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We define a new function space B, which contains in particular BMO, BV, and W 1/p,p , 1 < p < ∞. We investigate its embedding into Lebesgue and Marcinkiewicz spaces. We present several inequalities involving L p norms of integer-valued functions in B. We introduce a significant closed subspace, B 0 , of B, containing in particular VMO and W 1/p,p , 1 ≤ p < ∞. The above mentioned estimates imply in particular that integer-valued functions belonging to B 0 are necessarily constant. This framework provides a "common roof " to various, seemingly unrelated, statements asserting that integer-valued functions satisfying some kind of regularity condition must be constant.

Introduction

Let Ω be a connected domain in R n . Recall that if f : Ω → Z is a measurable function which satisfies one of the following regularity properties:

1. f ∈ VMO (Ω); 2. f ∈ W 1,1 (Ω); 3. f ∈ W 1/p,p (Ω), with 1 < p < ∞,
then f is constant [START_REF] Brezis | Degree theory and BMO. I. Compact manifolds without boundaries[END_REF]Comment 2,, [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF]Theorem B.1]. The original motivation for this article was to provide a "common roof" to all these cases, and which yields in particular the following Theorem 1. Assume that f : Ω → Z is measurable and can be written as f = f 1 + f 2 + f 3 , with f 1 ∈ VMO (Ω; R), f 2 ∈ W 1,1 (Ω; R) and f 3 ∈ W 1/p,p (Ω; R) for some 1 < p < ∞. Then f is constant.

The proof of Theorem 1 relies heavily on the introduction of a new space of functions, which might be of interest well beyond the scope of Theorem 1.

In what follows we denote by Q the unit cube (0, 1) n . For 0

< ε < 1, Q ε (a) is the ε-cube centered at a. Given f ∈ L 1 (Q; R) and an ε-cube Q ε ⊂ Q, we set M( f ,Q ε ) = Q ε | f -f Q ε |, where f Q ε = Q ε f , (1) 
and

M * ( f ,Q ε ) = Q ε Q ε | f (y) -f (z)| d ydz. (2) 
Clearly, we have

M( f ,Q ε ) ≤ M * ( f ,Q ε ) ≤ 2 M( f ,Q ε ). (3) 
Note that if f = 1 A , with A ⊂ Q measurable, then

M( f ,Q ε ) = M * ( f ,Q ε ) = 2 |A ∩ Q ε | (|Q ε | -|A ∩ Q ε |) |Q ε | 2 ≤ 1 2 . ( 4 
)
The following quantity plays an important role:

[ f ] ε = sup F ε n-1 j∈J M( f ,Q ε (a j )) . (5) 
Here, F denotes a collection of mutually disjoint ε-cubes, F = (Q ε (a j )) j∈J , such that #J = cardinality of J ≤ 1/ε n-1 (instead of #J we sometimes write #F ) and the sup in [START_REF] Sarason | Functions of vanishing mean oscillation[END_REF] is taken over all such collections. We then introduce the space

B = f ∈ L 1 (Q; R); sup 0<ε<1 [ f ] ε < ∞ ,
and the corresponding norm (modulo constants)

f B = sup 0<ε<1 [ f ] ε . ( 6 
)
The definition of B is inspired by the celebrated BMO space of John-Nirenberg [START_REF] John | On functions of bounded mean oscillation[END_REF] equipped with the norm (modulo constants)

f BMO := sup 0<ε<1 sup a∈Q {M( f ,Q ε (a)); Q ε (a) ⊂ Q}. ( 7 
)
Here are several examples of functions in B.

Example 1. BMO ⊂ B with continuous injection. Indeed, using (7) we find that f B ≤ f BMO .

When n = 1, we clearly have B = BMO ; however, when n ≥ 2, B is strictly bigger than BMO (see e.g. Example 2 below).

Example 2. BV ⊂ B with continuous injection. Indeed, by Poincaré's inequality

Q ε | f -f Q ε | ≤ c n ε n-1 ˆQε |∇ f |, so that j∈J M( f ,Q ε (a j )) ≤ c n ε n-1 ˆ∪j∈J Q ε (a j ) |∇ f | (8) 
and

[ f ] ε ≤ c n ˆQ |∇ f |. (9) 
Example 3. W 1/p,p ⊂ B, 1 < p < ∞, with continuous injection. Indeed, for every fixed α > 0 we have

ˆQε ˆQε | f (y) -f (z)| d ydz ≤ n α/2 ε α ˆQε ˆQε | f (y) -f (z)| |y -z| α d ydz.
Choosing α = (n + 1)/p and applying Hölder's inequality gives

M * ( f ,Q ε ) ≤ c n ε (n-1)/p ˆQε ˆQε | f (y) -f (z)| p |y -z| n+1 d ydz 1/p , with c n = n (n+1)/2 ,
and since #J ≤ 1/ε n-1 we obtain

ε n-1 j∈J M * ( f ,Q ε (a j )) ≤ c n j∈J ˆQε (a j ) ˆQε (a j ) | f (y) -f (z)| p |y -z| n+1 d ydz 1/p . (10) Therefore [ f ] ε ≤ c n f W 1/p,p .
An important quantity associated with B is defined by

[ f ] = lim ε→0 [ f ] ε . ( 11 
)
The subspace

B 0 = { f ∈ B; [ f ] = 0} ( 12 
)
plays a key role in this article.

Example 1'. VMO ⊂ B 0 . This is clear, since VMO functions (see [START_REF] Sarason | Functions of vanishing mean oscillation[END_REF]) are characterized by

lim ε→0 sup a∈Q {M( f ,Q ε (a)); Q ε (a) ⊂ Q} = 0. Moreover, VMO = B 0 when n = 1. Example 2'. W 1,1 ⊂ B 0 .
This is clear from (8) and the fact that

∪ j∈J Q ε (a j ) ≤ ε. Example 3'. W 1/p,p ⊂ B 0 , 1 < p < ∞.
This is an immediate consequence of (10) and the fact that

∪ j∈J Q ε (a j ) × Q ε (a j ) ≤ ε n+1 .
In particular we see that

VMO +W 1,1 + W 1/p,p ⊂ B 0 . ( 13 
)
2 Some properties of B

The main result of this section is Theorem 2. Let n ≥ 2. Then we have B ⊂ L n/(n-1),w , and

f - Q f L n/(n-1),w ≤ C n f B , ∀ f ∈ B. ( 14 
)
In Theorem 2, the Marcinkiewicz space L n/(n-1),w cannot be replaced by L n/(n-1) , as a consequence of the next result.

Proposition 3. Let n

≥ 2. There exists some f ∈ B such that f ∈ L n/(n-1) .
Proof of Theorem 2. We may assume that

f B ≤ 1 and Q f = 0. ( 15 
)
We also temporarily make the additional assumption that f ∈ L ∞ .

Under these assumptions, we will prove that

f L n/(n-1),w ≃ sup t>0 t |{| f | > t}| (n-1)/n ≤ C n . ( 16 
)
For this purpose it suffices to consider, in (16), only t 1.

We first note that, by (15), we have

ˆQ | f | ≤ 1. (17) 
In view of (17) we may consider, for t > 1, a Calderón-Zygmund decomposition at height t, i.e., we consider families

F j (with j ≥ 1) of mutually disjoint cubes Q 2 -j ⊂ Q of size 2 -j such that, if we set F = ∪ j≥1 F j , then Q * | f | ≃ t for every Q * ∈ F (18) 
and

| f | ≤ t a.e. in R := Q \ ∪ Q * ∈F Q * . ( 19 
)
We next decompose f = g + h, with

g = f 1 R + Q * ∈F Q * f 1 Q * , h = j≥1 h j , and h j = Q * ∈F j f - Q * f 1 Q * .
By (18) and (19), we have

|g| ≤ Ct and thus {| f | > 2Ct} ⊂ {|h| > Ct}. ( 20 
)
Using (20), we see that (16) amounts to the following:

sup t>1 t |{|h| > Ct}| (n-1)/n ≤ c. ( 21 
)
We now proceed with the proof of (21). Since f B = 1, for every family

G ⊂ F j such that #G ≤ 1/(2 -j ) n-1 = 2 j(n-1) , we have 2 -j(n-1) Q * ∈G Q * f - Q * f ≤ 1.
By covering F j with mutually disjoint sets G as above, we find that

Q * ∈F j Q * f - Q * f ≤ 2 j(n-1) + #F j , (22) 
and thus

h j L 1 ≤ 2 -j + 2 -n j #F j . ( 23 
)
On the other hand, we have (using (18))

1 ≥ f L 1 ≥ j≥1 Q * ∈F j ˆQ * | f | = j≥1 Q * ∈F j 2 -n j Q * | f | j≥1 2 -n j t #F j . ( 24 
)
From ( 23) and (24), we deduce that

j≥1 h j L 1 1 t + F j = 2 -j . ( 25 
)
We next recall that

f L n/(n-1),w = sup A⊂Q |A| -1/n ˆA | f |. (26) 
If F j = and Q * ∈ F j , then (26) applied with A = Q * , combined with (18), implies that

2 -j f L n/(n-1),w t 1/(n-1) . (27) 
By ( 25) and (27), we have

h L 1 ≤ j≥1 h j L 1 1 t + f L n/(n-1),w t 1/(n-1) . ( 28 
)
In turn, (28) implies that (with C as in (21))

|{|h| > Ct}| ≤ h L 1 Ct 1 t 2 + f L n/(n-1),w t n 1/(n-1) , (29) 
and thus

t |{|h| > Ct}| (n-1)/n t (2-n)/n + f 1/n L n/(n-1),w ≤ 1 + f 1/n L n/(n-1),w . (30) 
By taking, in (30), the supremum over t > 1, we find that

f L n/(n-1),w 1 + f 1/n L n/(n-1),w ,
and therefore f L n/(n-1),w 1. We complete the proof by removing the assumption that f ∈ L ∞ . Let

Φ N (s) =        s, if |s| ≤ N N, if s > N -N, if s < -N and set f N := Φ N ( f ). By (3), we have f N B ≤ 2 f B .
In addition, f N is bounded and thus satisfies (14), i.e.,

f N - Q f N L n/(n-1),w ≤ 2C n f B . (31) 
Using (26) and passing to the limit as N → ∞ in (31) yields ( 14) for every

f ∈ B. Proof of Proposition 3. Set ϕ(x) = (1 -|x|) + , ∀ x ∈ R n
and 

N m = 2 2 m , ∀ m ≥ 1.
f m (x) = N n-1 m ϕ(N m (x -b m )), ∀ m ≥ 1 (32) 
and

f (x) = m≥1 f m (x). ( 33 
)
We will prove that f ∈ B and f ∈ L n/(n-1) . Note that

supp f m = B(b m , 1/N m ),
and that the sets supp f m , m ≥ 1, are mutually disjoint. Clearly,

f m L 1 (Q) = C N m , ∀ m ≥ 1, (34) 
and thus f ∈ L 1 (Q); here and in what follows we denote by C a generic constant depending only on n, We have

f m n/(n-1) L n/(n-1) (Q) = C, ∀ m ≥ 1, so that f ∈ L n/(n-1) (Q). Given 0 < ε < 1 and integers M 1 = M 1 (ε) ≥ 1 and M 2 = M 2 (ε) > M 1 (ε)
to be defined later, we write

f = S 1 + S 2 + S 3 , (35) 
with

S 1 = m≤M 1 f m , S 2 = M 1 <m≤M 2 f m , S 3 = m>M 2 f m . ( 36 
)
We now estimate separately

[S 1 ] ε , [S 2 ] ε and [S 3 ] ε . Estimate of [S 1 ] ε . Here we use the fact that if h ∈ Lip (Q) then M(h,Q ε (a)) ≤ n ε h Lip , (37) 
and thus

[h] ε ≤ n ε h Lip .
In particular,

[ f m ] ε ≤ C ε (N m ) n . ( 38 
)
Using ( 38) and the fact that

p i=1 X i ≤ X p+1 X -1 , ∀ X > 1,
we deduce that

[S 1 ] ε ≤ C ε 2 n 2 M 1 , ∀ ε ∈ (0, 1). ( 39 
) Estimate of [S 2 ] ε . Applying (9) to f m yields [ f m ] ε ≤ C, ∀ m ≥ 1, ∀ ε ∈ (0, 1),
and in particular

[S 2 ] ε ≤ C(M 2 -M 1 ), ∀ ε ∈ (0, 1). ( 40 
) Estimate of [S 3 ] ε . Clearly [h] ε ≤ 2 ε h L 1 (Q) , ∀ h ∈ L 1 . ( 41 
)
From (34) we deduce that

[ f m ] ε ≤ C ε N m . ( 42 
)
Using (42) and the fact that

∞ i=p Y i = Y p 1 -Y , ∀ Y ∈ [0, 1),
we see that

[S 3 ] ε ≤ C ε 2 2 M 2 . ( 43 
)
We now explain how to choose M 1 (ε) and M 2 (ε). Given 0 < ε < 1, we denote by

M 1 = M 1 (ε) the largest integer ℓ ≥ 1 such that 2 n 2 ℓ ≤ 2 2n ε . ( 44 
)
Equivalently, we have

2 n 2 M 1 ≤ 2 2n ε (45)
and

2 2 n 2 M 1 > 2 2n ε . ( 46 
)
Combining ( 39) and (45) yields

[S 1 ] ε ≤ C, ∀ ε ∈ (0, 1). (47) 
From ( 45) and ( 46) we obtain

|M 1 (ε) -log 2 log 2 (1/ε)| ≤ C, ∀ ε ∈ (0, 1/2). ( 48 
)
Next we denote by

M 2 = M 2 (ε) the smallest integer ℓ ≥ 1 such that 2 2 ℓ ≥ 4 ε . (Note that M 2 > M 1 since 2 2 M 1 < 4/ε.) Equivalently, we have 2 2 M 2 ≥ 4 ε ( 49 
)
and

2 2 M 2 -1 < 4 ε . ( 50 
)
Combining ( 43) and (49) yields

[S 3 ] ε ≤ C, ∀ ε ∈ (0, 1). ( 51 
)
From ( 49) and (50) we obtain

|M 2 (ε) -log 2 log 2 (1/ε)| ≤ C, ∀ ε ∈ (0, 1/2). ( 52 
)
Therefore,

|M 2 (ε) -M 1 (ε)| ≤ C, ∀ ε ∈ (0, 1). ( 53 
)
(Inequality (53) is deduced from (48) and (52) when ε ∈ (0, 1/2), and from (50) when ε ∈ [1/2, 1).) It follows from ( 40) and (53) that

[S 2 ] ε ≤ C, ∀ ε ∈ (0, 1). ( 54 
)
Putting together (47), ( 51) and (54) we conclude that

[ f ] ε ≤ C, ∀ ε ∈ (0, 1),
and thus f ∈ B.

3 Some properties of B 0 and

[ f ] Our first result is Theorem 4. Let f be a Z-valued function on Q such that f ∈ B 0 . Then f is constant.
Combining Theorem 4 with (13) we obtain Theorem 1.

When n = 1 we have B 0 = VMO and we may then invoke the fact that functions in VMO (Q; Z) are constant (for any n ≥ 1); see [START_REF] Brezis | Degree theory and BMO. I. Compact manifolds without boundaries[END_REF]Comment 2,. Therefore it suffices to prove Theorem 4 when n ≥ 2. Next, we observe that it suffices to prove Theorem 4 when f = 1 A for some

A ⊂ Q. In- deed, let k ∈ Z be such that | f -1 (k)| > 0. Set A = f -1 (k) and g = 1 A . Clearly M * ( f ,Q ε ) ≥ M * (g,Q ε ) for every ε-cube Q ε . Since f ∈ B 0 , we deduce that g ∈ B 0 .
If Theorem 4 holds for g, then g ≡ 1, and thus f ≡ k.

Hence it remains to prove Theorem 4 when n ≥ 2 and f = 1 A . In this case we have the following quantitative improvement of Theorem 4.

Theorem 5. Let n ≥ 2. There exists a constant C n such that if f

= 1 A with A ⊂ Q measurable, then f - Q f L n/(n-1) (Q) ≤ C n [ f ]. ( 55 
)
Remark 6. A much more precise result (see [1]) asserts that there exist two

constants 0 < c n ≤ c n < ∞ such that if f = 1 A , then c n min 1, ˆQ |∇ f | ≤ [ f ] ≤ c n min 1, ˆQ |∇ f | , (56) 
with the convention that

´Q |∇ f | = ∞ if f ∈ BV . Note that f - Q f L n/(n-1) (Q) ≤ C ˆQ |∇ f | (57) 
by the Sobolev embedding, and that clearly

f - Q f L n/(n-1) (Q) ≤ 2 when f = 1 A . ( 58 
)
Therefore

f - Q f L n/(n-1) (Q) ≤ C min 1, ˆQ |∇ f | ≤ C ′ [ f ] by (56).
In fact, using a variant of the definition (5) involving ε-cubes of general orientation, one obtains a quantity

[ f ] * ε satisfying [ f ] ε ≤ [ f ] * ε ≤ C 1 [ f ] C 2 ε
for some constants C 1 > 1, C 2 > 1 depending only on n (see [1]). The main

result in [1] asserts that if f = 1 A , then lim ε→0 [ f ] * ε = 1 2 min 1, ˆQ |∇ f | ; (59) 
the ingredients of the proof of (59) are much more sophisticated than the arguments presented below. We acknowledge that it was Theorem 5 which prompted one of us to conjecture that (59) holds.

The main tool in the proof of Theorem 5 is

Lemma 7. Let n ≥ 2. Let U = ∪ j∈J Q ε (a j ) be a union of ε-cubes. Then Q \ U contains a connected set S of measure ≥ 1 -α n (#J) n/(n-1)
ε n , for some positive constant α n depending only on n.

Here, the ε-cubes are not necessarily mutually disjoint, and we do not assume that these cubes are completely contained in Q.

Remark 8. The conclusion of Lemma 7 is optimal. Indeed, consider a ball B ⊂ Q of (small) radius R. We may cover the sphere Σ = ∂B by a union of ε-cubes as above with #J

ε n-1 ≃ R n-1 . Then |B| ≃ R n ≃ (#J) n/(n-1) ε n .
Granted Lemma 7, we turn to the Proof of Theorem 5. Let f = 1 A , with A ⊂ Q. Fix any λ ∈ (0, 1/2), e.g. λ = 1/4.

In view of (58), we may assume that

0 ≤ [ f ] < 2λ(1 -λ), ( 60 
)
for otherwise the conclusion is clear with

C n = 1 λ(1 -λ) .
Note that, by (4),

M( f ,Q ε ) = 2 f Q ε (1 -f Q ε ).
Therefore,

M( f ,Q ε ) < 2λ(1 -λ) =⇒ either f Q ε < λ, or f Q ε > 1 -λ. ( 61 
)
With ε small and Q = (ε, 1-ε) n , consider a maximal family J = J ε of points a ∈ Q such that the cubes Q ε (a) are mutually disjoint and satisfy

M( f ,Q ε (a)) ≥ 2λ(1 -λ), ∀ a ∈ J. ( 62 
)
Let ν > 0 (to be chosen arbitrarily small later). We claim that for ε sufficiently small (depending on ν) we have

#J ≤ δ/ε n-1 , with δ = [ f ] + ν 2λ(1 -λ) . ( 63 
)
Indeed, we first see that, for ε sufficiently small,

#J ≤ 1/ε n-1 . (64) 
Otherwise, we may choose a subfamily J such that # J = I(1/ε n-1 ), where I(t) denotes the integer part of t.

Then [ f ] ε ≥ ε n-1 (# J) 2λ(1 -λ) ≥ ε n-1 1 ε n-1 -1 2λ(1 -λ),
which, by (60), is impossible for ε small. From (64) and the definition of [ f ] ε we have

[ f ] ε ≥ ε n-1 (#J) 2λ(1 -λ),
which yields (63) for ε sufficiently small. Set U := ∪ a∈J Q 2ε (a). By Lemma 7 and a scaling argument, Q \ U contains a connected set S = S ε such that

|S ε | ≥ (1 -2ε) n -α ′ n δ n/(n-1) , (65) 
where α ′ n = 2 n α n . We next note that (by the maximality of J) U contains the set

V = V ε := {b ∈ Q; M( f ,Q ε (b)) ≥ 2λ(1 -λ)}, ( 66 
)
and thus S ⊂ Q \ V . We consider the continuous function

f ε : Q → R, f ε (a) = f Q ε (a) .
By (61) and (66), in the set

Q \ V the function f ε takes values into [0, λ) ∪ (1 - λ, 1]. S ⊂ Q \ V being connected, we find that either f ε < λ, or f ε > 1 -λ in S.
We assume e.g. that f ε < λ in S ε along a sequence ε m → 0. Clearly,

ˆA∩ Q |1 -f ε | → 0 as ε → 0,
and thus

(1 -λ) S ε m ∩ A ≤ ˆSε m ∩A (1 -f ε m ) → 0 as m → ∞. ( 67 
)
On the other hand, by ( 65) and (67) we have

|A| = S ε m ∩ A + Q \ S ε m ∩ A + Q \ Q ∩ A ≤ α ′ n δ n/(n-1) + o(1) as m → ∞,
and thus |A| ≤ α ′ n δ n/(n-1) , so that

|A| (n-1)/n ≤ α ′′ n δ = α ′′ n [ f ] + ν 2λ(1 -λ) , with α ′′ n = α ′ n (n-1)/n .
Since ν > 0 can be chosen arbitrarily small, we deduce that

|A| (n-1)/n ≤ α ′′ n [ f ] 2λ(1 -λ) . (68) 
Finally, we note that

f -f L n/(n-1) = |A|(1 -|A|) n/(n-1) + (1 -|A|)|A| n/(n-1) (n-1)/n ≤ 2 min |A| (n-1)/n , |A c | (n-1)/n . ( 69 
)
Combining ( 68) and ( 69) yields (55).

For further use, let us note that the proof of Theorem 5 leads to the following result.

Lemma 9. Let n ≥ 2 and λ ∈ (0, 1/2). Let A ⊂ Q be measurable and set f := 1 A .

Assume that there exists a sequence ε m → 0 and families

J m ⊂ Q m := (3ε m , 1 -3ε m ) n
of points a with the following property: 1) .

If b ∈ Q m \ ∪ a∈J m Q 2ε m (a), then M( f ,Q ε m (b)) < 2λ(1 -λ). Let δ := lim m→∞ ε n-1 m #J m . Then either |A| ≥ 1 -c n δ n/(n-1) , or |A c | ≥ 1 -c n δ n/(n-
Proof of Lemma 7. Recall a standard "relative" isoperimetric inequality. Let B ⊂ Q satisfy |B| ≤ 1/2. By (57) (applied with f = 1 B ) and (69), we have

|B| ≤ c n ˆQ |∇ 1 B | n/(n-1) = c n [P(B)] n/(n-1) , ( 70 
)
where P(B) represents the perimeter of B relative to Q. When B is a Lipschitz domain (which will be the case in what follows), P(B) is the (surface) measure of ∂B ∩ Q.

We now turn to the proof of the lemma.

Set δ = (#J) ε n-1 . Let (A i ) i∈I be the connected components of the open set Q \ ∪ j∈J Q ε (a j ). A 1 A 2 A 3 Figure 1: The components of Q \ ∪ j∈J Q ε (a j ).
Note that each A i is Lipschitz, and that

∪ i∈I (∂A i ∩ Q) ⊂ ∪ j∈J (∂Q ε (a j ) ∩ Q). ( 71 
)
Let

G j := {x ∈ ∂Q ε (a j ) ∩Q;
x does not belong to the (n -2) skeleton of ∂Q ε (a j )}.

Note that

[∪ i∈I (∂A i ∩ Q)] \ ∪ j∈J G j has zero H n-1 -measure.
Since a point x ∈ G j belongs to at most one ∂A i , we find, using (71), that

i∈I P(A i ) ≤ j∈J P(Q ε (a j )) ≤ c ′ n δ. ( 72 
)
We claim that if δ < δ n (a positive number depending only on n), then there exists some i 0 ∈ I such that |A i 0 | > 1/2. Indeed, argue by contradiction and assume that |A i | ≤ 1/2, ∀ i ∈ I. By (70) and (72), we have

1 -|U| = |Q \ U| = i∈I |A i | ≤ c n i∈I [P(A i )] n/(n-1) ≤ c n i∈I P(A i ) n/(n-1) ≤ c n (c ′ n δ) n/(n-1) = c ′′ n δ n/(n-1) . ( 73 
)
On the other hand

|U| ≤ (#J) ε n = δε < δ. ( 74 
)
Combining ( 73) and ( 74) we obtain 1) ; this is impossible when δ < δ n , where δ n is the solution of

1 ≤ δ + c ′′ n δ n/(n-
1 = δ n + c ′′ n (δ n ) n/(n-1) ,
and thus the claim is established when δ < δ n . Set S = A i 0 , which is clearly connected and contained in Q \ U. Applying (70) to B = S c we find (using (72)) 1) , which is the desired conclusion when δ < δ n . Finally, we observe that

1 -|S| ≤ c n [P(S c )] n/(n-1) = c n [P(S)] n/(n-1) ≤ c ′′ n δ n/(n-
1 - 1 (δ n ) n/(n-1) δ n/(n-1) ≤ 0
when δ ≥ δ n and therefore Lemma 7 holds with 1) .

α n = max c ′′ n , 1 (δ n ) n/(n-

An extension of Theorem 5 to Z-valued functions

Our main result in this section is

Theorem 10. Let n ≥ 2. There exists a positive constant c (independent of n) such that if f is a Z-valued function in B and [ f ] < c, then f ∈ L n/(n-1) (Q) and f - Q f L n/(n-1) (Q) ≤ C n [ f ] , (75) 
for some constant C n depending only on n.

Theorem 5 can be deduced from Theorem 10. Indeed, let f = 1 A . Then either [ f ] ≤ c, and Theorem 10 applies, or [ f ] > c, and then

f - Q f L n/(n-1) (Q) ≤ 2 ≤ (2/c)[ f ].
The smallness condition on [ f ] in Theorem 10 is essential, as shown by the following improvement of Proposition 3.

Proposition 11. Let n

≥ 2. There exists a Z-valued function f ∈ B such that f ∈ L n/(n-1) (Q).
Proof of Theorem 10. Step 1. Decomposition of f as a sum of characteristic functions. We temporarily assume that f ≥ 0. Then f is a sum of characteristic functions. Indeed, set

A k := {x ∈ Q; f (x) ≥ k}, ∀ k ∈ N * , and let g k := 1 A k . Then we claim that f = k>0 g k (76)
and

| f (x) -f (y)| = k>0 |g k (x) -g k (y)|, ∀ x, y ∈ Q. ( 77 
)
Indeed, on the one hand (76) follows from

k>0 g k (x) = 0<k≤ f (x) 1 = f (x).
On the other hand, assuming e.g. that f (x) ≥ f (y), we have g k (x) = g k (y) provided either k ≤ f (y) or k > f (x), and thus

k>0 |g k (x)-g k (y)| = f (y)<k≤ f (x) |g k (x)-g k (y)| = f (y)<k≤ f (x) 1 = f (x)-f (y) = | f (x)-f (y)|;
that is, (77) holds.

We next note that (77) implies

M * ( f ,Q ε ) = k>0 M * (g k ,Q ε ), (78) 
and in particular

M(g k ,Q ε ) ≤ M * ( f ,Q ε ), ∀ k > 0. ( 79 
)
Step 2. Construction of maximal families of "bad" cubes. Fix some λ ∈ (0, 1/2) and consider a sequence ε m → 0. Let Q m := (3ε m , 1-3ε m ) n . Let J m be a maximal family of points a ∈ Q m such that the cubes Q ε m (a), a ∈ J m , are mutually disjoint and satisfy

M * ( f ,Q ε m (a)) ≥ 2λ(1 -λ).
By the maximality of J m and by (79), we have

M(g k ,Q ε m (b)) ≤ M * ( f ,Q ε m (b)) < 2λ(1 -λ), ∀ b ∈ Q m \ ∪ a∈J m Q 2ε m (a). ( 80 
)
We next associate to each k an appropriate subfamily extracted from J m . More specifically, let

J k m := {a ∈ J m ; 3 2n M * (g k ,Q 3ε m (a)) ≥ 2λ(1 -λ)}. ( 81 
)
We claim that

M(g k ,Q ε m (b)) < 2λ(1 -λ), ∀ b ∈ Q m \ ∪ a∈J k m Q 2ε m (a). (82) 
Indeed, (80) implies that (82) holds for b ∈ Q m \ ∪ a∈J m Q 2ε m (a). It remains to establish (82) when b ∈ Q 2ε m (a) for some a ∈ J m \ J k m . In this case, we have

Q ε m (b) ⊂ Q 3ε m (a) and thus M * (g k ,Q ε m (b)) ≤ 3 2n M * (g k ,Q 3ε m (a)) < 2λ(1 -λ).
This completes the proof of (82).

Step 3. A first estimate of f - ffl Q f L n/(n-1)
. By (69), (82), and Lemma 9, we have

g k - Q g k L n/(n-1) ≤ 2 ( c n ) (n-1)/n lim m→∞ (ε m ) n-1 #J k m . ( 83 
) Thus k>0 g k - Q g k L n/(n-1) ≤ 2 ( c n ) (n-1)/n lim m→∞ (ε m ) n-1 k>0 #J k m , (84) 
and therefore

f - Q f L n/(n-1) ≤ 2 ( c n ) (n-1)/n lim m→∞ (ε m ) n-1 k>0 #J k m . ( 85 
)
Step 4. A second estimate of f -´Q f L n/(n-1) .

In this step, we assume that

[ f ] < d := λ(1 -λ), with λ chosen as in Step 2. ( 86 
)
Under this assumption, we will prove that

c ′ n lim m→∞ (ε m ) n-1 k>0 #J k m ≤ [ f ] for some constant c ′ n > 0. ( 87 
)
Granted this estimate, we obtain (using (85)) that

f - Q f L n/(n-1) ≤ C n [ f ], with C n = 2 ( c n ) (n-1)/n /c ′ n . ( 88 
)
We now proceed to the proof of (87). We first note that (by ( 3)) we have

M( f ,Q ε m (a)) ≥ λ(1 -λ), ∀ a ∈ J m . (89) 
Repeating the proof of (64) (and using ( 86) and ( 89)), for large m we have

#J m ≤ 1/(ε m ) n-1 . ( 90 
)
We next rely on the following lemma, well-known to the experts, whose proof is omitted.

Lemma 12. Let {Q ε (a); a ∈ J} be a family of mutually disjoint ε-cubes. Then there exists a constant N = N(n) such that 1. J = J 1 ∪ J 2 ∪ . . . J N .

2. For every j, the cubes Q 3ε (a), a ∈ J j , are mutually disjoint.

3. For every j, we have #J j ≤ #J/3 n-1 .

By Lemma 12, for every family of mutually disjoint

ε-cubes Q ε (a), a ∈ J ⊂ (3ε, 1 -3ε) n , such that #J ≤ 1/ε n-1 , we have (3ε) n-1 a∈J M(h,Q 3ε (a)) ≤ N [h] 3ε , ∀ h : Q → R. (91) 
In particular, for large m we have (using (90) and ( 91))

(ε m ) n-1 a∈J m M( f ,Q 3ε m (a)) ≤ N/3 n-1 [ f ] 3ε m . (92) 
Combining (92) with (3), we see that

(ε m ) n-1 a∈J m M * ( f ,Q 3ε m (a)) ≤ 2N/3 n-1 [ f ] 3ε m (93)
We now use successively (93), ( 78) and ( 81) and obtain that

[ f ] 3ε m ≥ 3 n-1 /(2N) (ε m ) n-1 a∈J m M * ( f ,Q 3ε m (a)) = 3 n-1 /(2N) (ε m ) n-1 a∈J m k>0 M * (g k ,Q 3ε m (a)) ≥ 3 n-1 /(2N) (ε m ) n-1 k>0 a∈J k m M * (g k ,Q 3ε m (a)) ≥ λ(1 -λ)/(3 n+1 N) (ε m ) n-1 k>0 #J k m = c ′ n (ε m ) n-1 k>0 #J k m , (94) 
with c ′ n := λ(1 -λ)/(3 n+1 N). We derive (87) by letting m → ∞ in (94).

Step 5. We remove the assumption f ≥ 0. We note that f = f + -f -, and that

| f ± (x) -f ± (y)| ≤ | f (x) -f (y)|, ∀ x, y ∈ Q. ( 95 
)
By ( 3) and (95), we have

M * ( f ± ,Q ε ) ≤ M * ( f ,Q ε ) ≤ 2M( f ,Q ε ), and thus [ f ± ] ≤ 2[ f ].
By the first part of the proof of this theorem, we have

f ± - Q f ± L n/(n-1) ≤ C n [ f ± ] ≤ 2 C n [ f ], (96) provided 
[ f ] < c := d/2.
Finally, (96) implies that

f -ˆQ f L n/(n-1) ≤ C n [ f ] provided [ f ] < c, with C n := 4 C n .
The proof of Theorem 10 is complete.

Proof of Proposition 11. We use the same notation and the same strategy as in the proof of Proposition 3, with some minor modifications. Set

g m (x) = I( f m (x)), ∀ m ≥ 1
, where I(t) denotes the integer part of t, and

g(x) = m≥1 g m (x).
Clearly,

g m L 1 (Q) ≤ f m L 1 (Q) = C N m (97) 
(by (34)), so that g ∈ L 1 (Q). On the other hand

g m n/(n-1) L n/(n-1) (Q) ≥ f m -1 n/(n-1) L n/(n-1) ([ f m >1]) ≥ α > 0, ∀ m ≥ 1,
and thus g ∈ L n/(n-1) (Q).

We will now prove that g ∈ B. Write

g = T 1 + T 2 + T 3 ,
with

T 1 = m≤M 1 g m , T 2 = M 1 <m≤M 2 g m , T 3 = m>M 2 g m ,
where M 1 = M 1 (ε) and M 2 = M 2 (ε) are defined exactly as in the proof of Proposition 3.

Estimate of [T 1 ] ε . Since g m ∈ Lip (Q), we need to modify the argument. We claim that, for sufficiently small ε (depending only on n), given any cube Q ε (a) there exists at most one integer m ≤ M 1 (ε) such that We deduce the claim using (99) and the fact that the balls B(b m , 2/N m ) are mutually disjoint.

Therefore, for ε ≤ ε 0 we have For ε ∈ [ε 0 , 1), we use (41) to assert that

M(T 1 ,Q ε (a)) ≤ Q ε (a) Q ε (a)
[T 1 ] ε ≤ 2 ε 0 T 1 L 1 (Q) ≤ 2 ε 0 g L 1 (Q) . (104) 
Combining ( 103) with (104) we deduce that

[T 1 ] ε ≤ C, ∀ ε ∈ (0, 1). ( 105 
)
Estimate of [T 2 ] ε . We claim that

ˆQ |∇g m | ≤ C, ∀ m ≥ 1, (106) 
and this implies via (9) that

[g m ] ε ≤ C, ∀ m ≥ 1, ∀ ε ∈ (0, 1), so that [T 2 ] ε ≤ C(M 2 -M 1 ) ≤ C, ∀ ε ∈ (0, 1) (107) 
(by ( 53)).

In order to prove (106), note that (108)

ˆQ |∇g m | = (N m ) n-1 k=1 H n-1 ([ f m = k]) = C (N m ) n-1 -1 k=1 1 - k (N m ) n-1 n-1 1 (N m ) n-1 = C (N m ) n-1 -1 ℓ=1 ℓ (N m ) n-1 n-1 1 (N m ) n-1 ≤ C.
Combining ( 105), ( 107) and (108) yields g ∈ B.

  Consider a sequence of points (b m ) m≥1 such that the open balls B(b m , 2/N m ) are contained in Q and mutually disjoint. (We may e.g. choose the points b m on a line segment parallel to the x 1 -axis.) Set

Q

  ε (a) ∩ (supp g m ) = . (98) Indeed, if (98) holds, thenQ ε (a) ∩ B(b m , 1/N m ) = ,and thusQ ε (a) ⊂ B(b m , 2/N m ) hand, (45) implies that N M 1 ≤ 4 ε 1/n ,and thus (100) holds when ε ≤ ε 0 := 1 4 n/(n-1) n n/[2(n-1)] .

  |g m (y) -g m (z)| d ydz (101) for some m ≤ M 1 (ε). If y, z ∈ Q ε (a), we have | f m (y) -f m (z)| ≤ |y -z| f m Lip ≤ (N m ) n n ε ≤ C(by (45)). Hence|g m (y) -g m (z)| ≤ C,(102)since|I(t) -I(s)| ≤ |t -s| + 1, ∀ t, s.Combining (101) and (102) yields M(T 1 ,Q ε (a)) ≤ C and therefore [T 1 ] ε ≤ C, ∀ ε ∈ (0, ε 0 ). (103)

  Estimate of [T 3 ] ε . The technique for estimating [S 3 ] ε in the proof of Proposition 3 gives[T 3 ] ε ≤ C, ∀ ε ∈ (0, 1).
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