have that h ∈ AP(Y ) if and only if for every ε > 0 and y ∈ Y there is an
open neighborhood O of y such that

|h(gy)− h(gy′)| < ε
for every y′ ∈ O and g ∈ G. From the point of view of Banach space representations, almost
periodic functions are precisely those coming from Euclidean-approximable compactifications
of X; see [GM14b, §5.2] and [Meg08], Proposition 3.7.2.

The definition given in the following proposition will be useful for the description of AP
functions in the examples of Section 4. (The terminology is not standard.)

Proposition 1.14. Let M be a ∅-saturated structure. Let f (x,y) be a formula and A ⊂Mα , B ⊂Mβ

be definable sets. The following are equivalent, and in any of these cases we will say that f (x,y) is
algebraic on A×B.

(1) the set {fa|B : a ∈ A} is precompact in C(B);
(2) for every indiscernible sequence (ai)i<ω ⊂ A, the predicates f (ai , y) are all equivalent in B, i.e.

we have f (ai ,b) = f (aj ,b) for all i, j and b ∈ B.

Proof. (1) ⇒ (2). By precompactness, the sequence (fai )i<ω has a Cauchy subsequence, so in
particular there are i and j such that supy∈B |f (ai , y)− f (aj , y)| ≤ ε. By indiscernibility, this is true
for all i, j, and the claim follows.

(2)⇒ (1). Let ε > 0. If the set of conditions in the variables (xi)i<ω given by

|φ(xi1 , . . . ,xik )−φ(xj1 , . . . ,xjk )| = 0, PA(xi) = 0, sup
y∈B
|f (xi , y)− f (xj , y)| ≥ ε

(where φ varies over the definable predicates of M, i1 < · · · < ik , j1 < · · · < jk), was approximately
finitely realized in M, then by ∅-saturation we could get an indiscernible sequence in M contra-
dicting (2). Therefore, there are a finite set ∆ of definable predicates and δ > 0 such that any
∆-δ-indiscernible sequence (ai)i<ω ⊂ A satisfies supy∈B |f (ai , y)− f (aj , y)| < ε for all i, j.

For every n < ω let ∆n, δn correspond to ε = 1/n as before. Starting with an arbitrary sequence
(ai)i<ω ⊂ A, by Ramsey’s theorem we can extract a ∆1-δ1-indiscernible subsequence, say (a1

i )i<ω.

Inductively, let (an+1
i )i<ω be a ∆n+1-δn+1-indiscernible subsequence of (ani )i<ω. If we take aωj = ajj

then (aωj )j<ω is a subsequence of (ai)i<ω and (faωj )j<ω is a Cauchy sequence in C(B). �

Remark 1.15. As the reader can check, the previous proposition holds true if A and B are merely
type-definable. In particular, one may consider the case where A = {a′ ∈Mα : tp(a′) = tp(a)} for
some a ∈Mα , and B = Mβ . If the above equivalent conditions hold in this case (for a saturated
model M), it is standard terminology to say that (the canonical parameter of) fa is algebraic over
the empty set, in symbols fa ∈ acl(∅). Alternatively, in the terminology of Pillay [Pil96, p. 9], fa is
almost ∅-definable.
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Set β = 1. Suppose M is ℵ0-categorical, so in particular A = [a] = Ga. Now, since f (x,y) is
uniformly continuous, the families Gfa and {fa′ : a′ ∈ [a]} have the same closure in C(M). We can
conclude by Proposition 1.7 that h ∈ APu(M) if and only if h = fa for some predicate fa ∈ acl(∅).

The compactification b : G→ bG = GAP associated to the algebra AP(G) is the Bohr compactifi-
cation of G. The space bG has the structure of a (compact) group making b a homomorphism (see
[dV93, (D.12)3 and IV(6.15)3]). In fact, the compactification b is the universal group compactifi-
cation of G: if ν : G→ K is a compactification and also a homomorphism into a compact group
K , it is easy to see that Aν ⊂ AP(G), whence ν factors through b. I. Ben Yaacov has observed the
following fact.

Theorem 1.16. The Bohr compactification b : G→ bG of a Roelcke precompact Polish group is always
surjective.

See [Ben15], Corollary 5.3. As mentioned there in the introduction, the model-theoretic coun-
terpart of this result is the fact thatℵ0-categoricity is preserved after naming the algebraic closure
of the empty set (see Proposition 1.15).

One could call a metric G-space X almost periodic if AP(X) = RUCu(X). This is a very strong
condition. Indeed, for an action of a topological group G by isometries on a complete bounded
metric space (X,d), the function Pa(y) = d(a,y) (which is in RUCu(X)) is AP if and only if the
closed orbit [a] is compact. If the space of closed orbits X �G is compact, we can deduce that
X is almost periodic if and only if X is compact (the reverse implication following from Arzelà–
Ascoli theorem). This is the case for ℵ0-categorical structures. Also, if G is any Polish group with
AP(G) = UC(G) then b : G → bG is a topological embedding into a compact Hausdorff group,
which implies that G is already compact (see [dV93, D.12.4] together with [BK96, p. 3–4]).

2. WAP = Asp = SUC

Let f : Mα ×Mβ → R be any formula on a metric structure M, and let A ⊂ Mα , B ⊂ Mβ be
any subsets. We recall that f (x,y) has the order property, let us say, on A × B if there are ε > 0
and sequences (ai)i<ω ⊂ A, (bj )j<ω ⊂ B such that |f (ai ,bj )− f (aj ,bi)| ≥ ε for all i < j < ω. If f (x,y)
lacks the order property on A×B we say that it is stable on A×B. We invoke the following crucial
result, essentially due to Grothendieck, as pointed out by Ben Yaacov in [Ben13] (see Fact 2 and
the discussion before Theorem 3 therein).

Fact 2.1. The formula f (x,y) is stable on A×B if and only if {fa|B : a ∈ A} is weakly precompact in C(B).

(In the rest of this section we will only need the case B = M (β = 1), so we shall only specify A when
referring to stability or the order property.)

On the other hand, a function h ∈ C(X) on a G-space X is weakly almost periodic (WAP) if the
orbit Gh ⊂ C(X) is weakly precompact (that is, precompact with respect to the weak topology on
C(X)). It is not difficult to check that the family WAP(X) of weakly almost periodic functions on
X is a uniformly closed G-invariant subalgebra of C(X) (for instance, resorting to Grothendieck’s
double limit criterion: Fact 2 in [Ben13]), but it is a bit involved to prove that WAP(X) is in fact
a subalgebra of RUC(X); see Fact 2.7 in [Meg03] and the references thereof. If one knows that a
function h ∈ C(X) comes from a compactification ν : X → Y , it is an immediate consequence of
Grothendieck’s double limit criterion (in the form stated in [Ben13]) that h ∈WAP(X) if and only
if h̃ ∈WAP(Y ).

From Fact 2.1 above we have, forM-definable predicates, that fa is WAP if and only if f (x,y) is
stable on A = Ga (equivalently, on its closure [a]). By Proposition 1.7 one concludes the following
(compare with Lemma 5.1 in [BT14]).

Lemma 2.2. If M is ℵ0-categorical, then a continuous function is in WAPu(M) if and only if it is of
the form fa for a formula f (x,y) stable on [a].
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The algebra WAP(X) can also be characterized as the class of functions coming from a reflexive-
representable compactification of X. This was first proven in [Meg03], Theorem 4.6; for an alter-
native exposition see Theorem 2.9 in [Meg08]. (We also point out the paper of Iovino [Iov99] for
an earlier treatment of the connection between stability and reflexive Banach spaces.)

A natural generalization of weak almost periodicity is thus to replace reflexive by Asplund in
the latter characterization. Recall that a Banach space is Asplund if the dual of every separable
subspace is separable, and that every reflexive space has this property. In this way one gets
the family of Asplund functions, Asp(X). This is a uniformly closed G-invariant subalgebra of
RUC(X). See [Meg03, §7].

For a compact G-space Y , a function h ∈ C(Y ) is shown to be Asplund if and only if the orbit
Gh ⊂ C(Y ) is a fragmented family; see Theorem 9.12 in [GM06]. This means that for any nonempty
B ⊂ Y and any ε > 0 there exists an open set O ⊂ Y such that B∩O is nonempty and

|h(gy)− h(gy′)| < ε

for every g ∈ G and y,y′ ∈ B∩O. If X is an arbitrary G-space, then h ∈ C(X) belongs to Asp(X)
if and only if it comes from an Asplund function on some compactification of X. If a function
h comes from two compactifications Y and Z with Y larger than Z, it is an exercise (using the
characterization by fragmentability) to check that the extension of h to Y is Asplund if and only if
so is its extension to Z (see the proof of Lemma 6.4 in [GM06]). That is, any extension of h to some
compactification can be used to check whether h is Asplund; for example, a predicate fa ∈Def(M)
is Asplund if and only if its extension to S(M) or to Sf (Ga) satisfies the fragmentability condition.

It will be interesting to bring in a further weaker notion, introduced in [GM08]. A function
h ∈ C(Y ) on a compact G-space is strongly uniformly continuous (SUC) if for every y ∈ Y and ε > 0
there exists a neighborhood U of the identity of G such that

|h(gy)− h(guy)| < ε

for all g ∈ G and u ∈U . In this case it is immediate that, if j : Y → Z is a compactification between
compact G-spaces, then h ∈ C(Z) is SUC if and only if hj ∈ C(Y ) is SUC. A function h ∈ RUC(X) on
an arbitrary G-space X is called SUC if its extension to some (any) compactification (from which
h comes) is SUC. One can see readily that: (i) the family of all strongly uniformly continuous
functions on a G-space X forms a uniformly closed G-invariant subalgebra SUC(X) of RUC(X);
(ii) every Asplund function is SUC: in the fragmentability condition we take B = Gy ⊂ Y , then
use the continuity of the action of G on Y .

It follows from our remarks so far that, in general,

WAP(X) ⊂ Asp(X) ⊂ SUC(X) ⊂ RUC(X).

It is also clear that SUC(G) ⊂ UC(G) for the regular left action of G on itself: we apply the
property defining SUC to the compactification Y = GRUC (for instance) and the identity element
y = 1 ∈ G ⊂ Y .

An important motivation for the algebra of SUC functions comes from the viewpoint of semi-
group compactifications of G. We have already mentioned the universal property of GAP. Simi-
larly, GWAP is the universal semitopological semigroup compactification of G (see [Usp02, §5]). For
their part, GAsp and GRUC are right topological semigroup compactifications of G. In their work
[GM08], the authors showed that the compactification GSUC is also a right topological semigroup
compactification of G, and that SUC(G) is the largest subalgebra of UC(G) with this property (see
Theorem 4.8 therein). In particular, the Roelcke compactificationGUC has the structure of a right
topological semigroup if and only if SUC(G) = UC(G).

We aim to prove the equality WAP = SUC (restricted to RUCu) for ℵ0-categorical structures
and for their automorphism groups.

Switching to logic language, let us say that a formula f (x,y) is SUC on a subset A ⊂Mα if for
any b in any elementary extension of M and every ε > 0 there are δ > 0 and a finite tuple c from
M such that for every a ∈ A and every automorphism u ∈ G satisfying d(uc,c) < δ we have

|f (a,b)− f (ua,b)| < ε.
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We readily get the following.

Lemma 2.3. For a metric structureM, a function fa ∈Def(M) is SUC if and only if the formula f (x,y)
is SUC on [a].

The most basic example of a non-stable formula in an ℵ0-categorical structure is the order
relation on the countable dense linear order without endpoints. It is worth looking into this case.

Example 2.4. The order relation x < y on the (classical) structure (Q,<) is not SUC on Q. Indeed,
let r ∈ R \Q, c1, . . . , cn ∈ Q. Suppose ci < ci+1 for each i, and say ci0 < r < ci0+1. Take a ∈ Q,
ci0 < a < r. There is a monotone bijection u fixing every ci and such that r < ua < ci0+1. The claim
follows.

We will generalize the analysis of this simple example to any non-stable formula in any ℵ0-
categorical structure. To this end we shall use the following standard lemma.

Fact 2.5. Let M be ∅-saturated, A ⊂ Mω a type-definable subset. If a formula f (x,y) has the order
property on A, then there are an elementary extension N of M, distinct real numbers r, s ∈ R and
elements (ai)i∈Q ⊂ A, (bj )j∈R ⊂N such that f (ai ,bj ) = r for i < j and f (ai ,bj ) = s for j ≤ i.

Proof. Suppose there are ε > 0 and sequences (a′k)k<ω ⊂ A, (b′l)l<ω ⊂ M such that |f (a′k ,b
′
l) −

f (a′l ,b
′
k)| ≥ ε for all k < l < ω. Since f is bounded, passing to subsequences carefully we can

assume that limk liml f (a′k ,b
′
l) = r and limk liml f (a′l ,b

′
k) = s, necessarily with |r − s| ≥ ε > 0. Now

we consider the conditions in the countable variables (xi)i∈Q, (yj )j∈Q asserting, for each pair of
rational numbers i < j,

xi ∈ A, f (xi , yj ) = r and f (xj , yi) = s.

The elements a′k ,b
′
l can be used to show that these conditions are approximately finitely realized

in M. By saturation, there are (ai)i∈Q ⊂ A, (bj )j∈Q ⊂M satisfying the conditions.
Finally, the conditions f (ai , yj ) = r for i < j, i ∈ Q, j ∈ R \Q, together with f (ai , yj ) = s for

j ≤ i, i ∈ Q, j ∈ R \Q, are approximately finitely realized in {bj }j∈Q. Hence they are realized by
elements (bj )j∈R\Q in some elementary extension of M. �

Proposition 2.6. Let M be ℵ0-categorical. If f (x,y) has the order property on a definable set A, then
f (x,y) is not SUC on A.

Proof. We apply the previous fact to find elements (ai)i∈Q ⊂ A, (bj )j∈R in some elementary exten-
sion of M and real numbers r , s such that f (ai ,bj ) = r if i < j, f (ai ,bj ) = s if j ≤ i. Suppose f (x,y)
has the SUC property for ε = |r − s|/2; since G is second countable and R is uncountable, there
is an open neighborhood U of the identity that witnesses the property for an infinite number of
elements bj , say for every bj with j in an infinite set J ⊂R. By passing to a subset we may assume
that J is discrete, and thus for each j ∈ J we may take a rational i(j) < j such that j ′ < i(j) for every
j ′ < j, j ′ ∈ J . We may assume that U is the family of automorphisms moving a finite tuple c at
a distance less than δ; say n is the length of the tuple c. Now let η = ∆f (|r − s|/2), where ∆f is a
modulus of uniform continuity for f (x,y).

Since M is ℵ0-categorical the quotient Mω �G is compact, so there must be a pair j < j ′ in J
and an automorphism u such that

d(u(cai(j)), cai(j ′)) <min(δ,η/2n).

In particular d(uc,c) < δ, so u ∈ U . In addition, since d(uai(j), ai(j ′)) < η, f (ai(j ′),bj ) = s and
f (ai(j),bj ) = r, we have

|f (ai(j),bj )− f (uai(j),bj )| ≥ |r − s|/2,
contradicting the fact that U witnesses the SUC property for bj and ε = |r − s|/2. �

Remark 2.7. We can offer a maybe more conceptual argument to a model-theorist. Suppose M
is ℵ0-categorical, take fa ∈ SUCu(M) ⊂ Def(M) (we recall Proposition 1.7) and let p be a type in
Sf (Ga). Consider dpf : Ga→ R given by dpf (ga) = gf̃a(p), which is well-defined and uniformly
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continuous. Now, the SUC condition for the extension f̃a : Sf (Ga)→ R gives, for every ε > 0, a
neighborhood U of the identity of G such that

|dpf (u−1ga)− dpf (ga)| < ε
for every g ∈ G and u ∈ U . That is to say, dpf ∈ RUCu(Ga). A mild adaptation of Proposition 1.7
allows us to deduce that dpf is an M-definable predicate on Ga. In other words, every f -type
over Ga is definable in M, which (bearing in mind that M is saturated and that [a] is definable) is
well-known to be equivalent to the stability of f (x,y) on Ga. For more on definability of types
in continuous logic see [BU10, §7] (particularly Proposition 7.7 for the equivalences of stability),
and the topical discussion of [Ben13]. Yet an argument based on some variation of Fact 2.5 is
needed to prove that definability of types implies stability.

The proposition and previous lemmas yield the desired conclusion.

Corollary 2.8. Let M be an ℵ0-categorical structure. Then WAPu(M) = Aspu(M) = SUCu(M).

Theorem 2.9. Let G be a Roelcke precompact Polish group. Then WAP(G) = Asp(G) = SUC(G).

Proof. From Remark 1.3 we can deduce that the isomorphism RUCu(ĜL) 'UC(G) preserves WAP
and SUC functions. Thus if f ∈ SUC(G) then its continuous extension f̃ to ĜL is SUC, so by the
previous corollary f̃ ∈WAP(ĜL); hence f ∈WAP(G). �

For the case of Asplund functions we can give a slight generalization, which applies for exam-
ple to any M-definable predicate in an approximately ℵ0-saturated separable structure.

If c is an n-tuple (of tuples) and I a is an n-tuple of intervals of R, let us write f (c,d) ∈ I
instead of (f (ck ,d))k<n ∈

∏
k<n Ik . Let us call a formula f (x,y) Asplund on a subset A ⊂ Mα of a

metric structure M if it lacks the following property: (SP) There exist ε > 0 and a set B in some
elementary extension of M such that, if f (c,d) ∈ I for some d ∈ B, some tuple c from A and
some tuple I of open intervals of R, then there are b,b′ ∈ B, a ∈ A with f (c,b), f (c,b′) ∈ I and
|f (a,b)− f (a,b′)| ≥ ε. This makes a function fa ∈ Def(M) Asplund in the topological sense if and
only if f (x,y) is Asplund on the orbit Ga, or on its closure [a].

Proposition 2.10. Let M be a separable ∅-saturated structure. Let f (x,y) be a formula and a ∈Mα a
parameter, and suppose that the closed orbit [a] is type-definable. If fa ∈ Asp(M), then fa ∈WAP(M).

Proof. Suppose f (x,y) has the order property on [a]. Let (ai)i∈Q ⊂ [a], (bj )j∈R and r, s ∈ R be as
given by Fact 2.5. Since M is separable, it is enough to check the condition SP for a countable
family C of pairs (c, I). There is at most a countable number of reals l such that, for some (c, I) ∈ C,
we have f (c,bj ) ∈ I if and only if j = l. So by throwing them away we may assume that, whenever
f (c,bl) ∈ I , (c, I) ∈ C, there is j , l with f (c,bj ) ∈ I ; if we then choose i ∈Q lying between l and j,
we have |f (ai ,bl)− f (ai ,bj )| = |r − s|. Hence f (x,y) has SP for ε = |r − s| and B = {bj }. �

The previous proposition can be used to get information about certain continuous functions on
some (non Roelcke precompact) Polish groups, but not via the structureM = ĜL, which in general
is not ∅-saturated as mentioned in Remark 1.12. Instead, it may be applied to automorphism
groups of saturated structures and functions of the form g 7→ f (a,gb).

Example 2.11. Let us consider the linearly ordered set M = (Z,<) (which, as a G-space, can be
identified with its automorphism group, G = Z). The basic predicate is given by P<(x,y) = 0 if
x < y, P<(x,y) = 1 otherwise. The indicator function of the non-positive integers, f = 1

Z≤0
∈ C(Z),

is an M-definable predicate, f (y) = P<(0, y). It is clearly not in WAP(Z). However, it comes from
the two-point compactification X = Z∪ {−∞,+∞}, and it is easy to check that its extension to X
satisfies the fragmentability condition, whence in fact f ∈ Asp(Z) (more generally, see [GM06],
Corollary 10.2). Of course, M is not ∅-saturated.

On the other hand, we can consider the linearly ordered set N =
⊔
i∈(Q,<)(Z,<)i (where each

(Z,<)i is a copy of (Z,<)), which is a ∅-saturated elementary extension of M (say M = (Z,<)0).
The automorphism group of N is G = Z

Q
o Aut(Q,<). As an M-definable predicate on N , f is

the indicator function of the set of elements of N that are not greater than 0 ∈M ⊂N . As before,
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f < WAP(N ), but then by Proposition 2.10 we have f < Asp(N ) either (note that the orbit of 0
is N ). As per Proposition 1.8, the function h : g 7→ f (g(0)) is in UC(G). Since the continuous G-
map g ∈ G 7→ g(0) ∈N is surjective, any compactification of N induces a compactification of G. It
follows that h ∈UC(G)\Asp(G). (However, here one can also adapt the argument of Example 2.4
to show that in fact f < SUC(N ) and hence h < SUC(G).)

3. Tame∩UC = NIP = Null∩UC

Tame functions have been studied by Glasner and Megrelishvili in [GM12], after the introduc-
tion of tame dynamical systems by Köhler [Köh95] (who called them regular systems) and later
by Glasner in [Gla06]. If the translation of Ben Yaacov and Tsankov for Roelcke precompact Pol-
ish groups identifies WAP functions with stable formulas, we remark in this section that tame
functions correspond to NIP (or dependent) formulas. The study of this model-theoretic notion, a
generalization of local stability introduced by Shelah [She71], is an active and important domain
of research, mainly in the classical first-order setting —though, as the third item of the following
proposition points out, the notion has a very natural metric presentation.

Proposition 3.1. Let M be a ∅-saturated structure. Let f (x,y) be a formula and A ⊂Mα , B ⊂Mβ be
definable sets. The following are equivalent; in any of these cases, we will say that f (x,y) is NIP on
A×B.

(1) There do not exist real numbers r , s, a sequence (ai)i<ω ⊂ A and a family (bI )I⊂ω in some
elementary extension, with PB(bI ) = 0 for all I ⊂ω, such that for all i < ω, I ⊂ω,

f (ai ,bI ) = r if i ∈ I and f (ai ,bI ) = s if i < I.

(2) For every indiscernible sequence (ai)i<ω ⊂ A and every b ∈ B (equivalently, for every b in any
elementary extension satisfying PB(b) = 0), the sequence (f (ai ,b))i<ω converges in R.

(3) Every sequence (ai)i<ω ⊂ A admits a subsequence (aij )j<ω such that (f (aij ,b))j<ω converges
in R for any b in any elementary extension satisfying PB(b) = 0.

Proof. (1)⇒ (2). Let (ai)i<ω ⊂ A be indiscernible, b arbitrary with PB(b) = 0. If (f (ai ,b))i<ω does
not converge, there exist reals r , s such that (replacing (ai)i<ω by a subsequence) f (a2i ,b)→ r,
f (a2i+1,b)→ s. By ∅-saturation we may assume that f (a2i ,b) = r and f (a2i+1,b) = s for all i. Given
I ⊂ω, take a strictly increasing function τ : ω→ω such that τ(i) is even if and only if i is in I . By
indiscernibility, the set of conditions

{f (ai , y) = t : t ∈ {r, s}, f (aτ(i),b) = t}, PB(y) = 0,

is approximately finitely realized in M; take bI to be a realization in some model. Thus, for all i
and I , f (ai ,bI ) = r if i ∈ I and f (ai ,bI ) = s if i < I , contradicting (1).

(2) ⇒ (3). We claim that for every ε > 0 there are some δ > 0 and a finite set of formulas
∆ such that, for any b with PB(b) = 0 and every ∆-δ-indiscernible sequence (ai)i<ω ⊂ A, there
exists N < ω with |f (ai ,b) − f (aj ,b)| < ε for all i, j ≥ N . Otherwise, there are ε > 0 and, for any
∆, δ as before, a ∆-δ-indiscernible sequence (ai)i<ω ⊂ A and a tuple b with PB(b) = 0 such that
|f (a2i ,b)− f (a2i+1,b)| ≥ ε for all i < ω. By ∅-saturation, we can assume that (ai)i<ω is indiscernible
and b ∈ B. Then, by (2), the sequence (f (ai ,b))i<ω should converge, but cannot. The claim follows.

Now suppose that ∆n, δn correspond to ε = 1/n as per the previous claim. Given any sequence
(ani )i<ω we can extract, using Ramsey’s theorem, a ∆n+1-δn+1-indiscernible subsequence (an+1

i )i<ω.
As in the proof of Proposition 1.14, starting with any (ai)i<ω = (a0

i )i<ω, proceeding inductively
and taking the diagonal, we get a subsequence (aij )j<ω such that (f (aij ,b))j<ω converges for any b
satisfying PB(b) = 0.

(3)⇒ (1). Assume we have (ai)i<ω, (bI )I⊂ω and r, s contradicting (1). If (aij )j<ω is as given by
(3) and J ⊂ ω is infinite and coinfinite in {ij : j < ω}, then (f (aij ,bJ ))j<ω converges to both r and s,
a contradiction. �
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A subset of a topological space is said sequentially precompact if every sequence of elements of
the subset has a convergent subsequence; we can restate the third item of the previous proposi-
tion in the following manner.

Corollary 3.2. Let M be ∅-saturated and A ⊂Mα , B ⊂Mβ be definable sets. A formula f (x,y) is NIP
on A ×B if and only if {f̃a|B∗ : a ∈ A} is sequentially precompact in R

B∗ , where f̃a|B∗ is the extension of
fa to B∗ = {p ∈ Sy(M) : PB ∈ p}. If A′ ⊂ A is a dense subset, it is enough to check that {f̃a|B∗ : a ∈ A′} is
sequentially precompact in R

B∗ .

The proposition and corollary hold true, with the same proof and the obvious adaptations
regarding PB, if A and B are merely type-definable. In the literature, a formula in a given theory
is said simply NIP if the previous conditions are satisfied on Mα ×Mβ for some saturated model
M of the theory.

We turn to the topological side. Tame dynamical systems were originally introduced in terms
of the enveloping semigroup of a dynamical system, and admit several equivalent presentations.
The common theme are certain dichotomy theorems that have their root in the fundamental
result of Rosenthal [Ros74]: a Banach space either contains an isomorphic copy of `1 or has the
property that every bounded sequence has a weak-Cauchy subsequence.

A Banach space is thus called Rosenthal if it contains no isomorphic copy of `1. Then, a contin-
uous function f ∈ C(X) on an arbitraryG-space is tame if it comes from a Rosenthal-representable
compactification of X. See [GM12], Definition 5.5 and Theorem 6.7. See also Lemma 5.4 therein
and the reference after Definition 5.5 to the effect that the family Tame(X) of all tame functions
on X forms a uniformly closed G-invariant subalgebra of RUC(X). For metric X we shall mainly
consider the restriction Tameu(X) = Tame(X)∩RUCu(X), as per Note 1.1.

From Proposition 5.6 and Fact 4.3 from [GM12] we have the following characterization of
tame functions on compact systems.

Fact 3.3. A function f ∈ C(Y ) on a compactG-space Y is tame if and only if every sequence of functions
in the orbit Gf admits a weak-Cauchy subsequence or, equivalently, if Gf is sequentially precompact
in R

Y .

Remark 3.4. A direct consequence of this characterization is the following property: if j : Y → Z
is a compactification between compact G-spaces and h ∈ C(Z), then h ∈ Tame(Z) if and only if
hj ∈ Tame(Y ), which says that a function on an arbitrary G-space X is tame if and only if all (or
any) of its extensions to compactifications of X are tame. (We had already pointed out the same
property for AP, WAP, Asplund and SUC functions.) In fact, observe that the property holds true
if j : Y → Z is just a continuous G-map with dense image between arbitrary G-spaces, since in
this case j induces a compactification jh : Yhj → Zh between the corresponding (compact) cyclic
G-spaces.

The link with NIP formulas is then immediate.

Proposition 3.5. Let M be an ℵ0-categorical structure. Then h ∈ Tameu(M) if and only if h = fa for a
formula f (x,y) that is NIP on [a]×M. More generally, if f (x,y) is a formula, a ∈Mα , and B ⊂Mβ is
definable, we have fa|B ∈ Tame(B) if and only if f (x,y) is NIP on [a]×B.

Proof. The first claim follows from the second by Proposition 1.7. Fixed f (x,y), a and B, the
function fa ∈ RUCu(B) is tame if and only if its extension to B is tame, where B is the closure in
Sy(M) of the image of B under the compactification Mβ → Sy(M). Then the second claim follows
from Fact 3.3 and Corollary 3.2, taking A′ = Ga. For this, one can see that Corollary 3.2 holds
true with B instead of B∗ or, alternatively, that B = B∗ using thatM is ℵ0-categorical. We show the
latter. Clearly, B ⊂ B∗. Let p ∈ B∗ and take b a realization of p in a separable elementary extension
M ′ of M. Let φ(z,y) be a formula, c ∈M |z| and ε > 0. By ℵ0-categoricity there is an isomorphism
σ : M ′ →M. Then tp(c) = tp(σc), so, by homogeneity, there is also an automorphism g ∈ Aut(M)
with d(c,gσc) < ∆φ(ε). Hence gσb ∈ B and |φ(c,b)−φ(c,gσb)| < ε. We deduce that p ∈ B. �

During the writing of this paper we came to know that, independently from us, A. Chernikov
and P. Simon also noticed the connection between tameness in topology and NIP in logic, in



16 TOMÁS IBARLUCÍA

the somehow parallel context of definable dynamics [CS15]. More on this connection has been
elaborated by P. Simon in [Sim14].

In fact, it is surprising that the link was not made before, since the parallelism of these ideas in
logic and topology is quite remarkable. As we have already said, NIP formulas were introduced
by Shelah [She71] in 1971, in the classical first-order context. He defined them by the lack of an
independence property (IP), whence the name NIP. This independence property is the condition
negated in the first item of Proposition 3.1. In the classical first-order setting it can be read like
this: a formulaϕ(x,y) has IP if for some sequence of elements (ai)i<ω and every pair of non-empty
finite disjoint subsets I, J ⊂ω, there is b in some model that satisfies the formula∧

i∈I
ϕ(ai , y)∧

∧
j∈J
¬ϕ(aj , y).

In other words, ϕ(x,y) has IP if for some (ai)i<ω the sequence ({b : ϕ(ai ,b)})i<ω of the sets defined
by ϕ(ai , y) on some big enough model of the theory is an independent sequence in the sense of
mere sets: all Boolean intersections are non-empty.

In the introductory section 1.5 of the survey [GM14b] on Banach representations of dynamical
systems, Glasner and Megrelishvili write: «In addition to those characterizations already mentioned,
tameness can also be characterized by the lack of an “independence property”, where combinatorial
Ramsey type arguments take a leading role [. . . ]». The characterization they allude to is Propo-
sition 6.6 from Kerr and Li [KL07], and the independence property involved there can indeed
be seen as a topological generalization of Shelah’s IP (see also Fact 3.6 below). But the notion
of independence is already present in the seminal work of Rosenthal from 1974 [Ros74], where
a crucial first step towards his dichotomy theorem implies showing that a sequence of subsets
of a set S with no convergent subsequence (in the product topology of 2S ) admits a Boolean in-
dependent subsequence. Moreover, as pointed out in [Sim14], the (not) independence property
of Shelah, in its continuous form, appears unequivocally in the work of Bourgain, Fremlin and
Talagrand [BFT78]; see 2F.(vi).

On the other hand, this is not the first time that the concept of NIP is linked with a notion
of another area. In 1992 Laskowski [Las92] noted that a formula ϕ(x,y) has the independence
property if and only if the family of definable sets of the form ϕ(a,y) is a Vapnik–Chervonenkis
class, a concept coming from probability theory, and also from the 70’s [VC71]. He then profited
of the examples provided by model theory to exhibit new Vapnik–Chervonenkis classes. In Sec-
tion 4 we shall do the same thing with respect to tame dynamical systems, complementing the
analysis of the examples done by Ben Yaacov and Tsankov [BT14, §6].

We end this section by pointing out that Tameu(G) coincides, for Roelcke precompact Polish
groups, with the restriction to UC(G) of the algebra Null(G) of null functions onG. Null functions
arise from the study of topological sequence entropy of dynamical systems, initiated in [Goo74].
A compact G-space Y is null if its topological sequence entropy along any sequence is zero; we
refer to [KL07, §5] for the pertinent definitions. We shall say that a function f on an arbitrary G-
spaceX is null if it comes from a null compactification ofX, and by Corollary 5.5 in [KL07] this is
equivalent to checking that the cyclicG-space of f is null. For compactX this definition coincides
with Definition 5.7 of the same reference (the G-spaces considered there are always compact), as
follows from the statements 5.8 and 5.4.(2-4) thereof. The resulting algebra Null(X) is always
a uniformly closed G-invariant subalgebra of Tame(X) (closedness is proven as for Tame(X); for
the inclusion Null(X) ⊂ Tame(X) compare §5 and §6 in [KL07]).

The following fact is a rephrasing of the characterizations of Kerr and Li.

Fact 3.6. A function f ∈ RUC(X) is null if and only if there are no real numbers r < s such that for
every n one can find (gi)i<n ⊂ G and (xI )I⊂n ⊂ X such that

f (gixI ) < r if i ∈ I and f (gixI ) > s if i < I.

Proof. If f is non-null then its extension to any compactification is non-null, and the existence
of elements r, s and, for every n, (gi)i<n and (xI )I⊂n as in the statement follows readily from



THE DYNAMICAL HIERARCHY FOR ROELCKE PRECOMPACT POLISH GROUPS 17

Proposition 5.8 (and Definitions 5.1 and 2.1) in [KL07]; we obtain the elements xI in the com-
pactification, but we can approximate them by elements x̃I in X, since we only need that f (gi x̃I )
be close to f (gixI ) for the finitely many indices i < n.

Conversely, if we have r < s with the property negated in the statement, take u,v with r <
u < v < s and consider the sets A0 = {p ∈ Xf : f̃ (p) ≤ u}, A1 = {p ∈ Xf : f̃ (p) ≥ v}; here, f̃ is
the extension of f to the cyclic G-space Xf . Then A0 and A1 are closed sets with arbitrarily
large finite independence sets. Hence by Proposition 5.4.(1) in the same paper there is an IN-pair
(x,y) ∈ A0 ×A1, and by 5.8 we deduce that f is non-null. �

When X = M is an ℵ0-categorical structure, it is immediate by ∅-saturation that a formula
f (x,y) is NIP on [a]×M if and only if fa is null. Thus Nullu(M) = Tameu(M), and by considering
M = ĜL (and recalling Remark 1.3) one gets Nullu(G) = Tameu(G) for every Roelcke precompact
Polish G.

4. The hierarchy in some examples

Several interesting Polish groups are naturally presented as automorphism groups of well-
known first-order structures. Moreover, most of these structures admit quantifier elimination,
which enables to describe their definable predicates in a simple way. As a result, the subalgebras
of UC(G) that correspond to nice families of formulas can be understood pretty well in these
examples.

Let G be the automorphism group of an ℵ0-categorical structure M. We recall from Proposi-
tion 1.8 that the functions h in UC(G) are exactly those of the form h(g) = f (a,gb) for a formula
f (x,y) and tuples a,b from M. Then h factors through the orbit map g ∈ G 7→ gb ∈ [b]. Bearing in
mind Remark 3.4, it follows that

(1) h ∈ AP(G) if and only if f (x,y) is algebraic on [a]× [b] (Proposition 1.14);
(2) h ∈WAP(G) if and only if f (x,y) is stable on [a]× [b] (Fact 2.1);
(3) h ∈ Tameu(G) if and only if f (x,y) is NIP on [a]× [b] (Proposition 3.5).

However, a technical difficulty is that f (x,y) may be a formula in infinite variables, whereas it
is usually easier to work with predicates involving only finite tuples. This is especially the case
in the study of classical structures, for which, moreover, the results in the literature are stated,
naturally, for {0,1}-valued formulas in finitely many variables. In the following subsection we
elaborate a way to deal with this difficulty. The reader willing to go directly to the examples may
skip the details and retain merely the conclusion of Theorem 4.6.

4.1. Approximation by formulas in finite variables. In this subsection x and y will denote vari-
ables of length ω, and M will be a ∅-saturated structure. Any formula f (x,y) is, by construction,
a uniform limit of formulas defined on finite sub-variables of x,y. Moreover, if f (x,y) is, for in-
stance, stable onMω×Mω, then one can uniformly approximate f by stable formulas depending
only on finite sub-variables of x,y. It suffices to take n < ω large enough so that, by uniform
continuity, |f (a,b) − f (a′ ,b′)| < ε whenever a<n = a′<n and b<n = b′<n; then define for example
fn(x,y) = f (x′ , y′), where x′nk+i = xi and y′nk+i = yi for all i < n, k < ω.

However, if f (x,y) is only known to be stable on A × B for some subsets A,B ⊂ Mω, then the
previous simple construction does not ensure the stability of fn. Besides, it may not be possible
to find a formula stable on Mω ×Mω that agrees with f on A×B.

In [BT14], Proposition 4.7, a topological argument is given that permits to approximate WAP
functions by stable formulas in finitely many variables. In what follows we give an alternative
model-theoretic argument for this fact that can also be applied, in several cases, to NIP formulas.

In what follows, given a set A ⊂ M, the term acl(A) will denote the algebraic closure of A,
including imaginary elements of M. The reader may wish to consult [BBHU08, §10–11] for an
account of algebraic closure and imaginary sorts in continuous logic. Alternatively, and with no
loss for the examples considered later, the reader may assume that acl(A) = A.

Definition 4.1. Let M be a metric structure, f (x,y) a formula.
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(1) We will say that f (x,y) is in finite variables if there is n < ω such that f (a,b) = f (a′ ,b′)
whenever a<n = a′<n and b<n = b′<n.

(2) Let a ⊂Mω be a tuple and B ⊂Mω a definable set. We will say that f (x,y) has definable
extensions of types over finite sets on a,B if for every large enough n < ω there are an
acl(a<n)-definable predicate df (y) and a realization a′ of tp(a/a<n) (in some elementary
extension of M) such that

f (a′ ,b) = df (b)

for every b ∈ B.
(3) We will say thatM has definable extensions of types over finite sets if the previous condition

is true on a,Mω for every formula f (x,y) and any a ∈Mω.

Lemma 4.2. Suppose f (x,y) is stable on A×B for definable sets A,B. If a ∈ A, then f (x,y) has definable
extensions of types over finite sets on a,B.

Proof. Let n < ω. Since A and B are definable sets we can consider them as sorts in their own right
(say, of an expanded structure M ′), and consider f (x,y) as a formula defined only on A × B (so
x and y become 1-variables of the corresponding sorts). Then f is a stable formula in the usual
sense of [BU10], Definition 7.1, and we may apply the results thereof. More precisely, we can
consider the f -type of a over C = acl(a<n), call it p ∈ Sf (C). Here, p is an f -type (in the variable x)
in the sense of [BU10], Definition 6.6. By Proposition 7.15 of the same paper, p admits a definable
extension q ∈ Sf (M ′). Moreover, the type q is consistent with tp(a/C), by the argument explained
in [BU10, §8.1]; note that, by adding dummy variables, each predicate h(x) ∈ tp(a/C) can be seen
as a formula h(x,y) (in the structure expanded with constants for the elements of C), which is
trivially stable. Then it is enough to take for a′ any realization of q∪ tp(a/C). �

Lemma 4.3. Let A,B ⊂Mω be definable sets. Given a formula f (x,y), define f̃ (y,x) = f (x,y). Then
f (x,y) is algebraic, stable or NIP on A×B if and only if so is f̃ (y,x) on B×A.

Proof. This is clear for the stable case. For the NIP case, the proof is as in [Sim15], Lemma 2.5.
If f (x,y) is algebraic on A × B this means that K = {fa|B : a ∈ A} is precompact in C(B), so given
ε > 0 there are ai ∈ A, i < n, such that the functions fai |B form an ε-net for K . Let Ij ⊂ R, j < m,
be a partition of the image of f on sets of diameter less than ε. For each function τ : n→ m let
bτ ∈ B be such that f (ai ,bτ ) ∈ Iτ(i) for every i < n, if such an element exists. Then the functions
f̃bτ |A form a 3ε-net for K̃ = {f̃b |A : b ∈ B} ⊂ C(A). This shows that K̃ is also precompact, hence that
f̃ is algebraic on B×A. �

In the following theorem we ask M to be ℵ0-categorical to ensure that the closed orbits we
consider are definable sets. The addition of imaginary sorts does not affect the ℵ0-categoricity
of M.

Proposition 4.4. Let M be ℵ0-categorical, f (x,y) a formula, a,b ∈Mω. Suppose either

(1) f (x,y) is algebraic on [a]× [b],
(2) f (x,y) is stable on [a]× [b], or
(3) M has definable extensions of types over finite sets, and f (x,y) is NIP on [a]× [b].

Then for every ε > 0 there is a formula f0(x,y) in finite variables such that

sup
x∈[a],y∈[b]

|f (x,y)− f0(x,y)| ≤ ε

and f0(x,y) is algebraic, stable or NIP, respectively, on [a]× [b].

Proof. Let n be large enough, so that in particular |f (u,v) − f (u′ ,v)| ≤ ε/2 for any tuples u,u′ ,v
with u<n = u′<n. Using Lemma 4.2 for cases (1) and (2) (remark that a formula algebraic on A×B
is stable on A×B) we have that in any case there are a formula df (z,y), a parameter c ∈ acl(a<n)
and a realization a′ of tp(a/a<n) in some elementary extension of M, such that f (a′ ,b′) = df (c,b′)
for every b′ ∈ [b].
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Let C be the set of realizations of tp(c/a<n). Since c ∈ acl(a<n), this set is compact, a<n-definable
and contained in the appropriate imaginary sort of M (see [BBHU08], Exercise 10.8 and Propo-
sition 10.6). Here, a<n-definable means that C is a definable set in the structure M augmented
with constants for the elements of a<n (that is, d(x,C) is an a<n-definable predicate), and hence we
can quantify over C in this augmented structure: in particular, supz∈C df (z,y) is an a<n-definable
predicate. This says that there is a formula f ′ : Mn ×Mω→R such that, for every b′ ∈ [b],

f ′(a<n,b
′) = sup

z∈C
df (z,b′).

For any a′′ with a′′<n = a<n we have supy∈[b] |f (a′′ , y) − df (c,y)| ≤ ε/2, and the same is true if we
replace c by any c′ ∈ C. We obtain supy∈[b] |f (a,y)− f ′(a<n, y)| ≤ ε/2, and thus

sup
x∈[a],y∈[b]

|f (x,y)− f ′(x<n, y)| ≤ ε/2.

Now we consider each of the cases of the statement separately.

(1) Let (bj )j<ω be an indiscernible sequence in [b]. By the hypothesis and Lemma 4.3, the
value of f (a,bj ) is constant in j, and the same holds for a′ instead of a. Thus df (c,bj )
is constant in j, and we can deduce that df (z,y) is algebraic on [c] × [b]. Since C ⊂ [c],
it follows that f ′(a<n,bj ) is constant too. We can conclude that f ′(x<n, y) is algebraic on
[a<n]× [b].

(2) Since f (x,y) is stable on (the definable sets) [a] × [b] and M is ∅-saturated, no sequences
a′i ,b

′
j , in any elementary extension, with tp(a′i) = tp(a), tp(b′j ) = tp(b), can witness the

order property for f (x,y). Hence, the function fa′ ∈ C([b]) is WAP. Since fa′ = dfc on [b], it
follows that df (z,y) is stable on [c]× [b]. Since C is compact, it is not difficult to deduce
that f ′(x<n, y) is stable on [a<n]×[b]. For example, we know that maxl<k dfcl is in WAP([b])
for every (cl)l<k ⊂ C, and f ′a<n |[b] is a uniform limit of functions of this form.

(3) Here, if (bj )j<ω ⊂ [b] is an indiscernible sequence and g is an automorphism of M, the
sequence (df (gc,bj ))i<ω must converge in R. Indeed, df (gc,bj ) = f (a′ , g−1bj ), so the claim
follows from the fact that f (x,y) is NIP on [a]× [b] and (g−1bj )j<ω is also indiscernible. By
uniform continuity and a density argument, the same is true if we replace gc with any
c′ ∈ [c]. We deduce that df (z,y) is NIP on [c] × [b]. As in the previous item, this implies
that f ′(x<n, y) is NIP on [a<n]× [b].

This is half what we intended. To complete the proof it suffices to apply the same construction
to the formula f̃ ′(y,x) = f ′(x<n, y). We obtain a formula f ′′(y<m,x); we define f0(x,y) = f ′′(y<m,x),
then f0(x,y) is in finite variables and satisfies the other conditions of the statement. �

Question 4.5. Is the previous result true in the NIP case without the assumption on M?

We remark that a {0,1}-valued formula is necessarily in finite variables. Also, any formula
with finite range can be written as a linear combination of {0,1}-valued formulas. IfM is classical
ℵ0-categorical, then, conversely, any formula in finite variables has finite range, since it factors
through the finite space Mk �G for some k < ω. For G = Aut(M) it follows that UC(G) is the
closed algebra generated by the functions of the form g 7→ f (a,gb) where a,b are parameters and
f (x,y) is a classical (i.e. {0,1}-valued) formula.

Let us define cTameu(G) (respectively, cAP(G), cWAP(G)) as the closed subalgebra of UC(G)
generated by the functions of the form g 7→ f (a,gb) for {0,1}-valued NIP (resp., algebraic, stable)
formulas f (x,y). That is, these are the algebras generated by classical formulas of the appropriate
corresponding kind. Here, assuming M is classical ℵ0-categorical, it is indifferent to ask f (x,y)
to be NIP only on [a]× [b] or in its whole domain, since one can easily modify f so that it be NIP
(resp., algebraic, stable) everywhere, without changing the function g 7→ f (a,gb). Indeed, one
can assume that a,b ∈Mk for some k < ω, then set f to be 0 outside [a]× [b] (since Mk is discrete
and [a]× [b] is definable, the modified f is still definable).

From the previous proposition and discussion we obtain the following conclusion, which ex-
tends Theorem 5.4 in [BT14].
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Theorem 4.6. LetM be a classicalℵ0-categorical structure,G its automorphism group. Then cAP(G) =
AP(G) and cWAP(G) = WAP(G). If M has definable extensions of types over finite sets, then also
cTameu(G) = Tameu(G).

As we will see shortly, the assumption that M has definable extension of types over finite sets
is satisfied in many interesting cases. The following is a useful sufficient condition.

Lemma 4.7. SupposeM is classical, ℵ0-categorical, and that for every a ∈Mω and n < ω there is a type
p ∈ Sx(M) such that p extends tp(a/a<n) and p is a<n-invariant (i.e. p is fixed under all automorphisms
of M fixing the tuple a<n). Then M has definable extensions of types over finite sets.

Proof. Let a ∈Mω, n < ω; take p as in the hypothesis of the lemma, a′ a realization of p. Given a
formula f (x,y), the function df defined by df (b) = f (a′ ,b) is a<n-invariant. Since M is classical
ℵ0-categorical, the structureM expanded with constants for the elements of a<n is ℵ0-categorical
too (see [TZ12], Corollary 4.3.7). It follows that df (y) is an a<n-definable predicate, hence the
conditions of Definition 4.1 are satisfied. �

4.2. The examples. We describe the dynamical hierarchy of function algebras for the automor-
phism groups of some well-known (unstable) ℵ0-categorical structures. We start with the oligo-
morphic groups Aut(Q,<), Aut(RG) and Homeo(2ω).

The unique countable dense linear order without endpoints, (Q,<), admits quantifier elimina-
tion (see [TZ12, §3.3.2]). This implies, for G = Aut(Q,<), that UC(G) is the closed unital algebra
generated by the functions of the form g 7→ (a = gb) and g 7→ (a < gb) for elements a,b ∈ Q

—where we think of the classical predicates x = y and x < y as {0,1}-valued functions. The for-
mula x < y is NIP (and x = y is of course stable), whence we deduce that every UC function is
tame. On the other hand, x < y is unstable, so g 7→ (a < gb) is not WAP (in fact, as follows from
[BT14], Example 6.2, WAP(G) is precisely the unital algebra generated by the functions of the
form g 7→ (a = gb)).

Now suppose f (x,y) is a formula algebraic on [a]× [b]. For slight convenience we may assume,
by Theorem 4.6, that f is classical and the tuples involved are finite. For tuples c,d, let us write
c < d to mean that every element of the tuple c is less than every element of d. Let b′ ∈ [b].
We can choose a sequence of tuples (ai)i<ω in Q (or in an elementary extension if we did not
assume the tuples are finite) such that a ' ai as linear orders, a = a0, b < a1, b′ < a1, and ai < aj

if i < j. By quantifier elimination, the type of a tuple depends only on its isomorphism type as
a linear order; hence (ai)i<ω is an indiscernible sequence. By the hypothesis on f we have that
(f (ai ,b))i<ω is constant, and the same with b′ instead of b. But, again by quantifier elimination,
f (a1,b) = f (a1,b′). It follows that f (a,b) = f (a,b′). We have thus shown that g 7→ f (a,gb) is
constant, and can deduce that G is AP-trivial. (In fact, as is well-known, G is extremely amenable
([Pes98]), which is a much stronger property: if f ∈ AP(G) then the compact G-space Gf must
have a fixed point; since the action ofG onGf is by isometries we conclude thatGf is a singleton,
i.e. that f is constant.)

Putting these conclusions together we get the following (where R stands for the algebra of
constant functions on G).

Corollary 4.8. For G = Aut(Q,<) we have R = AP(G) ( WAP(G) ( Tameu(G) = UC(G).

The situation is different for the random graph RG, the unique countable, homogeneous, uni-
versal graph. It has quantifier elimination, which in this case implies that UC(Aut(RG)) is the
closed unital algebra generated by the functions of the form g 7→ (a = gb) and g 7→ (a R gb) (where
R denotes the adjacency relation of the graph). Also, stable formulas on [a]× [b] are again exactly
those expressible in the reduct of RG to the identity relation ([BT14], Example 6.1). But in this
case no other formula is NIP on [a]× [b].

Lemma 4.9. On the random graph, every classical NIP formula is stable.
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Proof. Theorem 4.7 in [She90, Ch. II] shows that if there is an unstable NIP formula then there
is a formula with the strict order property. The theory of the random graph, being simple, does
not admit a formula with the strict order property; see [TZ12], Corollary 7.3.14 and Exercise
8.2.4. �

It follows for G = Aut(RG) that cTameu(G) = cWAP(G). Now we argue that RG has definable
extensions of types over finite sets, whence Tameu(G) = WAP(G) by Theorem 4.6. For any a ∈ RGω
and n < ω, the free amalgam of a and RG over a<n is a graph containing RG and a copy a′ ' a
such that a<n = a′<n and, for every i ≥ n, ai is not R-related to any element of RG outside a<n.
The homogeneity and universality of RG ensure that such a copy a′ is realized as a tuple in
some elementary extension of RG. Since RG has quantifier elimination it is clear that a′ realizes
tp(a/a<n) and that the type tp(a′/RG) is a<n-invariant, thus Lemma 4.7 applies. We can conclude
that Tameu(G) is the closed unital algebra generated by the functions of the form g 7→ (a = gb),
a,b ∈ RG. An example of a non-tame function in UC(G) is of course g 7→ (a R gb).

If f (x,y) is a formula algebraic on [a]×[b] and b′ ∈ [b], we can take a sequence (ai)i<ω of disjoint
copies of a such that a = a0 and no element of ai , i ≥ 1, is R-related to an element of b, b′ nor aj for
j , i. It follows by quantifier elimination that (ai)i<ω is indiscernible and that f (a1,b) = f (a1,b′).
Since, by hypothesis, (f (ai ,b))i<ω and (f (ai ,b′))i<ω must be constant, we obtain f (a,b) = f (a,b′).
Thus g 7→ f (a,gb) is constant.

Corollary 4.10. For G = Aut(RG) we have R = AP(G) ( WAP(G) = Tameu(G) ( UC(G).

The group G = Homeo(2ω) of homeomorphisms of the Cantor space, carrying the compact-
open topology, can be identified naturally with the automorphism group of the Boolean algebra
B of clopen subsets of 2ω, with the topology of pointwise convergence. Up to isomorphism, B is
the unique countable atomless Boolean algebra. We consider it as a structure in the language of
Boolean algebras, that is, we have basic functions ∧,∨ : B2→B and ¬ : B →B for meet, joint and
complementation in the algebra, and constants 0 and 1 for the minimum and maximum of B.
In this language B admits quantifier elimination (see [Poi85], Théorème 6.21). This means that
two tuples c,d of the same length have the same type over ∅ if and only if c ' d (i.e. the map
ci 7→ di extends to an isomorphism of the generated Boolean algebras). It also implies that UC(G)
is the algebra generated by the functions of the form g 7→ (0 = t(a,gb)), where t(x,y) is a Boolean
term in finite variables, i.e. a function Bn×Bm→B constructed with the basic Boolean operations
∧,∨,¬.

Here it is easy to see that 0 = x ∧ y is not NIP on [a] × [b] (for a,b < {0,1}), so the function
g 7→ (0 = a∧ gb) is not tame. With this in mind, and following the idea of [BT14], Example 6.3,
one sees the following.

Lemma 4.11. On the countable atomless Boolean algebra, every classical NIP formula is stable.

Proof. Let f (x,y) be a classical formula. If f is not stable, then it is not stable on [a]× [b] for some
tuples a, b from B. We may modify f (x,y), a and b (without changing the function g 7→ f (a,gb))
so that the elements of the tuple a form a finite partition of 1, and the same for b.

Say a ∈ Bn, b ∈ Bm. In [BT14], Example 6.3, it is shown that f (x,y) is unstable on [a] × [b] if
and only if there is b′ ∈ [b] such that f (a,b) , f (a,b′) but the xy-tuples ab and ab′ satisfy the same
formulas of the form t(x) = s(y) for Boolean terms t, s. Moreover, it is shown that in this case
one can choose b′ so that, for some indices i0, i1 < n, j0, j1 < m, we have (possibly changing b by a
conjugate):

(1) ai0 ∧ bj0 = 0, ai0 ∧ bj1 , 0, ai1 ∧ bj0 , 0 and ai1 ∧ bj1 , 0;
(2) ai ∧ b′j , 0 for i ∈ {i0, i1} and j ∈ {j0, j1};
(3) ai ∧ bj = 0 if and only if ai ∧ b′j = 0, for every pair (i, j) , (i0, j0);
(4) f (a,b) , f (a,b′).

Now we fix an arbitrary l < ω and choose a partition c0, . . . , cl of ai1 ∧ bj1 . For each k < l we
let aki0 = ai0 ∨ ck and aki1 = ai1 ∧¬ck . We also let aki = ai for every i < {i0, i1}, thus defining a tuple

ak ∈ [a]. Similarly, for every K ⊂ l we let bKj0 = bj0 ∨ (
∨
k∈K ck) and bKj1 = bj1 ∧¬(

∨
k∈K ck). We let
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bKj = bj for j < {j0, j1}, and this defines a tuple bK ∈ [b]. By quantifier elimination, the type of the

tuple akbK is determined by the set of pairs i, j such that aki ∧ b
K
j = 0. It follows that

f (ak ,bK ) = f (a,b′) if k ∈ K , and f (ak ,bK ) = f (a,b) if k < K .

Hence f (x,y) is not NIP on [a]× [b]. �

The lemma shows that cTameu(G) = cWAP(G) for G = Aut(B), and that this algebra is gener-
ated by the functions of the form g 7→ (a = gb). Indeed, the proof shows that an NIP formula on
[a] × [b] is a combination of formulas of the kind t(x) = s(y) for Boolean terms t, s; then simply
note that s(gb) = gs(b), so the function on G associated to a formula of latter kind is g 7→ (c = gd)
where c = t(a) and d = s(b). Next we show that B has definable extensions of types over finite
sets, in order to conclude, by Theorem 4.6, that these functions actually generate Tameu(G).

Let a ∈ Bω, n < ω; with no loss of generality we may assume that a<n is a partition of 1.
We consider the free amalgam of a and B over a<n, which is a Boolean algebra generated by B
together with a copy a′ ' a such that a′<n = a<n and, for every i < n, every d ∈ B and every c in
the Boolean algebra generated by a′ , we have c∧ ai ∧ d , 0 unless c∧ ai = 0 or ai ∧ d = 0. Such a
copy a′ is realized as a tuple in some elementary extension of B, and the type tp(a′/B) is clearly
a<n-invariant. By Lemma 4.7, B has definable extensions of types over finite sets.

Finally, as with Aut(Q,<) and Aut(RG), we show that every AP function on Homeo(2ω) is
constant. If f (x,y) is algebraic on [a]× [b] and b′ ∈ [b], we can find copies ai of a such that a = a0

and each ai , i ≥ 1, forms a free amalgam with Bi over ∅, where Bi is the algebra generated by b,
b′ and all aj , j < i. That is, c∧ d , 0 for every non-zero d ∈ Bi and every non-zero c in the algebra
generated by ai . Then (ai)i<ω is indiscernible and f (a1,b) = f (a1,b′). By hypothesis (f (ai ,b))i<ω
and (f (ai ,b′))i<ω are constant, and therefore f (a,b) = f (a,b′).

Corollary 4.12. For G = Homeo(2ω) we have R = AP(G) ( WAP(G) = Tameu(G) ( UC(G).

The previous examples come from classical structures; we consider now a purely metric one:
the Urysohn sphere U1. This is, up to isometry, the unique separable, complete and homoge-
neous metric space of diameter 1 that is universal for countable metric spaces of diameter at
most 1: any such metric space can be embedded in U1. As a metric structure with no basic pred-
icates (other than the distance), U1 is ℵ0-categorical and has quantifier elimination, which in
this case means that the type of a tuple b depends only on the isomorphism class of b as a metric
space; see [Usv08, §5]. It also says that UC(Iso(U1)) is generated by the functions of the form
g 7→ d(a,gb) for a,b ∈U1.

We show that Iso(U1) is Tameu-trivial.

Theorem 4.13. Every function in Tameu(Iso(U1)) is constant.

Proof. Suppose f (x,y) is not constant on [a] × [b], so we have f (a,b) , f (a′ ,b′) where a ' a′ and
b ' b′ as metric spaces. We will need to assume that the elements of a are separated enough
from the elements of b, (the same for a′ ,b′), and that the metric space ab is similar to a′b′ ; so we
precise and justify this. Let 0 < ε < 1. Note first that, by the universality and homogeneity of the
Urysohn sphere, for any tuples x,y in U1 (or in an elementary extension thereof) we can find ỹ
in an elementary extension such that y ' ỹ, d(yn, ỹn) = ε and d(xn, ỹm) = (d(xn, ym) + ε)∧ 1 for all
coordinates n,m (where r∧ s denotes min(r, s)). Note secondly that finitely many iterations of the
process of replacing y by ỹ eventually end with d(xn, ym) = 1 for all n,m.

If we chose ε small enough and do one iteration of the previous process for xy = ab, by conti-
nuity of f we can assume (replacing ab by ab̃) that

d(an, am) ≤ d(an,bk) + d(bk , am)− ε, d(bn,bm) ≤ d(bn, ak) + d(ak ,bm)− ε

for all n,m,k —and still f (a,b) , f (a′ ,b′). So we have separated the elements of a from those of b,
and we do the same for a′ ,b′ .

Next we iterate the process described above for ε/2, starting with xy = ab, thus producing a
finite sequence of copies of b, the last copy b̃ verifying d(an, b̃m) = 1 for all n,m. We do the same
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starting with a′ ,b′ , finishing with a copy b̃′ with the analogous property. Since the theory of U1
has quantifier elimination, we have f (a, b̃) = f (a′ , b̃′). So f differs in two consecutive steps of the
process, and by replacing our tuples ab, a′b′ by these consecutive tuples we may assume also that
a = a′ and |d(an,bm)− d(an,b′m)| ≤ ε/2 for all n,m.

With the previous assumptions in mind, we now construct a metric space containing a se-
quence (ai)i<ω of different copies of a and, for each I ⊂ω, a copy bI of b ' b′ such that aibI ' ab if
i ∈ I and aibI ' ab′ if i < I . For i , j, I , J and each n,m we define d(ain, a

j
m) = (d(an, am) + ε/2)∧ 1,

d(bIn,b
J
m) = (d(bn,bm) + ε/2)∧ 1. The triangle inequalities are satisfied; for example, for ain, a

j
m,b

I
k ,

i , j, i ∈ I , we have d(ain, a
j
m) = (d(an, am)+ε/2)∧1 ≤ d(an,bk)+d(bk , am)−ε/2 ≤ d(ain,b

I
k)+d(bIk , a

j
m),

and also d(ain,b
I
k) ≤ (d(ain, a

i
m)+ε/2)∧1+d(aim,b

I
k)−ε/2 ≤ d(ain, a

j
m)+d(ajm,bIk). The other inequalities

are proved similarly.
By the universality of the Urysohn sphere we can assume that the tuples ai lie in U1, the

tuples bI in some elementary extension. By quantifier elimination, f (ai ,bI ) = f (a,b) if i ∈ I and
f (ai ,bI ) = f (a,b′) if i < I . This shows that f (x,y) is not NIP on [a]× [b]. It follows that every tame
function of the form g 7→ f (a,gb) is constant, which proves the theorem. �

In Question 7.10 from [GM13] it was asked whether the algebra Tame(G) separates points
and closed subsets of G for every Polish group G. As we have seen, this can fail drastically for
the algebra Tameu(G). Unfortunately, we do not know how big the gap between Tame(G) and
Tameu(G) may be.

Question 4.14. Are there tame non-constant functions on Iso(U1)? Is there a way to regularize
a (non-constant) function f ∈ RUC(G) to get (a non-constant) f̃ ∈ UC(G), in such a manner that
tameness is preserved?

Finally, we consider the group G = H+[0,1] of increasing homeomorphisms of [0,1] with the
compact-open topology —which coincides on G with those of pointwise or uniform convergence.
In spite of not being naturally presented as an automorphism group of some ℵ0-categorical met-
ric structure, this group is Roelcke precompact. See [Usp02], Example 4.4, for a description of
its Roelcke compactification.

The following result was explained to us by M. Megrelishvili.

Theorem 4.15. UC(H+[0,1]) ⊂ Tame(H+[0,1]).

See [GM14a], Theorem 8.1. As remarked there, the inclusion is strict: the function f : G→ R

given by f (g) = g(1/2), for example, is tame (it comes from the Helly space, which is a Rosenthal
compactification of G) but not left uniformly continuous: supg |f (gh) − f (g)| = 1 for any h ∈ G
with h(1/2) , 1/2. In fact, f is even null: it is clear that, for reals r < s, there are no increasing
functions g0, g1 ∈ [0,1][0,1] and elements x{0},x{1} ∈ [0,1] such that gi(xI ) < r if i ∈ I and gi(xI ) > s if
i < I . One deduces that UC(G) ( Null(G).

Additionally, as we have already recalled, the celebrated result of [Meg01] says that H+[0,1] is
WAP-trivial. On the other hand, one of the main results of [GM08] (Theorem 8.3) is the stronger
fact that H+[0,1] is SUC-trivial. In turn, this allows the authors to deduce that Iso(U1) is also
SUC-trivial ([GM08, §10]). By our Theorem 2.9 we can recover these facts directly from the WAP-
triviality of these groups, and extend the conclusion to another interesting Roelcke precompact
Polish group that is also known to be WAP-trivial.

Corollary 4.16. The groups H+[0,1] and Iso(U1) are SUC-trivial. The same is true for the homeo-
morphism group of the Lelek fan.

Proof. The WAP-triviality of Iso(U1) was first observed in [Pes07], Corollary 1.4, using the anal-
ogous result for H+[0,1]; an alternative proof is given in [BT14], Example 6.4, and of course
also follows from Theorem 4.13 above. For the homeomorphism group of the Lelek fan, WAP-
triviality was proven in [BT14]: see the discussion after Corollary 4.10 and the references therein.

�
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The previous facts about the group H+[0,1] lead to an interesting model-theoretic example,
addressed in the following corollary.

If f (x,y) is a formula in the variables x,y (of arbitrary length), let us say that f (x,y) is separated
if it is equivalent to a continuous combination of definable predicates fi(zi) where, for each i,
zi = x or zi = y. Equivalently, f (x,y) is separated if it factors through the product of type spaces
Sx(∅)× Sy(∅) (by the Stone–Weierstrass theorem, the continuous functions on a product X × Y
of compact Hausdorff spaces is the closed algebra generated by the continuous functions that
depend only on X or on Y ). Of course, separated formulas are stable. Let us say that a structure
is purely unstable if every stable formula f (x,y) is separated. No infinite classical structure can be
purely unstable, since the identity relation x = y is always stable and never separated.

Corollary 4.17. The ℵ0-categorical structure M = ĜL associated to G = H+[0,1] is purely unstable
and NIP.

Proof. Of course, WAP-triviality implies that M is purely unstable: if f (x,y) is stable and a,b are
parameters, then the function g 7→ f (a,gb) belongs to WAP(G) and so is constant. It follows that
the value of f on a,b only depends on [a], [b], that is, on tp(a), tp(b) since M is ℵ0-categorical;
hence f (x,y) is separated.

On the other hand, Theorem 4.15 and Proposition 3.5 imply that every formula f (x,y) with
|y| = 1 is NIP. A well-known argument (see for example Proposition 2.11 in [Sim15], which
adapts easily to the metric setting), shows that then every formula is NIP. �

We finish with a remark relating sections 2 and 3 of this paper. Since reflexive-representable
functions correspond to stable formulas and Rosenthal-representable functions correspond to
NIP formulas, it is not surprising that, as we have seen, the natural intermediate subalgebra
of Asplund-representable functions collapses to one of the other two: on the model-theoretic
side, there is no known natural notion between stable and NIP. However, one might be slightly
surprised to find that WAP = Asp rather than Asp = Tameu (although, in fact, this was already
known for G = H+[0,1]). Indeed, Asplund and Rosenthal Banach spaces were once difficult to
distinguish, with the first examples coming in the mid-seventies from independent works of
James and of Lindenstrauss and Stegall. It is thus worthy to remark that, via our results and
the Banach space construction of Glasner and Megrelishvili [GM12] (Theorem 6.3), every NIP
unstable ℵ0-categorical structure yields an example of a Rosenthal non-Asplund Banach space.
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