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Abstract—One of the main factors affecting the performance
of biometric systems is the quality of the acquired samples. Poor-
quality samples increase the enrollment failure, and decrease the
system performance. Therefore, it is important for a biometric
system to estimate the quality of the acquired biometric samples.
Toward this goal, we present in this paper a multi-class SVM-
based method to predict sample quality. The proposed method
uses two types of information: the first one is based on the image
quality and the second is a pattern-based quality using the SIFT
keypoints extracted from the image. For the experiments, we use
four large and significant face databases to show the efficiency
of the proposed method in predicting the system performance
illustrated by the Equal Error Rate (EER).

Index Terms—Biometrics, quality assessment, performance,
Support Vector Machine (SVM), Scale-Invariant Feature Trans-
form (SIFT).

I. INTRODUCTION

Biometrics is considered as a promising solution among

traditional methods based on “what we own” (such as a

key) or “what we know” (such as a password) [1]. It is

based on “what we are” and “how we behave”. Biometric

authentication systems have many applications [2] such

as border control and e-commerce. The main benefits of

this technology are to provide a better security and to

facilitate the authentication process for a user. By contrast

to traditional authentication methods (providing a 0%

verification error), biometric systems are subject to errors

computed by many metrics such as Failure to Acquire Rate

(FTA), False Acceptance Rate (FAR) and False Rejection

Rate (FRR) [3]. This inaccuracy is due to the variations of

human characteristics (such as occlusions for iris recognition

systems [4]), environment factors (i.e., variation of acquisition

conditions such as illuminations for face recognition systems

[5]) and cross-device matching [6]. These kinds of variations

may deeply affect biometric raw data quality. Poor-quality

samples increase the enrollment failure rate, and decrease

the system performance [5]. Therefore, quality assessment is

considered as an important factor to take into account in both

the enrollment and verification phases. Towards this goal, we

propose a multi-class SVM-based method, to assess biometric

raw data, which combines the use of image and pattern-based

quality. Using quality information, the bad quality samples

can be removed during the enrollment step or rejected during

verification. Such information could also be used in soft

biometrics or multimodal approaches [7], [8].

The outline of the paper is defined as follows. We present re-

lated previous research concerning biometric raw data quality

in section II. Section III presents the proposed method. Section

IV illustrates the experimental results on four large face

benchmark databases. We conclude and give some perspectives

of this work in section V.

II. BACKGROUND

The quality assessment of biometric raw data is receiving

more and more attention in biometrics community. Many

quality algorithms have been developed mainly for the

fingerprint modality [9], [10], face [5], [11], iris [4],

voice [12] and signature signals [13]. These works have

demonstrated that the performance of biometric systems is

heavily affected by the quality of the acquired biometric

data. Tabassi et al. present in [9] a method based on the

measurement of the matching scores to assess fingerprint

quality. The proposed method uses a black box composed of

two modules, feature extraction and neural network, which

associates the image quality into five classes (excellent,

very good, good, fair and poor). He et al. [14] present a

hierarchical model to compute the biometric sample quality

at three levels: database, class and image quality levels. The

method is based on the quantiles of genuine and impostor

matching score distributions. However, their model could

not be used directly on a single capture (i.e., requires

a pre-acquired database). Zhang et al. present in [5] an

asymmetry-based quality assessment method of face images.

The method uses SIFT descriptor for quality assessment.

The presented method has shown its robustness against

illumination and pose variations. Another asymmetry-based

method is presented in [15]. However, this approach supposes

the asymmetry hypothesis hence, could not be used for the

others types of modalities. Other efforts [7], [8] have also been

focused on the incorporation of biometric quality information

to multimodal fusion approaches. Poh et al. present in [8] a



quality-dependent evaluation campaign. It aims at assessing

how well fusion algorithms can perform under changing

the quality of raw biometric images. The results from

this evaluation have shown that the best fusion methods are

those that exploit automatically derived quality measurements.

Discussion

The works done in quality assessment are very few in

comparison to performance ones [16]. To our knowledge, most

of the existing quality algorithms are modality and matcher

dependent. The others, based on the genuine and impostor

matching score distributions, could not be used directly on a

single capture (i.e., they require a large number of captures

for the same person in order to constitute its genuine score

distribution). Therefore, the main contribution of this paper

is the definition of a method which can be considered as

independent from the used matching system. It detects in a

reasonable accuracy three types of real alterations that may

deeply affect the global performance of the most widely used

matching systems. The presented method is not based on

asymmetry hypothesis. Thus, it may be used for several types

of modalities (such as fingerprint, face, hand and finger veins),

and can be used directly on a single capture after training the

model.

III. DEVELOPED METHOD

The proposed method is designed to predict the sample

quality using two types of information. The first one is based

on the image quality (section III-A) and the second is a pattern-

based quality using the SIFT keypoints extracted from the

image (section III-B). The methodology principle is illustrated

in figure 1: for an input image, the method constitutes a vector

of both information and uses the multi-class Support Vector

Machine (SVM) [17] classifier to assign a class for an image.

Fig. 1. General scheme of the proposed method

A. No-reference image quality

The development of general-purpose no-reference ap-

proaches to image quality assessment (NR-IQA) still lags

recent advances in full-reference methods. Additionally, most

no-reference or blind approaches are distortion-specific, mean-

ing they assess only a specific type of distortion assumed

present in the test image (such as blockiness, blur, or ringing).

This limits their application domain. Other approaches rely

on training a machine learning algorithm. These methods

however, are only as effective as the features used to train

their learning machines. The used NR-IQA method in this

paper is the BLIINDS index introduced by Saad et al. [18].

This index is based on a DCT framework entirely. This

makes it computationally convenient, uses a commonly used

transform, and allows a coherent framework. The BLIINDS

index is defined from four features that are then pooled

together: i) a contrast feature υ1, ii) a structure distortion based

feature υ2 and iii) iv) two anisotropic based measures υ3, υ4.

Contrast is a basic perceptual attribute of an image. One may

distinguish between global contrast measures and ones that are

computed locally (and possibly pooled into one measure post

local extraction). The contrast of the kth local DCT patch is

computed as follows:

ck(x) =
1

N

N
∑

i=1

xi
AC

xDC

(1)

where N is the patch size, xDC represents the DC coefficient

and the set {xi
AC | i = 1 : N} represents the AC coefficients.

Then, the local contrast scores from all patches of the image

are then pooled together by averaging the computed values to

obtain a global image contrast value υ1:

υ1 =
1

M

M
∑

i=1

ci(x) (2)

where M is the number of local patches. Structure features

are derived locally from the local DCT frequency coefficients

computed on a patch k. They are based on statistical traits of

the DCT histogram for wich the DC coefficient is ignored. To

measure these statistical traits of the DCT histograms of the

patch k, its kurtosis is computed to quantify the degree of its

peakedness and tail weight:

κk(xAC) =
E(xAC − µ4)

σ4
(3)

where µ is the mean of xAC , and σ is its standard deviation.

Then the resulting values for all patches are pooled together

by averaging the lowest tenth percentile of the obtained values

to compute the global image kurtosis value υ2. As degradation

processes damage a scenes directional information, anisotropy

measure, which is a directionally dependent quality of images,

is computed using the Renyi Entropy on DCT image patches

along four different orientations θ = 0, 45, 90, 135 in degrees.

Each patch consists of the DCT coefficients of oriented pixel

intensities. We discard the DC coefficient, since the focus is

on directional information. Let the DCT coefficients of kth

patch of orientation θ be denoted by Pθ[k, j], where j is the

frequency index of the DCT coefficient. Each DCT patch is

then subjected to a normalization of the form:

P̃θ[k, j] =
Pθ[k, j]

2

∑N
j=1 Pθ[k, j]2

(4)

where N is the size of the oriented kth patch. Finally, the

associated Renyi entropy Rk
θ is computed as

Rk
θ =

1

1− β
log2

(

P̃θ[k, j]
β
)

(5)



where β > 1. Finally, the two measures of anisotropy υ3 and

υ4 are defined as

υ3 = σ(E(Rk
θ )) and υ4 = max(E(Rk

θ )), ∀k, ∀θ (6)

Due to the fact that the perception of image details depends

on the image resolution, the distance from the image plane to

the observer, and the acuity of the observers visual system,

a multiscale approach is applied to compute the final global

score as:

BLIINDS =

M
∏

i=1

υ
αi

1

1 υ
αi

2

2 υ
αi

3

3 υ
αi

4

4 (7)

constraints by
∑4

j=1

∑M
i=1 α

i
j = 1 and where M represents

the number of decomposition level used.

B. Pattern-based quality

The pattern-based quality information used to contribute

to quality assessment uses the Scales Invariant Feature

Transform (SIFT) descriptors [19]. SIFT algorithm consists

of four major stages: i) scale-space extrema detection, ii)

keypoint localization, iii) orientation assignment and iv)

keypoint descriptor. In the first stage, potential interest points

are identified, using a difference-of-Gaussian function, that

are invariant to scale and orientation. In the second stage,

candidate keypoints are localized to sub-pixel accuracy and

eliminated if found to be unstable. The third stage identifies

the dominant orientations for each keypoint based on its local

image patch. The keypoint descriptor in the final stage is

created by sampling the magnitudes and orientations of the

image gradients in a neighborhood of each key-point and

building smoothed orientation histograms that contain the

important aspect of the neighborhood. Each local descriptor

is composed of a 4x4 array (histogram). For each coordinate

of this array, an 8 orientation vector is associated. A 128-

elements vector is then built for each keypoint. In other words,

each image im is described by a set of invariant features

X(im) = {ki = (si, sci, xi, yi)| i = 1 : N(im)} where si
is the 128-elements SIFT invariant descriptor computed near

keypoints ki, (xi, yi) its position in the original image im,

sci its scale and N(im) the number of detected keypoints

for image im. The features extracted are invariant to image

scaling and rotation, and partially invariant to change in

illumination and 3D camera viewpoint. From these features,

we use the following four metrics that we considered as

potentially interesting (see section IV-B) to contribute to

quality assessment:

1) keypoints: the number of keypoints detected from

image im;

2) DC coefficient: DC coefficient of the matrix Ms,

with N(im) rows and 128 columns, related to SIFT invariant

descriptor for si, i = 1 : N(im) where N(im) is the number

of detected keypoints for image im;

3) and 4) scales: mean and standard deviation of scales

related to the keypoints detected from image im.

Therefore, the vector V used to predict biometric sample

quality is a five-dimension vector containing image quality

metric and four pattern-based metrics as depicted in table I.

TABLE I
THE FIVE-DIMENSIONAL VECTOR FOR PREDICTING BIOMETRIC SAMPLE

QUALITY

Vector V

Image quality metric BLIINDS

Pattern-based metrics keypoints
DC coefficient
mean of scales
standard deviation of scales

C. Multi-class SVM classification

In order to predict biometric sample quality using both

information (image quality and pattern-based quality), we use

the Support Vector Machine (SVM). From all existing classi-

fication schemes, a SVM-based technique has been selected

due to high classification rates obtained in previous works

[20] and to their high generalization abilities. The SVMs were

developed by Vapnik [17] and are based on the structural risk

minimization principle from statistical learning theory. SVMs

express predictions in terms of a linear combination of kernel

functions centered on a subset of the training data, known as

support vectors (SV). In our study, the input vector to SVM is

the vector V (as depicted in table I) and the output can belong

to ten different classes defined as follows (see table II):

• class 1 illustrates a reference image;

• classes 2 to 10 illustrate 3 types of alterations and 3 levels

for each type (see section experimental results for details

about the introduced alterations).

TABLE II
SVM CLASSES DEFINITION

Class Description Alteration levels

1 reference or original image ×
2, 3 and 4 blurring alteration 1, 2 and 3, respectively

5, 6 and 7 gaussian noise alteration 1, 2 and 3, respectively

8, 9 and 10 resize alteration 1, 2 and 3, respectively

Suppose we have a training set {xi,yi} where xi is the

training pattern and yi the label. For problems with two

classes, with the classes yi ∈ {−1, 1}, a support vector

machine [17], [21] implements the following algorithm. First,

the training points {xi} are projected into a space H (of

possibly infinite dimension) by means of a function Φ(·). The

second step is to find an optimal decision hyperplane in this

space. The criterion for optimality will be defined shortly.

Note that for the same training set, different transformations

Φ(·) may lead to different decision functions. A transformation



is achieved in an implicit manner using a kernel K(·, ·) and

consequently the decision function can be defined as :

f(x) = 〈w,Φ(x)〉+ b =
ℓ

∑

i=1

α∗
i yiK(xi,x) + b (8)

with α∗
i ∈ R. The values w and b are the parameters defining

the linear decision hyperplane. In SVMs, the optimality cri-

terion to maximize is the margin, that is to say, the distance

between the hyperplane and the nearest point Φ(xi) of the

training set. The α∗
i which optimize this criterion are obtained

by solving the following problem :















maxαi

∑ℓ
i=1 αi −

1
2

∑ℓ
i,j=1 αiαjyiK(xi,xjyj)

with constraints,

0 ≤ αi ≤ C ,
∑ℓ

i=1 αiyi = 0 .

(9)

where C is a penalization coefficient for data points located

in or beyond the margin and provides a compromise between

their numbers and the width of the margin. In this paper, we

use the RBF kernel:

k(xi,xj) = exp(−γ‖xi − xj‖
2) (10)

In order to train models with RBF kernels, we use a python

script provided by the libsvm library [22]. This script

automatically scales training and testing sets and searches the

best couple (C, γ) of the kernel. The search of the best couple

(C, γ) is done using a five-fold cross-validation computation.

Originally, SVMs have essentially been developed for

the two classes problems. However, several approaches can

be used for extending SVMs to multi-class problems. The

method we use in this communication, is called one against

one. Instead of learning N decision functions, each class is

discriminated here from another one. Thus,
N(N−1)

2 decision

functions are learned and each of them makes a vote for

the affectation of a new point x. The class of this point x

becomes then the majority class after the voting.

D. Discussion

The goal of the proposed method is to detect, in a reasonable

accuracy, three real alterations which may deeply affect the

most widely used matching systems. The proposed method

may be considered as independent from the used matching

system. An example of its practical use is illustrated in figure

2. The method predicts the class of the input image according

to table II. Then, depending from the robustness of the used

matching system against the predicted alteration, the matching

system qualifies the image (good, fair or bad quality).

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results we

obtained of the proposed method. The experimental protocol is

presented in section IV-A. In order to validate our choice of the

Fig. 2. An example of use of the method

5 used metrics (1 for image quality and the rest for the pattern-

based quality), we present in section IV-B the effectiveness of

these metrics in detecting the three introduced alterations. In

order to validate the proposed method, we present in section

IV-C the SIFT matching algorithm as a use case. Finally,

we show the efficiency of the proposed multi-class SVM-

based quality method in predicting the performance of SIFT

matching system using the Equal Error Rate (EER) metric.

This error rate illustrates the overall system performance and

is widely used to compare and evaluate the performance of

biometric systems [3].

A. Protocol

In this study, we use four benchmark databases. For each

database, we made three types of alterations (blurring, gaus-

sian noise and resize alterations) and three levels for each

type. The introduced alterations are commonly realistic during

the acquisition of biometric data which may deeply affect the

global performance of biometric systems. Finally, we have 40

databases: 4 reference databases and 36 altered databases (i.e.,

9 for each reference database):

1) Reference databases:

• FACES94 Database [23]: This database is composed of

152 individuals and 20 samples per individual. These

images have been captured in regulated illumination and

the variation of expression is moderated.

Fig. 3. Samples from FACES94

• ENSIB Database [24]: It is composed of 100 individuals

and 40 samples per individual. Each sample corresponds

to one pose from the left one to the right.

Fig. 4. Samples from ENSIB

• FERET Database [25], [26]: It is composed of 725

individuals with from 5 to 91 samples per individual (the

average value is 11). Each sample corresponds to a pose

angle, illumination and expression.



Fig. 5. Samples from FERET

• AR database [27]: It is composed of 120 individuals

and 26 samples per individual. These included images

captured under different conditions of illumination, ex-

pression and occlusion.

Fig. 6. Samples from AR

2) Altered databases: We generated 36 databases, using

matlab, from the four reference databases: FACES94,

ENSIB, FERET and AR databases. For each benchmark

database, we generate three types of alterations and three

levels for each type:

– Blurring alteration: blurring images are obtained

using a two-dimensional Gaussian filter. To do so, we

use the fspecial (’gaussian’, hsize, σ) method which

returns a rotationally symmetric Gaussian lowpass

filter of size hsize with standard deviation σ;

– Gaussian noise alteration: noisy images are obtained

using the imnoise (I, ’gaussian’, m, v) method. It

adds Gaussian white noise of mean m and variance

v to the image I;

– Resize alteration: such kind of altered images are

obtained using the imresize (I, scale, ’nearest’)

method. It resize the image I using a nearest-

neighbor interpolation.

Table III presents the parameters required of the used

alteration matlab methods, and Figure 7 shows these

alterations on a sample from FACES94 database.

B. Metrics behavior with alterations

In this section, we show the robustness of the used five

metrics in detecting alterations presented in the previous

section. To do so, we use the Pearson’s correlation coefficient

between two variables as defined in Eq. 11. It is defined as

the covariance of the two variables divided by the product of

their standard deviation:

Pearson(X,Y ) =
Cov(X,Y )

σXσY

(11)

In order to compute the correlation of the used metrics with the

three types of alterations, we define for each type of alteration

and for each metric p the variables as follows:

• Xp = {Xpk| k = 1 : 4} where Xp1 is the set of

values of metric p for the reference databases images,

(a) blurring alteration

(b) gaussian noise alteration

(c) resize alteration

Fig. 7. Alterations for a reference image from FACES94. From left to right,
reference image then alteration level 1, 2 and 3

(Xp2, Xp3, Xp4) are the sets of values of metric p for the

altered databases level 1, 2 and 3, respectively;

• Alteration levels are represented by the variable Y

(1: for the reference databases, 2, 3 and 4: for the

altered databases level 1, 2 and 3). More precisely,

Y = {yk|yk = 1 for k = 1 : N, yk = 2 for k =
N + 1 : 2N, yk = 3 for k = 2N + 1 : 3N and yk =
4 for k = 3N + 1 : 4N} where N is the size of the 4

reference databases.

Table IV shows that our four pattern-based metrics (keypoints,

DC coefficient, mean and standard deviation of scales) are

pertinent in detecting the three types of alterations: blurring,

gaussian noise and resize alterations. The image quality metric

BLIINDS has shown to be efficient (with a correlation coeffi-

cient more than 0.6) in detecting blurring and gaussian noise

alterations. For the resize alteration, BLIINDS has not shown

to be efficient which is not a surprising result since resize

alteration does not affect image quality (BLIINDS [18] is a

multiresolution NR-IQA algorithm).

TABLE IV
PEARSON CORRELATION COEFFICIENTS BETWEEN THE PROPOSED

METRICS AND THE THREE ALTERATIONS AMONG THE ALL DATABASES

Metrics ρblurring ρgaussian noise ρresize

keypoints -0.5728 0.3901 -0.4880

DC coefficient -0.6155 0.5672 -0.5252

mean scale 0.7933 -0.5632 -0.3960

std scale 0.3470 -0.3467 -0.4729

BLIINDS 0.6316 -0.8014 -0.1018

C. Biometric matching algorithm

The matching algorithm used in this paper is a SIFT-

based [19] algorithm. The matching similarity principle used is

described in previous works [28]. Each image im is described

by a set of invariant features X(im) as described in section

III-B. The verification between two images im1 and im2



TABLE III
PARAMETERS OF THE MATLAB ALTERATION METHODS

Alteration type method level 1 level 2 level 3

Blurring fspecial (’gaussian’, hsize, σ) hsize = [7 7] and σ = 1 hsize = [7 7] and σ = 2 hsize = [7 7] and σ = 6

Gaussian noise imnoise (I, ’gaussian’, m, v) m=0.01 and v=0.003 m=0.01 and v=0.01 m=0.01 and v=0.017

Resize imresize (I, scale, ’nearest’) scale = 0.8 scale = 0.6 scale = 0.4

corresponds to compute a similarity between two sets of

features X(im1) and X(im2). We thus use the following

matching method which is a modified version of a decision

criterion first proposed by Lowe [19]. Given two keypoints

x ∈ X(im1) and y ∈ X(im2), we say that x is associated

to y iff:

d(x, y) = min{z ∈ X(im2)}d(x, z) and d(x, y) ≤ C d(x, y′)
(12)

where C is an arbitrary threshold, d(·, ·) denotes the Euclidean

distance between the SIFT descriptors and y′ denotes any point

of X(im2) whose distance to x is minimal but greater than

d(x, y):

d(x, y′) = min{z ∈ X(im2), d(x,z)>d(x,y)}d(x, z) (13)

In other words, x is associated to y if y is the closest point from

x in X(im2) according to the Euclidean distance between

SIFT descriptors and if the second smallest value of this

distance d(x, y′) is significantly greater than d(x, y). The

significance of the necessary gap between d(x, y) and d(x, y′)
is encoded by the constant C. Then, we consider that keypoint

x is matched to y iff x is associated to y and y is associated to

x. Figure 8 illustrates an example of matching results resulting

from an impostor and a genuine comparison. The number of

associations is used here as a similarity measure.

Fig. 8. Example of matching results resulting from a genuine (on the left)
and an impostor comparisons (on the right)

D. Quality sets definition

The proposed multi-class SVM-based quality method pre-

dicts a class for an image. In order to quantify the efficiency

of this method, we need first to define the quality sets for

the used matching system. Depending on the used matching

system, some alterations may not have an impact on it and

others may deeply affect its performance. Therefore, we have

tested the robustness of the used SIFT-based matching system

against the introduced three alterations. We use the first image

for the enrollment and the others for the test. We illustrate in

table V the impact of adding altered images to the reference

database images. We can clearly see that all the introduced

alterations have shown an impact on system performance

illustrated by the Equal Error Rate (EER). Therefore, we have

defined for this study the four quality sets as depicted by table

VI. Certainly, we may have choose another definition of sets

that will more penalize the resize alteration (i.e., by putting

label 9 in quality set IV) since it has the most impact on the

used matching system.

TABLE V
EFFECT OF ALTERATIONS ON EACH DATABASE: VALUES OF EERS (%)

FACES94 ENSIB FERET AR

original db 0.29 10.41 26 9.6

blurring alteration 1.65 15.54 29.61 13.84

gaussian noise alteration 0.76 13.3 27.81 11.72

resize alteration 9.74 18.67 34.17 18.2

TABLE VI
CATEGORY OF QUALITY

Quality set Predicted quality class by SVM Description

I 1 good

II 2, 5 and 8 fair

III 3, 6 and 9 poor

IV 4, 7 and 10 very poor

E. Validation of the proposed quality method

According to Gother et al. [29], biometric quality measure-

ment algorithms should predict the matching performance.

That is, a quality measurement algorithm takes a biometric

raw data, and produces a class or a scalar related to error

rates associated to that sample. Therefore, we use the Equal

Error Rate (EER) which illustrates the overall performance of

a biometric system [3]. EER is defined as the rate when both

False Acceptance Rate (FAR) and False Reject Rate (FRR)

are equal: the lower EER, the more accurate the system is

considered to be [3]. In order to validate our method, we

proceed as follows:

• Learning the multi-class SVM models: we learn four

multi-class SVM models using the images from the four

benchmark databases (1 multi-class SVM per benchmark

database illustrated by SVMeach), and 1 multi-class

SVM model containing examples from the four bench-

mark databases (illustrated by SVMall). In order to train

and to test the multi-class SVM models, we split each

benchmark database images into two sets Straining and

Stest in a balanced way (i.e., both sets contain the same

ratio of reference and altered images). The choice of the

kernel used and the selection of the parameters required

are presented in section III-C. Table VII illustrates the



accuracy of the produced multi-class SVM models on

each benchmark database;

• Quality sets definition: we have considered four quality

sets as defined in table VI;

• EER value for each quality set: in order to quantify the

effectiveness of our quality method in predicting system

performance, we have put each image to a quality set

(according to table VI), using its predicted label by

our method. Then, we have calculated the EER value

for each quality set. The effectiveness of the method is

quantified by how well our quality method could predict

system performance among the defined quality sets. More

generally speaking, the more the images are degraded,

the more the performance of the overall system will be

decreased (illustrated by an increase of its EER value).

TABLE VII
ACCURACY OF THE PRODUCED MULTI-CLASS SVM MODELS ON BOTH

TRAINING AND TEST SETS

SVMeach SVMall

Straining Stest Straining Stest

FACES94 91.01% 86.69% 85.68% 85.28%

ENSIB 97.73% 89.82% 94.92% 91.1%

FERET 82.33% 81.2% 82.29% 81.16%

AR 90.08% 89.08% 90.7% 88.92%

Tables VIII and IX illustrate the EER values for each quality

set among the four used benchmark databases, using the four

multi-class SVM models computed from the four benchmark

databases, and the multi-class SVM model computed by ex-

amples from the four benchmark databases, respectively. The

proposed quality method has shown its efficiency in predicting

the used matching algorithm performance. From tables VIII

and IX, we can also conclude:

• for FACES94, ENSIB and AR benchmark databases,

there were no significant difference between the EERs

of the reference database (i.e., which is considered con-

taining images of good quality) and the set predicted as

good quality (set I) by our method;

• for the FERET benchmark database, there was a differ-

ence of 5.62% (table VIII) and 5.64% (table IX). This

variation was due to the difficulties of FERET database

which contains altered images by resolution. Despite this,

our method has also shown to be efficient in predicting

system performance in both cases.

V. CONCLUSION AND PERSPECTIVES

The evaluation of biometric raw data is receiving more and

more attention in biometrics community. We present in this

paper a multi-class SVM-based method for predicting the

quality of biometric raw data. The method uses both kinds

of information (image and pattern-based quality) to predict

sample quality. In order to validate the proposed method,

we use four large and significant face databases (FACES94,

ENSIB, FERET and AR) and three kinds of real alterations

(blurring, gaussian noise and resolution), that affecting the

TABLE VIII
EER VALUES OF THE FOUR REFERENCE DATABASES AND OF EACH

QUALITY SET AMONG THE FOUR BENCHMARK DATABASES. THESE EER
VALUES ARE COMPUTED USING THE FOUR MULTI-CLASS SVM MODELS

COMPUTED ON THE FOUR BENCHMARK DATABASES

EER values (%)

Database reference
database

set I
(good)

set II
(fair)

set III
(poor)

set IV
(very poor)

FACES94 0.29 0.62 0.7 1.74 5.89

ENSIB 10.41 11.45 13.37 16.48 17.77

FERET 26 31.62 31.82 32.35 35.5

AR 9.6 10.26 11.82 16.15 16.81

TABLE IX
EER VALUES OF THE FOUR REFERENCE DATABASES AND OF EACH

QUALITY SET AMONG THE FOUR BENCHMARK DATABASES. THESE EER
VALUES ARE COMPUTED USING THE MULTI-CLASS SVM MODEL

COMPUTED USING EXAMPLES FROM THE FOUR BENCHMARK DATABASES

EER values (%)

Database reference
database

set I
(good)

set II
(fair)

set III
(poor)

set IV
(very poor)

FACES94 0.29 0.62 0.72 1.77 5.79

ENSIB 10.41 11.21 13.4 16.61 17.64

FERET 26 31.64 31.78 32.27 35.69

AR 9.6 10.3 11.79 16.1 16.84

most widely used matching systems. The method has shown

efficient in predicting system performance, illustrated by the

EER, among the four used benchmark databases. The method

can be considered as independent from the used matching

system. For example, if the used matching system tolerate

resize alteration, we could modify the quality sets definition

by putting their labels (i.e., labels 8, 9 and 10) in quality set I

(i.e., we consider that the altered image, by resize alteration,

may be considered as of good quality for this type of

matching system). On the other hand, the method is not based

on asymmetry hypothesis. Thus, it may be used for several

types of modalities such as hand veins. The method also could

be applied directly on a single capture after training the model.

For the perspectives, we would like to quantify the effective-

ness of the method on other types of modality (such as iris, fin-

gerprint) to test if the method can be considered as modality-

independent. We would also like to add another metric in order

to detect luminance alteration, which also considered as an

important alteration affecting biometric systems.

TERMS AND DEFINITIONS

Enrollment: The process of collecting biometric samples

from a person and the subsequent preparation and storage

of biometric reference templates representing that person’s

identity.

False Acceptance Rate (FAR): Rate at which an impostor is

accepted by an authentication system.

False Rejection Rate (FRR): Rate at which the authorized

user is rejected from the system.

Equal Error Rate (EER): This error rate corresponds to the



point at which the FAR and FRR cross (compromise between

FAR and FRR).
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