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UNIVERSAL REGULAR CONTROL FOR GENERIC
SEMILINEAR SYSTEMS

JAIRO BOCHI AND NICOLAS GOURMELON

ABSTRACT. We consider discrete-time projective semilinear control systems
&+1 = A(ut) - &, where the states & are in projective space RP4~1 inputs
ug are in a manifold U of arbitrary dimension, and A: Y/ — GL(d,R) is a
differentiable mapping.

An input sequence (ug,...,uny—_1) is called universally regular if for any
initial state &g € RP%~1, the derivative of the time-N state with respect to the
inputs is onto.

In this paper we deal with the universal regularity of constant input se-
quences (ug,...,up). Our main result states that for generic such control
systems, all constant inputs of sufficient length N are universally regular, ex-
cept for a discrete set. More precisely, the conclusion holds for a C?-open and
C®-dense set of maps A. We also show that the inputs on that discrete set are
nearly universally regular; indeed there is a unique non-regular initial state,
and its corank is 1.

In order to establish the result, we study the spaces of bilinear control
systems. We show that the codimension of the set of systems for which the
zero input is not universally regular coincides with the dimension of the con-
trol space. The proof is based on careful matrix analysis and some elemen-
tary algebraic geometry. Then the main result follows by applying standard
transversality theorems.

1. INTRODUCTION

1.1. Basic definitions and some questions. Consider discrete-time control sys-
tems of the form:

(11) Tt4+1 :F(th,ut), (t = 0,1,2,...)

where F': X x U — X is map. We will always assume that the space X of states
and the space U of controls are manifolds, and that the map F' is continuously
differentiable.

A sequence (xq,...,TN;Ug, ..., un—1) satisfying is called a trajectory of
length NV; it is uniquely determined by the initial state z¢ and the input (ug, ..., un—1).
Let ¢ denote the time-N transition map, which gives the final state as a function
of the initial state and the input:

(1.2) TN = ¢n(To3 U0, ..., UN_1).

We say that the system (1.1]) is accessible from z( in time N if the set ¢ ({xo} x
UN) of final states that can be reached from the initial state 2y has nonempty
interior.
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2 BOCHI AND GOURMELON

The implicit function theorem gives a sufficient condition for accessibility. If
the derivative of the map ¢y (xo;-) at input (ug,...,un—1) is an onto linear ma}ﬂ
then we say that the trajectory determined by (xo;uo, ..., un—1) is regular. So the
existence of such a regular trajectory implies that the system is accessible from zq
in time N.

Let us call an input (ug,...,un—_1) universally regular if for every zo € X, the
trajectory determined by (zg; ug,...,un—1) is regular; otherwise the input is called
singular.

The concept of universal regularity is central in this paper; it was introduced
by Sontagﬂ in [So] in the context of continuous-time control systems. The discrete-
time analogue was considered by Sontag and Wirth in [SW]. They showed that
if the system is accessible from every initial condition xy in uniform time
N then universally regular inputs do exist, provided one assumes the map F' to
be analytic. In fact, under those hypotheses they showed that universally regular
inputs are abundant: in the space of inputs of sufficiently large length, singular
ones form a set of positive codimension.

In this paper, we are interested in control systems where the next state
2¢+1 depends linearly on the previous state x; (but non-linearly on u;, in general).
This means that the state space is K¢, where K is either R or C, and that ([T.1])
now takes the form:

(1.3) Tip1 = Aug) -y, where A: U — Matgxq(K).

Following [CKI], we call this a semilinear control system.
In the case that the map A above takes values in the set GL(d, K) of invertible
matrices of size d > 2, we consider the corresponding projectivized control system:

(1.4) Ger1 = Alw) - &,

where the states & take value in the projective space KP4~! = K4/K,. We call
this a projective semilinear control system. The projectivized system is also a useful
tool for the study of the original system (1.3)): see e.g. [Wi, [CK2].

Universally regular inputs for projective semilinear control systems were first
considered by Wirth in [Wi]. Under his working hypotheses, the existence and
abundance of such inputs is guaranteed by the aforementioned result of [SW]; then
he uses universally regular inputs to obtain global controllability properties.

The purpose of this paper is to establish results on the existence and abundance
of universally regular inputs for projective semilinear control systems. Differently
from [SWI [Wi], we will not necessarily assume our systems to be analytic. Let
us consider systems with K = R and A: & — GL(d,R) a map of class C",
for some fixed r > 1. To compensate for less rigidity, we do not try to obtain
results that work for all C™ maps A, but only for generic ones, i.e., those maps in
a residuaﬂ subset, or, even better, in an open dense subset.

To make things more precise, assume U is a C* (real) manifold without bound-
aryﬁ We will always consider the space C" (U, GL(d,R)) endowed with the strong

o4 topologyﬂ

LThis condition is usually written in terms of the rank of a certain matrix and it is usually
called the rank condition.

2Sontag calls these inputs universally nonsingular; we follow the terminology of [Wi, [CK2].

3Recall that a subset of a Baire space is called residual if it is a countable intersection of open
dense subsets.

4M0reover, all manifolds are assumed to be Hausdorff paracompact with a countable base of
open sets, and of finite dimension.

5See e.g. [Hi]. Note that in the case that U is compact, this coincides with the usual uniform
C" topology.
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Hence the first question we pose is this:

Taking N sufficiently large, is it true that for C"-generic maps A, the
set of universally regular inputs in % is itself generic?

It turns out that this question has a positive answer. Actually, we show in [BG2]
that for r great enough, for maps A in a C" open and dense set, all inputs in
UV are universally regular, except for those in a stratified closed set of positive
codimension. So another natural question is this:

Fixed parameters d, dimU, N, and r, what is the minimum codimen-

sion of the set of singular inputs in " that can occur for C"-generic

maps A: U — GL(d,R)?
This question seems to be very difficult. However, we do have a sharp estimate if
we restrict ourselves to the subset of U” formed by non-resonant inputs, namely
those inputs (ug,...,un—1) such that u; # u; whenever i # j (see [BG2]). To
investigate what happens for resonant inputs is a much tougher job.

In this paper we consider the most resonant case. Define a constant input of
length N as an element of 4" of the form (ug, uo, - - ., ug). We propose ourselves to
study universal regularity of inputs of this form. A possible interpretation is this:
Suppose the system is controlled by a “lever” that is very hard to move. Then we
want to know what positions of the lever are universally regular. For those positions
it is possible to perturb the state of the system in any desired direction with only
slight moves on the lever.

1.2. The main result. Our main result says that generically the singular constant
inputs form a very small set:

Theorem 1.1. Given d = 2 and m > 1, there exists N = 1 with the following
properties. Let U be a smooth m-dimensional manifold without boundary. Then
there exists a C?-open C®-dense subset O of C*(U,GL(d,R)) such that for every
system with A € O, all constant inputs of length N are universally regular,
except for those in a zero-dimensional (i.e., discrete) set.

By saying that a subset O of C?(U,GL(d,R)) is C*-dense, we mean that for all
r > 2, the intersection of O with C™(U, GL(d,R)) is dense in C" (U, GL(d, R)).

It is remarkable that the generic dimension of the set of singular constant inputs
(namely, 0) does not depend on the dimension m of the control space U, neither on
the dimension d—1 of the state space. A partial explanation for this phenomenon is
the following: First, the obstruction to universal regularity of the input (u,w,...,u)
is the combined degeneracy of the matrix A(u) and of the derivatives of A at u. If
m is small then the image of the generic map A will avoid too degenerate matrices,
which increases the chances of obtaining universal regularity. If m is large then
more degenerate matrices A(u) will inevitably appear; however the large number
of control parameters compensates, so universal control is still likely.

The singular inputs that appear in Theorem are not only rare; we also show
that they are “almost” universally regular:

Theorem 1.2 (Addendum to Theorem [I.1). The set O < C?*(U,GL(d,R)) in
Theorem [I_1] can be taken with the following additional properties: If A€ O and a
constant input (u,...,u) of length N is singular then:

1. There is a single direction & € RP™1 for which the corresponding trajectory

of system (L.4)) is not regular.
2. The derivative of the map ¢n(&o;-) at input (u,...,u) has comnlﬂ 1.

6The corank of a linear map L: V — W is the number dim W — dim L(V).
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To sum up, for generic systems (|1.4)), the universal regularity of constant inputs
can fail only in the weakest possible way: there is at most one non-regular state,
which can be moved in all directions but one.

Remark 1.3. We actually have a very precise description of the singular inputs that
appear in Theorem [[.2] We show that these singular inputs can be unremovable by
perturbations, and therefore Theorem is optimal in the sense that there are C'?-open
(actually even C'-open) sets of maps A for which the set of singular constant inputs is
nonempty. Also, by C*-perturbing any A in those C*-open sets, one can obtain an infinite
number of singular constant inputs. In particular, it is not possible to choose O to be
C'-open in the statement of the Theorem See Appendix

Remark 1.4. The integer N is a function of d and m we did not try to estimate precisely.
However, we know that it is at most d* (see Remark [1.7)).

Remark 1.5. In the case of complex matrices (i.e., K = C), we have a corresponding
version of Theorem where the maps A are analytic; see Appendix |g

1.3. Reduction to the study of the set of poor data. The bulk of the proof
of Theorem consists on the computation of the dimension of certain canonical
sets, as we now explain.

We fix A: U — GL(d,K) and consider the projective semilinear system (L.4).
Recall that 1-jet of the map A at a point u € U consists of the first order Taylor
approximation of A around u. By the chain rule, the universal regularity of an
input (ug,u1,...,un—1) depends only on the 1-jets of A at points ug, ..., uny—1.

Let us discuss the case of constant inputs (ug,...,up). If we take local coordi-
nates such that ug = 0 and replace the matrix map A: U — GL(d,K) by its linear
approximation, system becomes:

(1.5) 5Hp:<4+2umq>§, (t=0,1,2,...),

j=1
where A = A(ug) and Cy, ..., C,, are the partial derivatives at 0. This is the
projectivization of a bilinear control system (see [El]). For these systems, the zero
input is a distinguished one and the focus of more attention.

To study system it is actually more convenient to consider normalized
derivatives Bj = CjA_l7 which intrinsically take values in the Lie algebra gl(d, K).
Consider the matrix data A = (A, By, ..., By,). We will explain how the universal
regularity of the zero input is expressed in linear algebraic terms. Recall that the
adjoint operator of A acts on gl(d, K) by the formula Ads(B) = ABA~!. Consider
the linear subspace Ay (A) of gl(d,K) spanned by the matrices

Id and (Ada)(B;j), (i=0,....,n—1, j=1,...,m).
(The identity matrix appears because of the projectivization.) Then:
Proposition 1.6. The constant input (0,...,0) of length N is universally regular

for system (L.5) if and only if the space An(A) acts transitively on the set K¢ of
nonzero vectors.

If AN(A) acts transitively on K¢ for some N, then the data A is called rich;
otherwise it is called poor.

Remark 1.7. The spaces An(A) form a nested sequence, which thus stabilize after
finitely many steps. It is actually easy to see that stabilization occurs at most at time
N = d%. Therefore there are two possibilities: either the zero input of length d? is univer-
sally regular, or the zero inputs of all lengths are singularEl

“In other words, if you're old enough and still poor then you’ll never get rich.
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Let 73,(3() denote the set of poor data A major part of our work is to study
these sets. We prove:

Theorem 1.8. The set 797(,3%) is closed and semialgebraic, and its codimension in
GL(d,R) x (gl(d,R))™ is m.

Theorem 1.9. The set P\*) is algebraic, and its (complex) codimension in GL(d, C) x
(gl(d,C))™ is m.

So Theorems [1.8] and say how frequent universal regularity of the zero input
is in the space of projective bilinear control systems (|1.5])

1.4. Overview of the proofs. Theorem follow rather directly from Theo-
rem [I.§ by applying standard results from transversality theory. More precisely,
the fact that the set 777(73{ ) is semialgebraic implies that it has a canonical strati-
fication. This permits us to apply Thom’s jet transversality theorem and obtain
Theorem [T11

On the other hand, Theorem follows from its complex version Theorem
by simple abstract arguments.

Thus everything is based on Theorem [T.9] One part of the result is easily ob-
tained: we give examples of small disks of codimension m formed by poor data, so
concluding that the codimension of ’PT(,(S ) is at most m.

To prove the other inequality, one could try to exhibit an explicit codimension m
set containing all poor data. For m = 1 this task is feasible (and we actually
perform it, because with these conditions we can actually check universal regularity
in concrete examples). However, for m = 2 already the task would be very laborious,
and to expect to find a general solution seems unrealistic.

Our actual approach to prove the lower bound on the codimension of 737(,9 is
indirect. Crudely speaking, after careful matrix computations, we find some sets in
the complement of 737(,? ) that are reasonably “large” (basically in terms of dimen-
sion). Then, by using some abstract results of algebraic geometry, we are able to
show that ’Pr(,ic ) is “small”, thus proving the other half of Theorem

Let us give more detail about this strategy. We decompose the set P, =
into fibers:

7(53)

Po=|J {A}xPu(4),  Pu(4) < [gl(d,C)]"
AeGL(d,C)

It is not very difficult to show that for generic A in GL(d, C), the fiber P,,(A) has
precisely the wanted codimension m. However, for degenerate matrices A, the fiber
Pm(A) may be much bigger. (For example, one can show that if A is an homothecy
and m < 2d — 3 then P,,(A) is the whole [gl(d,C)]™.) In order to show that
codim P, = m, we need to make sure that those degenerate matrices with do not
form a large set. More precisely, we show that:

(1.6) Vk € {0,...,m}, codim{A € GL(d,C); codimPp,(A) < m —k} > k.

Let us explain how we prove ([1.6). In order to estimate the dimension of P,,(A)
for any matrix A € GL(d,C), we consider a quantity r = r(A) which is the least
number such that a rich data of the form (A, C1,...,C;) exists. In particular, if
r = r(A) < m then the following affine space
(17) {(Ol, 027 ey Cr, Br-&-l, ey Bm); Bj € g[(d, C)}

is contained in the complement of P,,(A).

8A more precise notation would be Pf)d. However, we can think d as fixed; on the other hand

it is sometimes useful to change m.
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In certain situations, if two algebraic subsets have large enough dimensions then
they necessarily intersect; for example, two algebraic curves in the complex pro-
jective plane CP? always intersect. This kind of phenomenon happens here: the
dimension of the affine space forces a lower bound for the codimension of
Pm(A), namely:

(1.8) codim Py, (A) = m + 1 —r(A).

So we need to show that matrices A with large r(A) are rare. A careful matrix
analysis provides an upper bound to r(A) based on the numbers and sizes of the
Jordan blocks of A, and on the occasional algebraic relations between the eigenval-
ues. This bound together with implies and therefore concludes the proof
of Theorem

In fact, the results of this analysis are even better, and we conclude that the
codimension inequality is strict when k > 1. This implies that poor data

(A, By, ..., By) for which the matrix A is degenerate form a subset of PO with
strictly bigger codimension. Thus we can show that the poor data that appear
generically are well-behaved, which leads to Theorem |1.2

1.5. Other remarks. One can also study uniform regularity of periodic inputs of
higher period. Using our results for constant inputs, it is not difficult to derive
some (non-sharp) dimension bounds for singular periodic inputs. However, for
highly resonant non-periodic inputs, we have no idea on how to obtain reasonable
dimension estimates.

As mentioned above, in paper [BG2] we have dimension estimates for general
inputs. These estimates are basically obtained by avoiding highly resonant inputs
(which have large codimension themselves). Thus the results of [BG2] are indepen-
dent from those of these paper. The proofs there are less involved from the point of
view of matrix computations, but use more sophisticated transversality theorems.

Of course, it would be interesting to consider these kind of problems for other
Lie groups of matrices, but we will not pursue this issue here.

1.6. Organization of the paper. Section [2| contains some basic results about
transitivity of spaces of matrices and its relation with universal regularity. We also
obtain the easy parts of Theorems and namely (semi)algebraicity and the
upper codimension inequalities.

In Section [3| we introduce the concept of rigidity, which is related to the quantity
r(A) mentioned above. We state the central rigidity estimates (Theorem[3.7)), which
consist into two parts. The first and easier part is proved in the same Section [3]
while the whole Section [d]is devoted to the proof of the second part.

Section [5] starts with some preliminaries in elementary algebraic geometry. Then
we use the rigidity estimates to prove Theorem following the strategy outlined
above (§ . Theorem follows easily. We also obtain a lemma that is needed
for the proof of Theorem

In Section [f] we collect some basic facts about stratifications and transversality,
and then apply them together with the previous results to obtain Theorems (1.1
and [[.2

The paper also has some appendices:

Appendix [A] basically reobtains the major results in the special case m = 1,
where we actually gain additional information of practical value: as mentioned in
§ [[4] it is possible to describe explicitly what 1-jets the map A should avoid in
order to satisfy the conclusions of Theorems and The arguments necessary
for the m = 1 case are much simpler and more elementary than those in Sections
to [5l Therefore the appendix is also useful to give the reader some intuition about
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the general problem, and as a source of examples. Appendix [A] is written in a
slightly informal way, and it can be read after Section [2| (though the final part
requires Lemmas and .

In Appendix [B]we take a closer look to the generic singular constant inputs, and
in particular we justify Remark We also discuss the generic validity of some
control-theoretic properties related to accessibility and regularity.

In Appendix [C] we apply Theorem to prove a version of Theorem for
holomorphic mappings.

Finally, Appendix [D] proves the algebraic-geometric result which allows us to

obtain estimate Eq. (1.8).

2. PRELIMINARY FACTS ON THE POOR DATA

In this section, we review some basic properties related to poorness, and prove
the easy inequalities in Theorems and

2.1. Transitive spaces. Let F and F' be finite-dimensional vector spaces over the
field K. Let L(E, F) be the space of linear maps from E to F. A vector subspace
A of L(E, F) is called transitive if for every v € E \ {0}, we have A - v = F, where
A-v={L(v); LeA}.

Under the identification £(K™,K™) = Mat,,,(K), we may also speak of tran-
sitive spaces of matrices.

Example 2.1. Recall that a Toeplitz matriz, resp. a Hankel matriz, is a matrix of the
form

ot e tan hi -+ ha—r hg
o =  has
e T ,  resp. R B
oot ha—1 . '
t—d+1 - .tfl . to hq bl hd+1b ~o hog—1

The set of Toeplitz matrices and the set of complex Hankel matrices constitute examples
transitive subspaces of gl(d, K). Transitivity of the Toeplitz space is a particular case of
Example[2:2] and transitivity of Hankel space follows from Remark [2:3] For K = C, these
spaces are optimal, in the sense that they have the least possible dimension; see [AzZ].

Example 2.2. A generalized Toeplitz space is a subspace A of Matqxq(K) (where d > 2)
with the following property: For any two matrix entries (i1, j1) and (é2, j2) which are not in
the same diagonal (i.e., i1 —j1 # iz — j2), the linear map (bi,;)i,; € A > (biy 4, bin.4,) € C?
is onto. Equivalently, a space is generalized Toeplitz if it can be defined by a number
of linear relations between the matrix coefficients so that each relation involves only the
entries on a same diagonal, and so that the relations do not force any matrix entry to be
zero. We will prove later (see § that every generalized Toeplitz space is transitive.

Remark 2.3. If A is a transitive subspace of L(E, F) and P € L(E,E), Q € L(F, F) are
invertible operators then P - A - Q := {PLQ; L € A} is a transitive subspace of L(E, F).

Let us see that transitivity is a semialgebraic or algebraic property, according to
the field. Recall that:
e A subset of K" is called algebraic if it is expressed by polynomial equations
with coefficients in K.
e A subset of R" is called semialgebraic if it is expressed by finitely many
polynomial equations or inequalities with coefficients in R.

Proposition 2.4. Let ./\/;(nKzlk be the set of (By, ..., Bi) € [Mat,x,(K)]¥ = Kmnk

such that span{By, ..., By} is not transitive. Then:

1. The set ./\/;(HRZL . s semialgebraic.
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2. The set Nr(n(c)

.k s algebraic.

Proof. Consider the set of (B, ..., Bx,v) € [Maty,x,(K)]* x K7 such that
span{Bi,...,Bg} v # K".

This is an algebraic set, because it is expressed by the vanishing of certain determi-
nants. Taking K = R and projecting this set along the R}, fiber we obtain Nrsszzw
so, by the Tarski-Seidenberg theorem (see [BCRI p. 26]), this set is semialgebraic,
proving part [I}

To see part we take K = C and projectivize the C}, fiber, obtaining an algebraic
subset [Mat,,x»(C)]* x CP"~! whose projection along the CP"! fiber is J\/;(nczl K
So part [2] follows from the fact that projections along projective fibers are closed
maps with respect to the Zariski topology (see Proposition below). O

Another important fact is that complex transitivity of real matrices is a stronger
property than real transitivity:

Proposition 2.5. The real part of./\f(c)

m,n

& (that is, its intersection with [Mat,,xn (R)]F)

. (R)
contains Nm’n,k.

Moreover, the inclusion can be strict. The explanation is this: real matrix data
can be R-transitive without being C-transitive because the directions that detect
non-transitivity are non-real. A formal proof and examples are provided in [BGI].

Remark 2.6. The codimension of Nfﬁlk is computed in [BGI]: it is max(k—m—n+2,0).
We also observe in [BGI] that NT&RL . can fail to be real-algebraic. But we will not need
those results in the present paper.

2.2. Universal regularity for constant inputs and richness. In this subsec-
tion we prove Proposition [1.6; in fact we prove a more precise result, and also fix
some notation.

Recall that if A € GL(d,K) then the adjoint of A is the linear operator Ad4 on
gl(d, K) given by the formula Ads(B) = ABA~.

If A: U — GL(d,C) is a differentiable map then the normalized derivative of A
at a point u is the linear map T,U — gl(d,R) given by h — (DA(u) - h) o A= (u).

Let ¢ (&0, 1) be the state &y € KP? of the system determined by the initial
state & and the input sequence @ € UN. Let dadn(&o, @) be the derivative of the
map ¢n(&o,-) at .

Fix a constant input @ = (u,...,u) € U, and local coordinates on I around u.
Let B; be the normalized partial derivatives of the map A at u with respect to the
i*h coordinate. Consider the data A = (4, By, ..., By,), where A = A(u). Define
the following subspace of gl(d, K):

(2.1) An(A)=K-Id+ span {AdZ(Bj)},

0<n<N-—1
1<j<m

Proposition 2.7. For all &, € KP?~! and any zo € K¢\ {0} representing &,
rank 02pn (€0, @) = dim [An(A) - (AVz0)] — 1.

In particular (since A = A(u) is invertible), the input 4 is universally regular if
and only if Ay (A) is a transitive space, which is the statement of Proposition

Proof of Proposition[2.7 Let & = [x0], where xo € K¢\ {0}. Let vn(xo,1) be
the final state of the non projectivized system (|1.3]) determined by the initial state
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xo and by the sequence of controls % € U . Using local coordinates with u in the
origin, we have the following first order approximation for @ ~ 0:

wN<.'I;0,'I/,l) ~ AN,TO + Z ut’jAN_t_lBjAt-’—lJ}O

1<j<m
0<t<N

= |1d+ > un_1-n;AdL(B)) |2N,
1<jsm
0<n<N

where zx = ¥n(20,0) = ANxy. Therefore the image of 0ot (0, @) is the following
subspace of TANwOKd:

V= (span AdZB]) Ty,

1<j<m
osn<N

The image of da¢n (€0, 1) equals Dr(zy)(V), where 7 : K¢\ {0} — KP9! is
the canonical projection. Notice that Ker Drr(x) = Kz for any x € K¢ < {0}. It
follows that

rank oy (€, 1) = dim [D7(zn) (V)]
= dim [D7(zn) (Kzy + V)] = dim[Kzy + V] -1
Since Kzy +V = Ax(A) - zn, the proposition is proved. O
The discussion above motivates the introduction of a more general notation,
which will be convenient later. Consider a linear operator H: E — E, where E is
a finite-dimensional vector space over the field K. Given a vector v € E, the orbit

of v under H is the set {H™v; n = 0}. Denote the space spanned by the orbit by
sorby v. We have

sorbg v = {f(H) - v; f is a polynomial with coefficients in K} .
It follows from the Cayley—Hamilton theorem that sorbg v is the space spanned by
the first dim E iterates of v:
sorbg v = span{H"v; n=0,...,dimE — 1}.
Let us also denote

sorbg (v1,...,v,) = sorbg vy + -+ + sorby vy, .

In this notation, the union A(A) := | Jy An(A) of the elements of the sequence
(2.1)) is expressed as
(2.2) A(A) =sorbpg,(Id, By, ..., B,,), where A = (A, By,...,By).
We have Ax(A) = A(A) for all N > d?, as stated in Remark

2.3. The sets of poor data. For emphasis, we repeat the definition already gave
at the introduction: The data A = (A, By, ..., By) € GL(d,K) x [gl(d, K)]™ is rich
if the space A(A) defined by is transitive, and poor otherwise. The concept in
fact depends on the field under consideration. The set of such poor data is denoted

K
by P,
It follows immediately from Proposition that 737(3 )d is a closed and semialge-
braic subset of GL(d, R) x [gl(d, R)]™ and P ©) is an algebraic subset of GL(d,C) x

m,d

[g!(d,C)]™. This proves part of Theorems and
Also, by Proposition the real poor data are contained in the real part of the

complex poor data, i.e.,

(2.3) PE, ~ [CL(A,K) x [al(d, K)]™] = P

m,d *
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Let us also note that the sets of poor data are saturated in the sense of the follow-
ing definition: A set Z < [Matgxq(K)]!T™ will be called saturated if (A, By, ..., By,) €
Z implies that:

e For all P € GL(d,K), the tuple (P~*AP, P~'B,P,..., P"'B,,P) belongs to
Z.
e For all Q = (¢;;) € GL(m,K), the tuple (A, B},...,B),), where B} =
Zj gi; Bj, belongs to Z.
Remark 2.8. 1. A subset [Mataxq(K)]**™ is saturated if and only if it is invariant

under a certain action of the group GL(d,K) x GL(m, K).
2. The real part of a complex saturated set is saturated (in the real sense).

2.4. The easy codimension inequality of Theorems and Here we
will discuss the simplest examples of poor data.

To begin, notice that if A € GL(d,C) is diagonalizable then so is Ad4. Indeed,
assume without loss of generality that A = Diag()A1,..., ;). Consider the basis
{E;;: 1,5 €{1,...,d}} of gl(d,C), where

(2.4) E;; is the matrix whose only nonzero entry is a 1 in the (g, j) position.
Then Ada(E; ;) = )\i)\j*lEi’j. We summarize this fact as:

IR YP e
(2.5) Ady = Diag [ 22T 1

So if f is a polynomial and B = (b;;) then
(2.6) the (4, j)-entry of the matrix (f(Ada))(B) is f()\i)\j_l)bij.

The data A = (A4, By,...,By) € GL(d,K) x gl(d, K)™ is called conspicuously
poor if there exists a change of bases P € GL(d, K) such that:
e the matrix P~ AP is diagonal;
e the matrices P~' B P have a zero entry in a common off-diagonal position;
more precisely, there are indices ig, jo € {1,...,d} with iy # jo such that for
each k € {1,...,m}, the (io, jo) entry of the matrix P~! B}, P vanishes.

(As in the definition of poorness, the concept depends on the field K.)
Lemma 2.9. Conspicuously poor data are poor.

Proof. Let A = (A, By, ..., B,,) be conspicuously poor. With a change of basis we
can assume that A is diagonal. Let (eq,...,eq) be the canonical basis of K¢. Let
(i,7) be the entry position where all B;’s have a zero entry. By 7 all matrices
in the space A(A) given by have a zero entry in the (ig,jo) position. In
particular, there is no L € A(A) such that L - ej, = e;,, showing that this space is
not transitive. O

The converse of this lemma is certainly false. (Many examples appear in Appen-
dix [A} see also Example ) However, we will see in § that the converse holds
for generic A.

We will use Lemma to prove the easy codimension inequalities for Theo-
rems and first we need to recall the following’}

9Proposition follows from the implicit function theorem; for a proof using complex analysis,
see [Kal p. 67].
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Proposition 2.10. Suppose A € Matyxq(K) is diagonalizable over K and with
simple eigenvalues only. Then there is a neighborhood of A where the eigenvalues
vary smoothly, and where the eigenvectors can be chosen to vary smoothly.
Proposition 2.11 (Easy half of Theorems and [L.9). For both K =R or C, we
have codimy P&K) <m.

Proof. Using Proposition [2.10] we can exhibit smoothly embedded disks of codi-
mension m inside GL(d, K) x gl(d, K)™ formed by conspicuously poor data. O

2.5. Unconstrained matrices. The material from this subsection is used in the
proof of Theorem but not in the proof of Theorem It is also used in
Appendix [A]

If p is an irreducible factor of the polynomial A;A\¢ — A; A, then the relation p = 0

is called an elementary constraint in the variables A1, ..., A\g. Every elementary
constraint can be written, after a permutation of the indices 1,...,d, as one of the
following:

e a type 1 constraint: A\ A3 = \2.
e a type 2 constraint: A\ Ay = Ao 3.
e a type 3 constraint: A\; = —\s.
e a type 4 constraint: A\; = As.
We say that a matrix A € GL(d,R) is unconstrained if its eigenvalues, counted
with multiplicity, do not satisfy any elementary constraint.

Remark 2.12. A matrix A is unconstrained if and only if Ad4 has the maximal possible
number of distinct eigenvalues, namely, d® —d+1. This is obvious from if one restricts
to diagonalizable matrices A. The general case follows from the fact (which we will prove
rigorously in § [4.3)) that the multiplicities of the eigenvalues of Ad4 are those “predicted”
by formula

Let us see that the converse of Lemma [2.9] holds for unconstrained A:

Lemma 2.13. Suppose that the data A = (A, By, ..., Bn) € GL(d,K) x gl(d, K)™
is poor and that the matriz A is unconstrained. Then A is conspicuously poor.

Proof. Suppose A is unconstrained. In particular, A has simple spectrum. With a
change of basis we can assume that A is diagonal.

Now suppose that A = (A, By,..., B,,) is not conspicuously poor. This means
that for each off-diagonal position there is at least of of the matrices By that has
a non-zero entry in that position. (Notice that this fact does not depend on the
change of basis chosen before.)

Since A is unconstrained, the values )\i)\;l, where (4,j) runs on the matrix
positions outside the diagonal, are pairwise different, and all different from 1. Recall
that one can always (using Lagrange formula) find a polynomial whose values at
finitely many different points are prescribed. So It follows from that the

space A(A) contains all matrices (y;;) such that y11 = -+ = yqq, and in particular,
all Toeplitz matrices. So A(A) is transitive, i.e., A is not poor. This proves the
lemma. ]

Let us establish another simple result, which is related to Theorem Denote
by (e1,...,eq) the canonical basis of C.

Lemma 2.14. Suppose that the data A = (A, By,...,By) € GL(d,C) x gl(d,C)™
has the following properties:
1. A is an unconstrained diagonal matriz;
2. there are indices ig, jo € {1,...,d} with ig # jo such that for each k €
{1,...,m}, the (io, jo) entry of the matriz By vanishes;
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3. the off-diagonal vanishing entry position (ig,jo) above is unique.
Then:

1. There is a single direction [v] € CP4~1 such that A(A)-v # C%, namely [e;,]-
2. The space A(A) - e;, has codimension 1; in fact, it equals spanfe;; i # io}.

Proof. Under the assumptions on A, the space A(A) contains
{(y”) € gl(d,C); y11 = = Ydds Yiojo = 0}-

The conclusions follow easily. O

After the preliminaries above, the optional Appendix |[A| can be read (as we
mentioned in §[1.6)).

3. RIGIDITY

The aim of this section is to state Theorem and prove its first part. Along
the way we will establish several lemmas which will be reused in the proof of the
second part of the theorem in Section [4]

3.1. Acyclicity. Consider a linear operator H: E — FE, where E is a finite-
dimensional complex vector space.

The operator H is called cyclic if it has a cyclic vector, that is, some v € E such
that sorby v is the whole space E. The following two lemmas are useful to find
cyclic vectors, when they exist:

Lemma 3.1. Suppose that E = C* and that H is a Jordan block:
AL
\
Then a vector v = (x1,...,xe) is cyclic for H if and only if x¢ # 0.

Proof. For any polynomial f we have (see [Gal page 100]):

(A TN (£—1) A
f()\) fl(! ). f2(! ). f(Zflg!)
f(H) = ey
')
Ll
f)
So the space spanned by the powers of H is the space of upper triangular Toeplitz
matrices. The rest of the proof is an easy exercise. U

Lemma 3.2. Let E be a finite-dimensional complex vector space andlet H: E — E

be a linear operator. Assume that Eq, ..., Ey € E are H-invariant subspaces and
that the spectra of A|E; (1 <i < k) are pairwise disjoint. If vi € Eq, ..., vi € Ej
then

SOI“bH(Ul7 - ,Uk) = SOI"bH(’Ul + -+ ’Uk) .
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Proof. The O part is trivial; let us show the < part. Take w € sorby (vy,...,vx), S0
w =Y. fi(H)-v;, where each f; is a polynomial. Let p; be the minimal polynomial
of H|E;, and let ¢; = H#ipj. Since the spectra of A|E; are pairwise disjoint,
the polynomials p; are pairwise relatively prime, and so the polynomials ¢; are
jointly relatively prime. Since polynomials form a principal ideal domain, there
exist polynomials g; such that )} g;q; = 1. Using that ¢;(H) -v; = 0if ¢ # j, we
have:

w3 fi(H) v = 3 filH) (Z gj<H>qj<H>> v,

= Zfi(H)gi(H)Qi(H) v = <Z fi(H)gi(H)%(H)> 'Zvj*

That is, w = f(H) - }; v; for some polynomial f, as we wanted to show. O
We define the acyclicity of H as the least number n of vectors vy, ..., v, € E
such that sorbg(vy,...,v,) = E. We denote n = acyc H. So acyc H = 1 means

that H is a cyclic operator.

Let us relate acyclicity with the Jordan normal form of H. The geometric mul-
tiplicity of an eigenvalue A of H is the number of corresponding Jordan blocks or,
equivalently, the dimension of the kernel of H — AId. The following fact is probably
well-known, but since we could not find a precise reference we provide a proofﬂ

Proposition 3.3. The acyclicity of an operator equals the maximum of the geo-
metric multiplicities of its eigenvalues.

Proof. Let A1, ..., A be the eigenvalues of H, counted without multiplicity, and
E = E1 ®---® Ej be the splitting into generalized eigenspaces. Let n; be the
geometric multiplicity of A;, and let n = maxn;.

Using Lemma we find v;1,...,v;n, € E; such that sorbg (v 1,...,0in,) =
E;. Define v; ; = 0 for n; < j < n. Consider w; = Zle v 4, for j =1,...,n. By
Lemma sorbg w; = sorbg(vi j,..., vk, ). So

sorby (wy, ..., wy) = ZsorbH(vLj,...,Uk,j) = ZsorbH(vi,l,...,vm) =F.
J i

This shows that acyc H < n.

To show the reverse inequality, assume that n = nq, for example. For each vector
in F, write its coordinates with respect to the Jordan basis, and the consider only
the coordinates corresponding to the rightmost columns of the Jordan blocks for
A1. This defines a linear map P: E — C” such that PH = A\ P. Now take any
vectors uq, ..., up—1 € E. Then the space S = sorby (u1,...,us—1) is sent by P to
the vector space span{Puy, ..., Pu,_1}, which has dimension < n. Since P is onto
C™, the space S cannot be the whole E. This shows that acyc H > n, completing
the proof. O

Remark 3.4. The operators which interest us most are H = Ada, where A € GL(d, C).
It is useful to observe that the geometric multiplicity of 1 as an eigenvalue of Ada equals
the the codimension of the conjugacy class of A inside GL(d,C). To prove this, consider
the map ¥4 : GL(d,C) — GL(d, C) given by ¥4(X) = Adx(A). The derivative at X = Id
is H— HA— AH; so Ker DU 4(Id) = Ker(Ada —id). Therefore when X = Id, the rank of
DV 4(X) equals the geometric multiplicity of 1 as an eigenvalue of Ad4. To see that this is

10The usual textbook approach is the other way around: one uses results about cyclic operators
to obtain the Jordan normal form; see e.g. [Gal.
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true for any X, notice that W4 = Waq, (4)0Rx-1 (where R denotes a right-multiplication
diffeomorphism of GL(d, C)).

We will see later (Lemma@ that 1 is the eigenvalue of Ad4 with the biggest geomet-
ric multiplicity. By Proposition [3.3} we conclude that acyc Ada equals the codimension
of the conjugacy class of A.

3.2. Definition of rigidity, and the main rigidity estimate. Let E and F be
finite-dimensional complex vector spaces. Let H be a linear operator action on the
space L(E, F). We define the rigidity of H, denoted rig H, as the least n such that
there exist L1, ..., L, € L(E, F) so that sorby (L1, ..., L) is transitive. Therefore

1 <rigH <acycH .

For technical reasons, we also define a modified rigidity of H, denoted rig, H.
The definition is the same, with the difference that if E = F' then L is required to
be the identity map in L(E, E). Of course,

rigH <rig, H <rigH + 1.

We want to give a reasonably good estimate of the modified rigidity of Ad 4 for
any fixed A € GL(d,C). (This will be achieved in Lemma [{.18]) We assume that
d > 2; so rig, Ady > 2. The next example shows that “most” matrices A have the
lowest possible rig, Ad4.

Example 3.5. If A € GL(d,C) is unconstrained (see § then rig, Ada = 2. Indeed
if we take a matrix B € gl(d, C) whose expression in the base that diagonalizes A has no
zeros off the diagonal then, by Lemma [2.13} A(A, B) = sorbaa , (Id, B) is rich.

More generally, if A € GL(d,C) is little constrained (see Appendix then it follows
from Proposition @ that rig, Ada = 2.

Example 3.6. Consider A = Diag(1, o, o) where a = ¢2™/3. (In the terminology of §
A has constraints of type 1.) Since Ad® is the identity, we have dimsorbaa, (Id, B) < 4
for any B € gl(3,C). By the result of Azoff [Az] already mentioned at Example [2.1] the
minimum dimension of a transitive subspace of gl(3,C) is 5. This shows that rig, Ada > 3.
(Actually, equality holds, as we will see in Example below.)

Let T be the set of roots of unity. Define an equivalence relation = on the set
C* of nonzero complex numbers by:

(3.1) A=XN < MNNeT.
We also say that A\, \ are equivalent mod T.
For A € GL(d,C), we denote
(3.2) ¢(A) := number of different classes mod T of the eigenvalues of A.

‘We now state a technical result which has a central role in our proofs, as explained
informally in § .4}

Theorem 3.7. Let d > 2 and A € GL(d,C). Then:

1. If ¢c(A) = d then rig, Ada = 2.
2. If ¢(A) < d then rig, Ady < acycAda —c(A) + 1.

Remark 3.8. When ¢(A) = d, we have acyc Ada = d (this will follow from Lemma [4.15));
so the conclusion of part [2| does not hold in this case.

Remark 3.9. The conditions of A being unconstrained and A having ¢(A4) = d both mean
that A in “non-degenerate”. Both of them imply small rigidity, according to Example [3.5
and part [1| of Theorem It is important, however, not to confuse the two properties;
in fact, none implies the other.
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Example 3.10. Consider again A as in Example [3.6] The eigenvalues of Ada are 1, a,
and o?, each with multiplicity 3; so Proposition gives acyc Ada = 3. So Theorem
tell us that rig, Ada < 3, which is actually sharp.

The proof of part[I]of Theorem [3.7]will be given in §[3.5] after a few preliminaries
(88 and . These preliminaries are also used in the proof of the harder part
which will be given in Section [

3.3. A criterion for transitivity. We will show the transitivity of certain spaces
of matrices that remotely resemble Toeplitz matrices.

Let t, s be positive integers. Let R; be a partition of the interval [1,¢] =
{1,...,t} into intervals, and let Ry be a partition of [1,s] into intervals. Let R
be the product partition. We will be interested in matrices of the following special
form:

* 0 0
(3.3) M = (mi;) =izt = 0 |Ma| O |,
0 0 *

where R is an element of the product partition R, and Mg is the submatrix (m; ;) j)er-
Let A be a vector space of ¢t x s matrices. For each R € R, say of size k x £, we
define the following space of matrices:

(3.4) ARl = N € Maty«¢(C) ;3 M € A of the form (3.3) with Mgz = N}.

We regard A as a subspace of £(C? C*). If the rectangle R is [p,p + k]| x [q,q + €],
we regard the space AR as a subspace of

L0}~ x CF x {077, {0~ x € x {0}7).
Lemma 3.11. Assume that A® is transitive for each R € R. Then A is transitive.

An interesting feature of the lemma which will be useful later is that it can be
applied recursively. Before giving the proof of the lemma, we illustrate its usefulness
by showing the transitivity of generalized Toeplitz spaces:

Proof of Example[2.3. Consider the partition of [1,d]? into 1 x 1 “rectangles”. If
A is a generalized Toeplitz space then ARl = Mat;x1(C) = C for each rectangle R.
These are transitive spaces, so Lemma [3.11] implies that A is transitive. O

Before proving Lemma [3.11] notice the following dual characterization of tran-
sitivity, whose proof is immediate:

Lemma 3.12. A subspace A = L(C!,C?) is transitive iff for any non-zero vector
u e C and any non-zero linear functional ¢ € (C%)* there exists M € A such that
d(M - u) #0.

Proof of Lemma[3.11. Take any non-zero vector u = (ug,...,u;) in C* and a non-
zero functional ¢(vy,...,vs) = 35, ¢;u; in (C°)*. By Lemma we need to
show that there exists M = (z;;) € A such that

(3.5) G(M -u) =Y ¥ djwiui

i=1j=1

is non-zero.
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Let 79 be the least index such that u; # 0, and let jo be the greatest index such
that ¢; # 0. Let R be the element of R that contains (ig,jo). Notice that if M
is of the form then the (i, j)-entries of M that are above left (resp. below
right) of R do not contribute to the sum , because ¢; (resp. u;) vanishes. That
is, ¢(M - u) depends only on My and is given by Z(i,j)ea ¢;xi5u;; Since AR g
transitive, by Lemma there is a choice of a matrix M € A of the form SO
that ¢(M - u) # 0. So we are done. O

3.4. Preorder in the complex plane. We consider the set C.. /T of equivalence
classes of the relation . Since T is the torsion subgroup of C, the quotient
C,4/T is an abelian torsion-free group. Therefore it admits a multiplication-invariant
total order <, by a result of Levi [Le]B

Let [z] € C4/T denote the equivalence class of z € C,. Let us extend the
notation, writing z < 2’ if [2] < [2/]. Then < becomes a multiplication-invariant
total preorder on C, that induces the equivalence relation =. In other words, for
all z, 2/, 2" € C, we have:

e zxZorZ Kz

e zxX7Zand 7 Xz = z2=7;
e zxX7Z and ' Xz = 22"
o 2 X7 = z2' < 2.

It follows that:

o 2 < Z/ — (Z/)—l 1

AN

N

We write z < 2’ when 2z < 2/ and z % 2/.

3.5. Proof of the easy part of Theorem

Proof of part[1] of Theorem[3.7. If ¢(A) = d then in particular all eigenvalues are
different and so the matrix A is diagonalizable. So with a change of basis we can
assume that A = Diag(A1,...,Aq). We can also assume that the eigenvalues are
increasing with respect to the preorder introduced in §

)\1<)\2<"'<)\d~

Fix any matrix B with only nonzero entries, and consider the space A = sorbaq, X,
which is described by . We will use Lemma to show that A is transitive.
Let R be the partition of [1,d]? into 1 x 1 rectangles. Given a cell R = {(ig, jo)} € R
and a coefficient ¢t € C, there exists a polynomial f such that f (/\i/\;1) equals t if
)\i)\j_l = )\Z—O)\j_ol and equals 0 otherwise. Because the eigenvalues are ordered,
M = f(Ad4) - B is a matrix in A of the form (3.3). Also, Mz = (¢). So Al =C,
which is transitive. This shows that rigAds = 1, and rig, Ady < 2. Thus, as
d > 2, we have rig, Ady = 2. O

4. PROOF OF THE HARD PART OF THE RIGIDITY ESTIMATE

This section is wholly devoted to prove part[2]of Theorem[3.7] In the course of the
proof we need to introduce some terminology and to establish several intermediate
results. None of these are used in the rest of the paper, apart form a simple
consequence, which is Remark

Hlet us give a direct proof of the existence of an invariant order on Cy/T. There is an
isomorphism between R ® (R/Q) and Cy /T, namely (z,y) — exp(z + 2miy). So it suffices to find
an invariant order in R/Q (and then take the lexicographic order). Take a Hamel basis B of the
Q-vector space R so that 1 € B. Then R/Q is a direct sum of abelian groups (—BzeB’ 221 Q. Order
each zQ in the usual way, take any total order on B, and consider the induced lexicographic order

on R/Q.
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4.1. The normal form. Let A € GL(d,C). In order to describe the estimate on
rig, Ada, we need to put A in a certain normal form, which we now explain.

We fix a preorder < on Cy as in §[3.4]
Let A1, ..., A+ be the eigenvalues of A, listed without repetitions, and with
respective multiplicities s1, ..., s,.. Assume they are ordered:

(4.1) AL <K
Reindex the sequence of eigenvalues Aq,..., A\, as

A =A2="=Ap <A1 =Xpoa=-"=Agp, <
Write each eigenvalue in polar coordinates:

Aij = riexp(0; j+/—1), where r; >0 and 0 < 6; ; < 27.
Reorder the eigenvalues so that, for each 1,

Oi1 <Oio<--<bir.
With a change of basis, we can assume that A has modified Jordan form:

A M Diy
(4.2) A= A= :
AT Athk,Tk

where tj 1 + -+ 4+ tg,r, = Sk and D, is the following ¢ x ¢ Jordan block:
(4.3) Di=| 1

The matrix A will be fixed from now on.

4.2. Geography. This subsection contains several definitions which will be fun-
damental in all arguments until the end of the section. We will define certain
subregions of the set {1,...,d}? of matrix entry positions, which depend on the
normal form of the matrix A. Later we will see they are related to Ad4-invariant
subspaces. We will use “geographical” terms for those regions: islands, cities, and
districts. The regions will have some numerical attributes (banner, area, popula-
tion); these attributes may seem mysterious initially, but later we will relate them
with numerical invariants of Ada (eigenvalues, multiplicities, geometric multiplic-
ities). We also introduce other attributes of the regions (northern and southern
cities, latitude of a district) which will be useful later in the proofs of our rigidity
estimates.

Recall A is a matrix in normal form as explained in § [1.1] Define three partitions
Py, Pe, Pq of the set [1,d] = {1,...,d} into intervals:

e The partition P; corresponds to equivalence classes of eigenvalues under the
relation =: the right endpoints of its atoms are the numbers s; + - -+ + s,
where k = r or k is such that Ay < Aga1.

e The partition P, corresponds to eigenvalues: the right endpoints of its atoms
are the numbers s; + -+ - + si, where 1 < k < r. So P, refines P;.

e The partition Py corresponds to Jordan blocks: the right endpoints of its
atoms are the numbers s; + -+ + sp—1 + €1 + - +tpe, where 1 <k <7
and 1 < £ < 73. So Pq refines P..
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For * =i, ¢, d, let P2 be the partition of the square [1,d]? into rectangles that are
products of atoms of Px. The elements of P? are called islands, the elements of P>
are called cities, and elements of P3 are called districts. Thus the world W = [1, d]?
is a disjoint union of islands, each of them is a disjoint union of cities, each of them
is a disjoint union of districts.

Example 4.1. Suppose d = 17, A has r = 5 eigenvalues
A1 = exp %m’, A2 = exp %m’, A3 = exp %lm', A4 = 2exp %m’, A5 = 2exp %m’

with respective Jordan blocks of sizes 4, 2, 1; 3, 2; 2; 2, 1. Then there are 4 islands, 25
cities, and 64 districts. See Fig.

15 11

pop. 3 pop. 2
lat. O lat. 1
__________ [ e e I R I R
| | |
| | pop. 2 | pop. 2
| | lat. —1 I lat. O
| | |
:_ :_ pop. 1 :_pop41
L L lat. —2 Llat. —1
11 | | 9 | 4 4 [Tc] 2(fa]
S ' ' ' S S
| | |
| | |
| | |
| | |
__________ | e e e e

2 2[fB] 1[d

S S S
5[0a) 4[5] 2[¥d] 2 1
SS 2[0a] 1[78] 1[ec] S 1

FIGURE 1. The geography corresponding to Example Thick (resp., thin,
dashed) lines represent island (resp., city, district) borders. Population and
latitude of each district inside a selected city are indicated. The population
of each city is recorded in its upper left corner, along with a symbolic repre-
sentation of its banner. There are three banner classes (¢ = [1], | = [2] and
1 = [1/2]), each of them with 3 different banners. Southern cities are marked
with S.

For each city (or district) we define its row eigenvalue and its column eigenvalue
in the obvious way: If a city C equals Iy x I, where I and I, are intervals with
right endpoints s; + - - - 4+ s and s1 + - - - + sy, respectively, then the row eigenvalue
of C is Ax and the column eigenvalue of C is A\y. The row and column eigenvalues of
a district D are defined respectively as the row and column eigenvalues of the city
that contains D.

Let C be a city with row eigenvalue \; ; and column eigenvalue Ay ;. The banner
of C is defined by )\,:é)\i’j. The argument of the city is the quantity 0y, — 0; ; €
(=2m, 2m). (It coincides, modulo 27, with the argument of the banner.) The city is
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called southern within its island if it has strictly negative argument, and northern
within its island otherwise.

Each district D has an address of the type “i*" row, j*® column, city C”; then
the latitude of the district D within the city C is defined as j —i. See an example in
Fig. [1

If two cities lie in the same island then their banners are equivalent mod 7. Thus
every island has a well-defined banner class in C*/T.

If a district, city, or island intersects the diagonal {(1,1),...,(d,d)} then we call
it equatorial. Equatorial regions are always square. Thus every equatorial city has
banner 1 and every city with banner 1 lies on a equatorial island.

The area of a district, city, island or world is defined as the product of its sides.
The population of a district is defined as the minimum of its sides. Populations of
cities, islands and world are defined as the sum of the areas and populations of the
corresponding districts.

Let us notice some facts on the location of the banners (which will be useful to

apply Lemma [3.11)):

Lemma 4.2. Let C be a city in an island I. Consider the divisions of the world W
and the island I as in Fig.[3

W

FIGURE 2. The divisions of W and I in Lemma@

Let B be the banner of the city C, and let [B] be the banner class of the island I.
Then:

1. All the islands with banner class [S] are inside the regions marked with x.

2. If the city C is northern (resp. southern) within I then the all the northern
(resp. southern) cities with same banner B are inside the regions marked
with +.

Proof. In view of the ordering of the eigenvalues 7 the banner class increases
strictly (with respect to the order <, of course) when we move rightwards or upwards
to another island. So Claim ({1]) follows.

The argument of a city takes values in the interval (—27, 27). It increases strictly
by moving rightwards or upwards inside I. If two cities in the same island are both
northern or both southern then they have the same banner if and only if they have
the same argument. So Claim follows. O

4.3. The adjoint in geographical terms. Given any d x d matrix X = (z;;)
and a district, city or island R = [p,p + t] X [¢,q + s] we define the submatriz
of X corresponding to R as (z;)(;,jjen- We regard the space of R-submatrices as
L({0}P71 x C x {0}47P=1 {0}27! x C* x {0}9797%), or as the set of d x d matrices
whose entries outside R are all zero. Such spaces are denoted by R°, and are invariant
under Ady. Indeed, if R = D is a district then identifying D° with Mat;y(C), the
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action of Ad4|D® is given by
X — M\ 'DX DS
where )\k)\e_l is the banner of D, and Dy, D, are Jordan blocks defined by (4.3).

If R is an equatorial district, city, or island we will refer to the d x d-matrix in R°
whose R-submatrix is the identity as the identity on R°. The following observation
will be useful:

Lemma 4.3. IfD is an equatorial district then the identity on D° is a eigenvalue
of the operator Ad4|D° corresponding to a Jordan block of size 1 x 1.

Proof. Suppose D has size t x t. Assume that the claim is false. This means that
there exists a matrix X € Mat;(C) such that D;XD; ' = X + Id, which is
impossible because X and X + Id have different spectra. O

We are going to prove the following:

Lemma 4.4. For each district D, the only eigenvalue of Ad4|D° is the banner of
the city that contains D. Moreover, the geometric multiplicity of the eigenvalue is
the population of the district.

The following facts are immediate consequences:

o The eigenvalues of Ad,4 are the banners of cities.

e The multiplicity of the eigenvalue 8 for the operator Ad, is the total area
of cities of banner §.

e The geometric multiplicity of the eigenvalue 8 for Ad 4 is the total population
of cities of banner (.

Lemma [£.4] is equivalent to the following:

Lemma 4.5. Let U, s be the linear operator on Mat,xs(C) given by
Ups(X) =D XD,
where Dy, Dy are Jordan blocks defined by . Then the only eigenvalue of Uy s
is 1, and its geometric multiplicity is min(t, s).
The rest of this subsection is devoted to prove Lemmal[L.5] To begin, notice that:
L =11 - (=1t

-1 _ RN
(44) b, = L

|
1
To describe Uy, it suffices to describe its action on the matrices F;; whose
unique nonzero entry is a 1 in the (¢, j) position. Using (4.4, we obtain

s
Us(Eij) = D (=) (Eip+ Ei_1yp),
p=j
or, visually:

1 -1 1 - =1
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The picture above suggests a way of “embedding” all the maps U, s into a single
infinite-dimensional model. More precisely, consider the space M of infinite ma-
trices of the form X = (xj )k <0, Where k, £ are non-positive integers, that have
only finitely many non-zero entries. For each pair of positive integers t, s, define a
monomorphism ¢ s: Matxs(C) — M by

if k> —t and £ > —s,

bt-‘rk s+¢
(bij)ij — (Tke)ke where xp, = . _
0 otherwise

Define a linear operator U: M — M by

4
(@h0)ke = (Weoke where ypp= Y1 (=1 (xkg +r-14)
qg=—0

Then the following diagram commutes:

Lt,s

Matyys(C) —" = M

o s

Lt,s

Mat;xs(C) ————= M

Let us prove a few facts about the operator U. It is convenient to consider also
N =U —id.

If X = (zx0) e Mand n =1,2,..., then we define the n'" diagonal of X as the
n-tuple (o, _(n—1), T—1,—(n—2); - - - » T—(n—1),0)- Define the height h(X) of X as 0 if
X =0, otherwise h(X) is the maximal n such that X has a nonzero n'"" diagonal.
It is clear that

(4.5) h(N(X)) < h(X) if X #0.

It follows that the operator IV is nilpotent, in the sense that every orbit eventually
hits zero.

Lemma 4.6. Let X = (xp4) € M and let Z = (zi) = N(X). If h(X) < n then
the n* diagonal of X can be determined from its first element and the (n — 1)%
diagonal of Z by the formula

p—1
Tp,—(n—1-p) = L0,—(n—1) + Z Z—q,—(n—2—q) (p = Oa 15 ceey N — 1)
q=0
Proof. Tt suffices to see that, for each ¢ = 0,1,...,n — 2,

g —(n—2-q) = T—(g+1),~(n—2-q) ~ T—q,—~(n—1-q) - .

For each t =1,2,..., let I; € M denote the image under ¢, of the ¢ x ¢ identity
matrix. A linear combination of matrices of this type is a matrix with constant
diagonals and so will be called a Toeplitz matriz.

Lemma 4.7. U(X) = X if and only if X is a Toeplitz matriz.

Proof. Since the t x t identity is fixed by the U; ;, we conclude that I is fixed by U,
proving the “if” part.

To see the converse, take X = (xy ¢) in the kernel of N. Let n = h(X) be height
of X. By Lemma the n't diagonal of X is constant, say (c,c,...,c). Thus
X — cl,, has height at most n — 1, and belongs to the kernel of N. It follows by
induction in n that X is a Toeplitz matrix. O
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Proof of Lemma[{.5. Since U — id is nilpotent, so is U s — id, which means that
the only eigenvalue of U, ; is 1.

The matrices I1, Ia, ..., Inin(s,s) belong to the image of ¢ s; therefore their
inverse images are eigenvectors of Uy ;. The space V spanned by these eigenvectors
is exactly

{M € Matyys(C); t4,s(M) is a Toeplitz matrix}.

By Lemma V' is also the space of the eigenvectors of Uy 5. This proves that the
geometric multiplicity of Uy s is min(t, s). O

Remark 4.8. It is natural to ask what are the sizes of the Jordan blocks corresponding to
the eigenvectors exhibited in the proof of Lemma We don’t know the answer, except
for the last eigenvector Lt_i (Imin(t,s)), which corresponds to a 1 x 1 Jordan block. This
fact, which generalizes Lemma [4-3] can be easily shown using Lemma [£.6]

4.4. Rigidity estimates for districts and cities.
Lemma 4.9. For any district D, we have rig, (Ad4|D®) < popD.

Proof. By Lemma [4.4] (and Proposition [3.3), Ada|D® has acyclicity n = popD, that
is, there are matrices X1, ..., X,, € D" such that sorbaq, (X1,...,X,) is the whole
D° (and, in particular, is transitive in D°). So rig(Ad4|D°) < n, which proves the
lemma for non-equatorial districts.

If D is an equatorial district then, by Lemma D" splits invariantly into two
subspaces, one of them spanned by the the identity matrix on D°. So we can choose
the matrices X; above so that X is the identity. This shows that rig, (Ad4|D”) <
n. (]

In all that follows, we adopt the convention max @& = 0.

Lemma 4.10. For any city C,
rig, (Ad4|C”) < Z max rig, (Ad4|D").

D is a district of C
£ latitude with latitude £

Proof. For each district D in C, let (D) = rig, (Ada|D”). Take matrices Xp 1, ...,
Xbp,rpy such that Ap := sorbaq, (XDJ, e XD7T(D)) is a transitive subspace of D7,
and Xp; is the identity matrix in D° if D is an equatorial district. Define Xp; = 0
for j > r(D). For each latitude ¢, let ny be the maximum of r(D) over the districts
D of C with latitude ¢, and let

Yo, = Z Xpj, forl<j<mng.

D is a district of C
with latitude £

Notice that if C is an equatorial city then Y; ; is the identity matrix in C°. Consider
the space
A =sorbag, {Y&j; £ is a latitude, 1 < j < ng}.
We claim that for every district D in C and for every M € Ap, we can find some
N e A with the following properties:
e the submatrix Np equals M;
e for every district D’ in D that has a different latitude than D, the submatrix
Np vanishes.
Indeed, if M = Z;(:Di fj(Ada)Xp ; for certain polynomials f;, we simply take N =
>7®) £;(Ada)Yy,;, where £ is the latitude of D.
In notation (3.4)), the claim we have just proved means that APl 5 Ap. So we can
apply Lemma and conclude that A is a transitive subspace of C°. Therefore
rig, (Ad4|C”) < > ny, as we wanted to show. O
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Example 4.11. Using Lemmas [£.9] and we see that the city C whose district popu-
lations are indicated in Fig. [I| has rig, (Ada|C") < 5.

In fact, we will not use Lemmas and directly, but only the following

immediate consequence:

Lemma 4.12. For every city C we have rig, (Ada|C®) < popC. The inequality is
strict if has more than one row of districts and more that one column of districts.

4.5. Comparative demographics. If R is a district, city or island, we define its
row projection m,;(R) as the unique equatorial district, city or island (respectively)
that is in the same row as R. Analogously, we define the column projection m.(R).

Lemma 4.13. For any city C, we have

pop 7 (C) + pop m¢(C)
5 .

Moreover, equality implies that the number of rows of districts for C equals the
number of columns of districts.

popC <

This is a clear consequence of the abstract lemma below, taking z,, a € Fj
(resp. a € F1) as the sequence of heights (resp. widths) of districts in C, counting
repetitions.

Lemma 4.14. Let F be a nonempty finite set, and let x, be positive numbers
indexed by o € F. Take any partition F = Fy u Fy. Fore, § € {0,1}, let

Y5 = Z min(z, zg) .
(O"IB)EFe XFJ

Then

Yoo + 211

-

Moreover, equality implies that Fy and Fy have the same cardinality.

Yo1 = 210 <

Proof. We will in fact prove the stronger fact:
2 .
(46) Yoo — 2X01 + 211 = (|F0| — |F1|) glellr%xa’

where || denotes set cardinality. The proof is by induction on |F|. It clearly holds
for |F| = 1. Fix some n and assume that (4.6) always holds when |F| = n. Take a
set F' with |F| = n + 1, and take positive numbers z,, a € F'. We can assume that
F={1,...,n+ 1} and that ©; > --- > x,41. Take any partition F = Fy u F}.
Without loss of generality, assume that n+1 € Fy. Apply the induction hypothesis
to F' = {1,...,n}, obtaining
00 = 2501 + 24y = ([Fo| = 1= [Fu))a,.
We have
Yoo = Bgo + (2|Fol = )an41, Tor =By + [Filznsr, and S = Xy,

so (4.6)) follows. O

If R is an island or the world, let pop; R denote the banner 1 population on R,
that is, the sum of the populations of the cities in R with banner 1.
Let us give the following useful consequence of Lemma [£.13}

Lemma 4.15. acycAdy = pop; W.
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Proof. By Proposition acyc Ad 4 is the maximum of the geometric multiplicities
of the eigenvalues of Ad4. Those eigenvalues are the banners 3, and the geometric
multiplicity of each 3 is the worldwide total population with banner 5. Thus, to
prove the lemma we have to show that banner 1 has biggest worldwide population.
Let 8 be a banner. Then, using Lemma [4.13
1 1
Z popC < 5 Z pop7:(C) + 5 Z pop me(C) .
C is a city C is a city C is a city
with banner g8 with banner 3 with banner 8

Since no two cities in the same row (resp. column) can have the same banner, the
restriction of m, (resp. m.) to the set of cities with banner  is a one-to-one map.
This allows us to conclude. (]

Remark 4.16. The Jordan type of a matrix A € Matgxq(C) consists on the following
data:

1. The number of different eigenvalues.
2. For each eigenvalue, the number of Jordan blocks and their sizes.

It follows from Lemma that these data is sufficient to determine acyc Ad4. (Of course,
one can easily write down a formula; see e.g. [Gal p. 222] or [Ar] p. 241].)

4.6. Rigidity estimate for islands.

Lemma 4.17. For any island I,
pop; m:(I) + pop; me(I)
5 .

In order to prove this lemma, it is convenient to consider separately the cases of
non-equatorial and equatorial islands.

rig, (Ad4|T%) <

Proof of Lemma when I is non-equatorial. For each banner §in I, let ng (resp.
sg) be the maximum of rig, (Ad4|C”) over the northern (resp. southern) cities C
in I with banner 5. For each city C with banner [, choose matrices X¢ 1, ...,
Xeng+ss € C” such that:

o Ac:=sorbag,(Xc1,-..,Xem) is a transitive subspace of C”;
e if C is southern then X; = Xy =--- = X,,, = 0;
e if C is northern then X, ;11 =+ = X;,,45, = 0.

Also, let X¢ ; = 0 for j > ng + sg.
Next, define

(4.7) Vs, = 2 X,

Cis a city
of I with banner 8

and
(4.8) Zi= ), Ya,
3 banner on I

Consider the space

A =sorbag,(Z1,...,2Zy), where m= max (ng-+ sg)

3 banner on I

It follows from Lemma [3.2] that
A = sorbag, {ngj; B is a banner, 1 < j < ng + Sg}.
Recall notation . We claim that
(4.9) Ac < Al

Indeed, given M € Ac, write M = >}, f;(Ada)Xc,j, where the f;’s are polynomi-
als and f; = 0 whenever X¢; = 0. Consider N = Zj fi(Ada)Yp ;, where § is
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the banner of C. Then it follows from Lemma (part [2) that N e A€l This
shows . So, by Lemma A is a transitive subspace of I°, showing that
rig, (Ad4|I7) < m.

To complete the proof of the lemma in the non-equatorial case, we will show
that

(4.10) m < pop, (1) -12-p0p1 me(1) .

Let 3 be the banner for which ng + sz attains the maximum m. If ng > 0, let
Cn be a northern city within I with banner § and rig, (Ada|Cy) = ng. If s3 > 0,
let Cg be a southern city within I with banner 8 and rig, (Ad4|Cg) = sg. Assume
for the moment that both cities exist. Let Cy, Cs, C3, C4 be projected equatorial
cities as in Fig. 3]

C1 Cn

I

Cy

I

FIGURE 3. ¢ = m(Cy), C2 = m(Cs), C3 = 7c(Cs), Ca = 7c(Cn)-
Then

. . (1)
m = rig, (Ada|Cn) + rig, (Ada|Cs) < popCxn + popCs
(i) 1 1
< 5(popCy + -+ + popCy) < 5(pop; I1 + pop; I2),
where (i) and (ii) follow respectively from Lemmas and This proves (4.10)

in this case. If there is no southern city or no northern city within I with banner 1

then the proof of (4.10) is easier.
So the lemma is proved for non-equatorial I. O

We now consider equatorial islands. There is an exceptional kind of island for
which the proof of the rigidity estimate has to follow a different strategy. An island
is called exotic if it has only the banners 1 and —1 (so it is equatorial and has 4
cities), each city has a single district, and all districts have the same population.

Proof of Lemma when I is equatorial non-exotic. As in the previous case, let
ng (resp. sg) be the maximum of rig, (Ada|C®) over the northern (resp. southern)
cities C in I with banner 3.

We claim that

(4.11) ng + sz <pop; I for all banners 8 # 1 in I.

Let us postpone the proof of this inequality and see how to conclude.
Let M = pop; I. In view of Lemma and relation (4.11)), for each island C
we can take matrices X¢ 1, ..., X¢ a € C” such that:
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e Ac:=sorbag,(Xc1,...,Xc m) is a transitive subspace of C%;

e X¢,a = 0if C is non-equatorial;

e X¢,r is the identity in C if C is equatorial.
Then define matrices Z; as before: by and . Here we have that Z,; is
the identity matrix in I°. As before, sorbag, (Z1,...,Za) is a transitive subspace
of I°. Hence rig, (Ad4|I®) < M = pop, I, as desired.

Now let us prove . Consider a banner 8 # 1 in I. Let Cy (resp. Cg) be a
northern (resp. southern) city within I with banner 8 and of maximal population;
assume for the moment that both cities exist. Let Cy, Co, C3, C4 be projected
equatorial cities as in Fig.

C1

FIGURE 4. ¢; = 7(Cs), C2 = m(Cn), C3 = mc(Cn), Ca = m(Cs). It is
possible that C; = C2 or C3 = Cq.

Then
ng + sg = rig+(AdA|CN) + rig+(AdA|Cs)
(4.12) < popCx + popCg
(4.13) < 3(popCy+ -+ + popCy)
(4.14) < pop; L.
Inequality follows from Lemma inequality follows from Lemma
and inequality holds because the cities Cq, ..., C4 are equatorial, and any

city can appear at most twice in this list. So
(4.15) ng + sg < pop; L.

In the case that there is no northern city or no southern city with banner 8 (i.e.,
ng or sg vanishes), a simpler argument shows that strict inequality holds in (4.15).

Now assume by contradiction that does not hold. Then we must have
equality in (£.15). By what we just saw, both cities Cy and Cg above exist. Then
the inequalities in (4.12)—(4.14) become equalities. Since is an equality, there
must be exactly two equatorial cities in I. So the non-equatorial banner 3 satisfies
B~ = B, that is, = —1. Since is an equality, it follows from Lemma [£.13]
that both non-equatorial cities are district-square. So there is some ¢ such that all
four cities in I have ¢ rows of districts and ¢ columns of districts. Since (4.12)) is an
equality, Lemma [£.12] implies that ¢ = 1. That is, I is a exotic island, a situation
which we excluded a priori. This contradiction proves and Lemma in
the present case. O

We now come to exotic islands. In all the previous cases, the transitive subspace
we found had some vaguely Toeplitz form. For exotic islands, however, this strategy
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is not efﬁcientB What we are going to do is to find a transitive space of vaguely
Hankel form, namely the following:

M N
Notice that Ay = Sy - 'y, where

Sk—<0 Id> and I‘k—{<M N);M,N,Parekkaatrices}.

(4.16) Ay = {(P M) i M, N, Parek x k matrices}.

Id 0 P M

Since 'y is a generalized Toeplitz space, it follows from Remark that Ag is
transitive.

Proof of Lemma[f.17 when I is exotic. If T is exotic then it has size 2k x 2k for
some k, and the operator Ad4|I° is given by X — Adp(X), where

0 -D

Let V be unique Adp-invariant subspace of Maty(C) that has codimension 1 and
does not contain the identity matrix (which exists by Lemma . Take matrices
X1, ..., X € Matgxr(C) such that X; = Id and V' = sorbag, (Xs, ..., Xk). Define
Yl, ey Yk € Matgkxgk(C) by

_(1d 0 (X5 0 .
Y1—<0 Id)’ YJ_(O O) for 2 < j <k,

sorbAdL(Yl,...,Yk):{(“ﬂd*K 0 >; zeC, KEV}.

L= (D 0 ) , and D = Dy, is the Jordan block (4.3)).

Then

0 zld
For j=k+1, ..., 2k, define

0 X,
Y, — ik
! <Xjk Xjk)

0 M
SOFbAdL(Yk+1,...7Y2k) = {(M N> ; M, N e Mathk((C)}.

Therefore sorbag, (Y1, ..., Ya) is the transitive space given by (4.16). Since Y7 is
the identity on I, this shows that rig, (Ada|I®) < 2k = pop; I, concluding the
proof of Lemma O

4.7. The final rigidity estimate. Let ¢ = ¢(A4) be the number of equivalence
classes mod T of eigenvalues of A.

Lemma 4.18. Ifc < d then
rig, Ady < pop;W—c+1.

Then, by Lemma (3.2

Proof. Let m = pop; W—c+ 1. For each island I, let

(1) = | 5(pop; m(I) + pop; me(1))].
We claim that

(4.17) (1) < {m if T is an equatorial island,

m — 1 if I is a non-equatorial island.
Let us postpone the proof of this and see how to conclude the lemma.

In view of Lemma and relation (4.17)), for each island I we can take matrices
X141, ..., X1,m € I7 such that:

12For those who have read Appendix notice that the simplest exotic island appears when
A has a type 3 constraint; we have dealt with them in the proof of Proposition
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e A :=sorbag,(X11,...,X1,m) is a transitive subspace of I%;
e X1, = 0if I is non-equatorial;
e X1, is the identity in I" if I is equatorial.

Define matrices:

Yo, = Z X1, (v is a banner class, 1 < j < m),

I is an island
with banner class «

Zj = > Yo  (I<j<m).

« is a banner class

So Z,, is the d x d identity matrix. Consider the space
A =sorbpd, (Z1,..., Zm).
It follows from Lemma B.2] that
A = sorbag, {Ya,ﬁ « is a banner class, 1 < 7 < m}.
We claim that every island I,
(4.18) Ar c AL

Indeed, if M € I then we can write M = Zj fj(Ada)X1 ;, where the f;’s are
polynomials. Consider N' = >}, fj(Ada)Ys,;, where a is the banner class of I. It

follows Lemma (part [1)) that N e Al This proves [@.18)). So, by Lemma

A is a transitive subspace of Matgxq(C), showing that rig, Ads < m.

To conclude the proof we have to show estimate (4.17). First consider a equato-
rial island I. Since there are ¢ equatorial islands, and each of them has a positive
banner 1 population, we conclude that 7(I) < m, as claimed.

Now take a non-equatorial I. Applying what we just proved for the equatorial
islands 7, (I) and 7.(I), we conclude that r(I) < m. Now assume that does
not hold for I, that is, 7(I) = m. Then

pop; 7 (I) = pop; me(I) = m = pop; W—c + 1.

Since pop; W = pop; 7,(I) +popy 7e(I) +c—2, we have m = 1 and pop; W = ¢. This
means that pop; I = 1 for all equatorial islands I, which is only possible if ¢ = d.
However, this case was excluded by hypothesis.

This proves (4.17) and hence Lemma O

Example 4.19. If A is the matrix of Example then Lemma gives the estimate
rig, Ada < 28. A more careful analysis (going through the proofs of the lemmas) would
give rig, Ada < 7 (see Example [4.11)).

Proof of part[q of Theorem[3.7 Apply Lemmas and O

5. PROOF OF THE HARD PART OF THE CODIMENSION m THEOREM

We showed in Proposition that codim P,gi() < m. In this section, we will
prove the reverse inequalities. More precisely, we will first prove Theorem and
then deduce Theorem [L[.8 from it.

5.1. Preliminaries on elementary algebraic geometry.
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5.1.1. Quasiprojective varieties. An algebraic subset of C™ is also called an affine
variety. A projective variety is a subset of CP™ that can be expressed as the zero set
of a family of homogeneous polynomials in n + 1 variables. The Zariski topology on
an (affine or projective) variety X is the topology whose closed sets are the (affine
or projective) subvarieties of X.

An open subset U of a projective variety X is called a quasiprojective vari-
ety. We consider in U the induced Zariski topology. The affine space C" can be
identified with a quasiprojective variety. namely its image under the embedding
(21, -y zn) = (Lizg oot zy).

If X and Y are quasi-projective varieties then the product X xY can be identified
with a quasiprojective variety, namely its image under the Segre embedding; see
[Shl § 5.1].

The following is an important and very useful property of projective varieties.
(See [Shl p. 58] for a proof).

Proposition 5.1. If X is a projective variety and Y is a quasiprojective variety
then the projection p: X x Y — Y takes Zariski closed sets to Zariski closed sets.

A quasiprojective variety is called irreducible if it cannot be written as a non-
trivial union of two quasiprojective varieties (that is, none contains the other).

5.1.2. Dimension. The dimension dim X of an irreducible quasiprojective variety
X may be defined in various equivalent ways (see for instance [Hal, p. 133ff]). It will
be sufficient for us to know that there exists an (intrinsically defined) subvariety Y’
of the singular points of X such that in a neighborhood of each point of X \Y, the
set X is a complex submanifold of dimension (in the classical sense of differential
geometry) dim X; moreover, each irreducible component of Y has dimension strictly
less than dim X.

The dimension of a general quasiprojective variety is by definition the maximum
of the dimensions of the irreducible components.

Remark 5.2. The dimension of a quasiprojective variety U < CP"™ coincides with the
dimension of its Zariski-closure in CP" (see [Hal p. 135]).

The following lemma is useful to estimate the codimension of an algebraic set X
from information about the fibers of a certain projection 7: X — YB

Lemma 5.3. LetY be a quasiprojective variety. Let X 'Y x CP™ be a nonempty
algebraically closed set. Let m: X — Y be the projection along CP™. Then:

1. For each j = 0, the set
Cj ={yeY; codimm'(y) < j}
18 algebraically closed in'Y .

2. The dimension of X is given in terms of the dimensions of the C;’s by:

(5.1) codim X = ;Ig}gg (7 + codim Cj) .

J
The lemma is a consequence of standard theorems in algebraic geometry but for
the reader’s convenience let us spell out the details.

Proof of Lemma[5.3 In what follows, all topologies are of course Zariski. We will
prove the equivalent “dual form” of the lemma, namely, that the sets

Vi, = {y e 7(X); dim7 '(y) = k}
are algebraically closed in Y, and

(5.2) dim X = k;nil’z?jé{@ (k+dimYy,).

13p slightly similar result is [SW] Prop. 16].
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First, the sets X, = {r € X; dim7 '(n(z)) > k} are closed. (see [Hal
Thrm. 11.12]). So, by Proposition [5.1] Y}, = m(X}) is closed.
For each k with X, # @, let X}, ; indicate the irreducible components of X},. Let

w(k,i) = min dim7 (7w (z)).
IGX)«J‘,

Then, by [Hal Thrm. 11.12] (and Remark ,
dim Xy, ; = p(k,d) + dim 7 (X ;) .
By definition, p(k,4) = k; moreover equality holds unless X ; © Xp41. So
Xii ¢ Xgy1 = dim Xy, =k +dimn(Xg,;) <k +dimYy.

Since X = ka i Xy, 1 ki, this proves the < inequality in (15.2).
To prove the converse inequality, fix any k with Yy, # . Find ¢ such that
dim 7(Xy,;) = dim Y. Then

dim X > dim Xy, ; = p(k, i) + dimYy > k + dim Yy,
This proves (5.2) and hence the lemma. d

Remark 5.4. Lemma works with the same statement if CP™ is replaced by C™**,
provided one assumes that X < Y x C**! is homogeneous in the second factor (i.e.,
(y,2) € X implies (y,tz) € X for every t € C). Indeed, this follows from the fact that the
projection C" ™! ~ {0} — CP"™ preserves codimension of homogeneous sets.

5.1.3. Dimension estimates for sets of vector subspaces. If M € Mat,, x., (K), let
colM < K" denote the column space of M. A set X < Mat,xm(K) is called

column-invariant if
MeX

N € Mat,, xm (K) = NelX.
col M = col N

So a column-invariant set X is characterized by its set of column spaces. We enlarge
the latter set by including also subspaces, thus defining:

(5.3) [X] := {E subspace of K"; E < col M for some M € X}.
In Appendix [D] we prove:

Theorem Let X < Maty, xm(C) be an algebraically closed, column-invariant
set. Suppose E is a vector subspace of C™ that does not belong to [X]. Then

codimX >m+1—dimFE.

5.1.4. The real part of an algebraic set. Let X be an algebraically closed subset of
C™. The real part of X is defined as X nR™. This is an algebraically closed subset
of R™. Indeed, generators of the corresponding ideal fi, ..., fx in C[Ty,...,T,] can
be replaced by the corresponding real and imaginary parts polynomials.

As in the complex case, there are many equivalent algebraic-geometric definitions
of dimensions of real algebraic or semialgebraic sets. We just point out that a
real algebraic or semialgebraic set admits a stratification into real manifolds such
that the maximal differential-geometric dimension of the strata coincides with the
algebraic-geometric dimension (see [BCRJ, p. 50]).

Proposition 5.5. If X is an algebraically closed subset of C™ then dimg (X nR™) <
dim(c X.

If V is a real (resp. complex) variety V and p € V' then let rnk, (V') denote the
real (resp. complex) rank of V at p, as defined by Whitney [Wh]. In that paper,
he also shows:
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e For any (real or complex) variety V, for any point p € V' the rank rnk, (V)
is greater than the codimension of V.

e If V is real (resp. complex) there is a point p € V such that the real (resp.
complex) rank satisfies rnk, (V') = codimg (V') (resp. rnk, (V) = codimc(V)).

e Given a real variety V < R"™, there is a unique smallest complex variety
V* < C™ containing V (in particular, V' is the real part of V*). Then we
have rnk, (V*) = rnk, (V).

Proof of Proposition[5.5. Let V be the real variety X n R™. Let p € V such
that rnk,(V) = codimg(V). Consider the unique smallest complex variety then
rnk,(V*) = rnk,(V). In particular codimg(V*) > codim¢(V*). Since V* < X,
the proposition follows. O

5.2. Rigidity and the dimension of the poor fibers. For simplicity of notation,
let us write P, = P, Also, for A e GL(d, C), write:
r(A) :=rig, Ada — 1.
We decompose the set P, of poor data in fibers:

(5.4) Po=|J {A}xPu(d), where P, (A4)c gl(d,C)".
AeGL(d,C)

Lemma 5.6. For any A € GL(d,C), the codimension of Pp(A) in gl(d,C)™ is at
least m +1—1r(A).

The lemma follows easily from Theorem above:

Proof. Fix A € GL(d, C), and write r = r(A4). We can assume that r < m, otherwise
there is nothing to prove. By definition, there exists a r-dimensional subspace
E < gl(d,C)™ such that sorbaa, (Id v E) is transitive. Identify gi(d,C) with C’
and thus regard P, (A) as a subset of Matg2 «,,(C). Since the set P, is algebraically
closed and saturated (recall § [2.3), the fiber P,,(A) is algebraically closed and
column-invariant, as required by Theorem In the notation , we have
E ¢ [Pm(A)]. So applying Theorem the lemma is proved. O

5.3. How rare is high rigidity? For simplicity of notation, let us write:
a(A) :=acycAdy for Ae GL(d,C).
So Theorem says that r(A4) < a(A) — c(A) provided ¢(A4) < d.
Lemma 5.7. For any integer k = 1, the set
M, = {A e GL(d,C); r(A) = k};
is algebraically closed in GL(d, C); moreover if My # & then

=0 ifk=1,

codim M )
>k ifk>2.

Lemma is basically a consequence of Theorem using the following con-
struction:

Lemma 5.8. There is a family G(A) of subsets of GL(d,C), indexed by A €
GL(d, C), such that the following properties hold:

e Fach G(A) contains A.

e FEach G(A) is an immersed manifold of codimension a(A) — c(A).

e There are only countably many different sets G(A).
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The informal proof of the lemma goes as follows: For each A € GL(d,C), let
G(A) be the set of matrices that have the same Jordan type as A (as defined in
Remark , and (at least) the same mod T relations between the eigenvalues.
Then G(A) contains the conjugacy class of A, which by Remarkhas codimension
a(A). We can also move the eigenvalues (keeping the mod 7' relations); this gives
c(A) extra degrees of freedom, so the codimension of G(A) is a(A) — ¢(A). Since
there are only finitely many Jordan types of d x d matrices, and only countably
many mod T relations, there are only countably many different sets G(A). A formal
proof of Lemma [5.8] follows:

Proof. First suppose that A € GL(d, C) is a matrix in Jordan form:
A= , where By()) := S 1 | € Maty,(C).
By, (\) *A
Let ¢ = ¢(A); by the definition (3.2)), we can choose numbers
,U,l,...,,U,CE(C*, 01,...,9n€T, kl,...,knE{l,...,C}

such that A\; = 0;u, for each i = 1,...,n. Let U be the subset of (y1,...,y.) € C¢
such that

(5.5) yr # 0 for each k,
(5.6) i # J = Oy, # 0y, -
Define a map ®: U — GL(d, C) by:
B, (0191, )
D(y1,-.-5Ye) =

By (Onyk,)

For every y € U, condition (5.6 assures that ®(y) has the same Jordan type as A,
and therefore, by Remark a(®(y)) = a(A).

We define the set G(A) as the image of the map ¥ = U,4: GL(d,C) x U —
GL(d,C) given by ¥(X,y) = Adx(®(y)).

Let us check that property holds. Let 01V and 02¥ denote the partial
derivatives with respect to X and y, respectively. As we have seen in Remark
the rank of 0;¥(X,y) is equal to d* — a(®(y)) = d* — a(A) for every (X,y). We
claim that

(5.7) (0% (X, y)) " *(image of 0, ¥(X,y)) = {0};

To see this, consider the map I': Matgy4(C) — C? that associates to each matrix
the coeflicients of its characteristic polynomial. Then (I’ o ¥)(X,y) = 0, while
02(T'oW)(0, 0) is one-to-one. So follows. As a result, the rank of the derivative
of W is equal to d? — a(A) + ¢(A) at every point. Therefore, by the Rank Theorem,
the image of ¥ is an immersed manifold of codimension a(A4) — c(A).

For arbitrary A € GL(d,C), we define G(A) = G(Ayp), where Ag is the Jordan
form of A. Each set G(A) depends only on the datan and (t;, 0;, k;)i=1,... n; therefore
there are only countably many different sets G(A). O

Remark 5.9. It is not difficult to show that each G(A) is a actually a submanifold of
GL(d, C), but we won’t need this.

Proof of Lemmal[5.7 If k = 1 then M; = GL(d, C) (since d > 2), so there is nothing
to prove. Consider k > 2. We have already shown in § that Py is algebraic.
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Since M, = {A € GL(d,C); VX € gl(d,C)¥, (A, X) € Py}, it is evident that M, is
algebraically closed as well. We are left to estimate its dimension.

Take a nonsingular point Ag of M} where the local dimension is maximal. Let
D be the intersection of My with a small neighborhood of Ag; it is an embedded
disk. Each A € D has r(A) > 2; therefore by (both parts of) Theorem [3.7} we have
a(A) — c(A) = r(A) > k. So, in terms of the sets from Lemma [5.8|

Dc U G(A).
A st a(A)—c(A)=k

The right hand side is a countable union of immersed manifolds of codimension at
least k. It follows (e.g. by Baire Theorem) that D (and hence Mj) has codimension
at least k. O

5.4. Proof of Theorem Now we apply Lemmas and to prove one of

our major results:

Proof of Theorem[I.9 The set P, = GL(d,C) x [gl(d, C)]™ is homogeneous in the
second factor. Using Lemma[5.3] together with Remark we obtain that the sets
(5.8) Cj = {A € GL(d,C); codimP,,(A) < j}
are algebraically closed in GL(d, C), and

codim P, = j;rg]}gg (] + codim Cj) .

By Lemma, we have Cj € My, +1—;. Therefore, by Lemma

= if j =m,
(5.9) C#8 = codmCd> " ny=m
>m—j+1 ifj<m-—1.

So codim P,,, = m, as we wanted to show. O

The proof above only used that codimC; > m — j. On the other hand, using
the full power of (5.9 we obtain:

Scholium 5.10. The set of poor data in “fat fibers”, namely
Fm ={(A,B1,...,Bp) € P9 codim Py, (A) <m — 1},

m

has codimension at least m + 1 in GL(d, C) x [gl(d, C)]™.

Proof. The projection of F,,, on GL(d, C) is Cy,—1. Use Lemma [5.3| (together with
Remark and (5.9)). O

5.5. The real case.

Proof of Theorem[1.8 The real part of 7%523 ) is a real algebraic set which, in view
of Proposition has codimension at least m. Recall from § that this set
contains the semialgebraic set 737(5 ), which therefore has codimension at least m.
Since we already knew from Proposition that codim 77,(,]? ) < m, the theorem is
proved. O

5.6. Additional information. Let us improve upon Scholium[5.10]and so prepare
the ground for the proof of Theorem This part is not necessary for the proof
of Theorem [Tl

Recall from § the definition of saturated set.

Lemma 5.11. There exists a saturated algebraically closed set S,, < GL(d,C) x
[Matgxq(C)]™ of codimension at least m + 1 such that for all (A,By,...,By) €
P Sm, the following properties hold:

1. A is unconstrained;
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2. if P € GL(d,C) is such that P~YAP is a diagonal matriz then there are
indices 19, jo € {1,...,d} with ig # jo such that for each k € {1,...,m}, the
(i, j0) entry of the matriz P~ By, P vanishes;

3. for each choice of P above, the off-diagonal vanishing entry position (ig, jo)
1S UNIQUeE.

Notice that each data in P, \ S,,, after a change of basis, satisfies precisely the
hypotheses of Lemma [2.14

In order to prove the lemma, we begin by checking algebraicity of the constraints:

Lemma 5.12. The set K < GL(d,C) of constrained matrices is an algebraically
closed subset of codimension 1.

Proof. Multiply all constraints, obtaining a polynomial in the variables Ay, ...,
Ad- This polynomial is symmetric, and therefore (see e.g. [Lal Thrm. IV.6.1]) can
be written as a polynomial function of the elementary symmetric polynomials in
the variables A1, ..., A\g. Now substitute each elementary symmetric polynomial
in this expression by the corresponding coefficient of the characteristic polynomial
of the matrix A. This gives a polynomial function on the entries of the matrix A
that vanishes if and only if A is constrained. It is obvious that the corresponding
algebraic set K has codimension 1. O

Now we check algebraicity of double vanishing;:

Lemma 5.13. There exists a saturated algebraically closed subset D of GL(d, C) x
[Matgyq(C)]™ such that if (A, Bi,...,Bm) € D and A has simple spectrum then
property 3 from Lemmal[5.11] is satisfied, but property[3 is not.

Proof. First, consider the subset X < [Matgxq(C)]'*™ x (CP41)? formed by tuples
(A, By,...,Bm,[v], [w]) such that

[Av] = [v], [A*w]=[w], w*v=0, w*Byv=0foreachk=1,...,m,

where v and w are regarded as column-vectors and the star denotes transposition.
The set X is obviously algebraic; thus, by Proposition so is its projection Y on
[Matdxd((C)]Hm.

Let A be a matrix with simple spectrum. Then (A, By, ..., B,,) belongs to Y
if and only if property [2] from Lemma is satisfied. In particular, the fiber of
Y over A is a union of affine subspaces of [Matgxq(C)]™. Intersections of those
affine spaces correspond to points where the uniqueness property (3] is not satisfied.
These points of intersection are singular points of Y. Conversely, it is clear that the
variety Y is smooth at the points on the fiber over A where property [3]is satisfied.

So let Z be the (algebraically closed) set of singular points of Y. It is straight-
forward to see that the set Y is saturated. Recalling Remark (part [1)) and the
fact that a group acting on a variety preserves singular points, we see that the set
Z is saturated as well.

We define D as the set Z minus the tuples (A, By, ..., By,) with det A = 0. Then
D has all the required properties. O

Proof of Lemma|5.11] For simplicity of writing we will omit the m subscripts.
Let m: P — GL(d, C) be the projection on the first matrix. Define

S=n1"YK)u(DnP),

where K and D come respectively from Lemmas [5.12] and [5.13] Then S is a satu-
rated algebraically closed subset of P. If A = (A, By,...,Bmn) € P\ S then:

e A ¢ K, which is property
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e since A € P, it follows from Lemma that A is conspicuously poor, and
so property [2] holds;
e since A ¢ D, property [3] also holds.
To complete the proof of the lemma, we need to show that codimS = m + 1.
We will use the following inclusion:
(5.10) ScFu (T (K)NF)u((DnP)~71 1 (K)) .

-

F! F

where F comes from Scholium Recall that F equals 771 (C,y,—1), where C; is
given by (5.8)), and it has codimension at least m + 1.

We apply Lemma and Remark to the set 7' < Y’ x [gl(d,C)]™, where
Y’ = GL(d,C) \ Cy,—1. Since K has codimension at least 1 in Y’, and the fibers
of F' all have codimension at least m, we conclude that that codim F' > m + 1.

Next, we want to apply Lemma and Remark to the set F" < Y” x
[g!(d,C)]™, where Y” = GL(d, C)\ K. For each A € Y”, it follows from Lemmal[5.13]
that the fiber of F” over A (which is the same as the fiber of D over A) has
codimension 2m in [gl(d,C)]™, corresponding to the 2m different matrix entries
that must vanish. We conclude that codim F” > 2m.

We have seen that each of the three sets on the right-hand side of has
codimension at least m + 1. So the same is true for S, as we wanted to prove. [

6. PROOF OF THE MAIN RESULTS

6.1. Stratifications. We first recall a few notions about stratifications. We refer
the reader to [GWPL] Ma] for details and proofs.

Let ¥ be a closed subset of a smooth (i.e., C*) manifold X. A smooth stratifi-
cation of ¥ is a filtration by closed subsets

YX=%,DX, 1D DX

such that and for each 4, the set X; = ¥; N\ X;_1 (where ¥_; := @) either is a
smooth submanifold of M without boundary and of dimension i, or is empty. Each
connected component of X; is called a stratum. The codimension of a stratified
space is the lowest codimension of strata. This does not depend on the choice of
the stratification.

Note that, apart for discrete subsets ¥ < X, if there is one smooth stratification,
then there are infinitely many others. However, the subsets that we will be dealing
with will be endowed with certain canonical stratifications:

Theorem 6.1 (Existence of canonical stratifications). Any algebraic set ¥ = CV
admits a canonical smooth stratification, whose strata are complex submanifolds of
CN. Any closed semialgebraic set ¥ < RN admits a canonical smooth stratification,
whose strata are semialgebraic submanifolds of RN .

In the case of an irreducible algebraic set ¥ < C", the canonical stratification
can be obtained as follows: The connected components of the set of regular (i.e.,
non-singular) points form the higher-dimensional strata; then one decomposes the
set of singular points of X into irreducible components and proceeds by induction.

In any case, those canonical stratifications are uniquely characterized by a certain
minimality property. In particular, the canonical stratifications are equivariant
under polynomial automorphisms of the ambient space.

Another important property of the canonical stratifications is that they sat-
isfy the so-called Whitney conditions. We will not recall here those conditions,
which would be rather technical; we will only write down some of their properties.
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A smooth stratification that satisfies the Whitney conditions is called a Whitney
stratification.

Proposition 6.2 (Basic properties of Whitney stratifications). Let X, Y be smooth
manifolds. Let

(6.1) S, DD

be a filtration of a set ¥ < X. Then:

1. Being a Whitney stratification is a local property of a filtration: So if
is a Whitney stratification of ¥ then X, nU D --- D X9 n U is a Whitney
stratification of X N U, and conversely if each point in 3 has an open neigh-
borhood U < X such that X, nU D --- 2 X9 nU is a Whitney stratification
of X n U then is a Whitney stratification of 3.

2. If is a Whitney stratification of ¥ then ¥, xY D --- DXy x Y isis a
Whitney stratification of ¥ xY c X x Y.

3. If is a Whitney stratification of X and f: X — Y is a smooth diffeo-
morphism then f(3,) D --- 2 f(Zo) is a Whitney stratification of f(3X) c Y.

Let us now discuss how stratifications behave with respect to transversality.
Let f: X - Y bea C!' map. Let ¥ = 4 D --- D Xy be a stratification of
a closed subset ¥ of Y. One says that f is transverse to that stratification (in
symbols, f A& X) if it is transverse to each of its strata. Transversality to a
general stratification is not an open condition. However, we obtain openness if the
stratification is Whitney:

Proposition 6.3 (Transversality is open). Let X, Y be C* manifolds without
boundary. Let ¥ = X4 D --- D X be a Whitney stratification of a closed subset of
Y. Then the set O = {f € CY(X,Y); f & X} is open in CH(X,Y) (with respect to
the strong topology).

Actually, only the first of the Whitney conditions is necessary here (use the
(1)=>(3) implication of Trotman’s theorem [T1]).

6.2. Jets and jet transversality. We recall the basic notions on jets and state
the transversality theorems we will need; see [Hi| for details.

Let X, Y be smooth manifolds without boundary. If 1 < r < oo, an r-jet from
X toY is an equivalence class of pairs (z, f), where z € X, f is a C" map from a
neighborhood of z to Y, and where (z, f) is equivalent to (2, ') if z = 2’ and f
and f’ have same derivatives at x up to order r. We denote by J"(X,Y") the space
of r-jets from X to Y. It is a smooth manifold.

For all 1 < s < o0, we denote by C*(X,Y) the space of C*-maps from X to Y,
endowed with the strong topology.

Given 1 < r < s < o and a map g € C*(X,Y), the r-jet extension is the map
j"g: X — J"(X,Y) that sends x to the equivalence class j"g(z) of (z,g). Then the
mapping

J i C(X)Y) - CTT (X, JN(X,Y))

is continuous.

Theorem 6.4 (Jet transversality). Let 1 <r < s <. Let X andY be C* mani-
folds without boundary. Let W < J"(X,Y) be a C* submanifold without boundary.
Then the C*-maps g: X — Y for which the r-jet extension j"g is transverse to W
form a residual subset of C*(X,Y).

Let us now show the following:
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Proposition 6.5. Let X, Y be C®-manifolds without boundary. LetY = J*(X,Y)
be a Whitney stratified closed subset. Then {f € C*(X,Y); jif & ¥} is C?-open
and C*-dense in C*(X,Y).

Here, as in the introduction, we say that a subset of C?(X,Y) is C*-dense if its
intersection with C"(X,Y") is C"-dense, for every r > 2.

Proof of Proposition[6.5. By Proposition the set {F: X — j1{(X,Y); F & %}
is open in C! (X, J'(X,Y)). Hence the set O := {f: X —Y; j'f &} is open in
C*(X,Y).

Fix r = 2. Given a Whitney stratification ¥, o -+ D Xg of X, let Z; =
3 \ 2;_1 be the corresponding decomposition into smooth submanifolds. By the
jet transversality theorem (Theorem [6.4), each set R; = {f € C"(X,Y); j'f & Z;}
is residual. Thus OnC"(X,Y) = (), R; is C"-dense. This concludes the proof. O

6.3. Proof of the main result. We now use Theorem[I.8]and the tools explained
above to prove our main result. Before going into the proof itself, let us deal with
a technical detail.

By Theorem P s a closed semialgebraic subset of GL(d,R) x gl(d, R)™.
Since Theorem concerns semialgebraic subsets of affine space, we proceed as
follows. First, enlarge P by including all (A4, By,..., By) with det A = 0, thus
obtaining a subset I' of [Matgy4(R)]**™ which is also closed and semialgebraic. By
Theorem the set I' admits a canonical Whitney stratification

=0,>---oTy.

Now we remove all (4, By, ..., By,) with det A = 0 from each I';, thus (by locality
property in Proposition [6.2)) obtaining a Whitney stratification of codimension m:

(6.2) PR T, 5...o0.
(We may have I'), = T',,_1.) Since the stratification of I is canonical, the strati-

fication (6.2]) is invariant under polynomial automorphisms of the set GL(d,R) x
gl(d,R)™ that preserve P,

Proof of Theorem[I.1 Let U be a smooth manifold without boundary and of di-
mension m. Given local coordinates on an open set U < U, the set of 1-jets from
U to GL(d,R) may be identified with the set

U x GL(d,R) x gl(d,R)™.
Indeed, a jet J represented by a pair (u, A) can be identified with the point
(u, A(u), B1,...,Bm) € U x GL(d,R) x gl(d,R)™,
where B; € Matg,4(R) is the normalized derivative of A at u, along the i*" coordi-
nate. Let us say that the 1-jet J is rich if the data A = (A(u), By, ..., By,) is rich,
or equivalently, if for sufficiently large N, the input (u,...,u) € U is universally

regular for the system (1.4]). If the jet is not rich then it is called poor.
Define a filtration

(6.3) Y,D DXy

of the set of poor jets from U to GL(d,R) as follows: a jet J represented as
above in local coordinates by (u, A(u), Bi,...,B;,) belongs to ¥; if and only if
(A(u), Bi,...,By,) belongs to the set I'; in (6.2). We need to check that this defi-
nition does not depend on the choice of the local coordinates. Indeed, this follows
from the fact that 737(7]5 ) is a saturated set (see § using the invariance property
of the stratification explained above.
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We claim that the filtration (6.3]) is a Whitney stratification of codimension m.
Indeed, the intersection of the filtration with the open subset J!(U, GL(d,R)) of
JYU,GL(d,R)) is identified (through a smooth diffeomorphism) with the filtration

UxT,o---oUxT,.

So the claim follows from Proposition [6.2

Applying Proposition we obtain a C?-open C*-dense set O < C%(U, GL(d, C))
formed by maps A that are transverse to the stratification of the set of poor
jets. Since the codimension of the stratification equals the dimension of the man-
ifold U, if A € O then the points u for which j'A(u) is poor form a 0-dimensional
set. This proves Theorem O

Remark 6.6. In the proof above, instead of working with the semialgebraic set PR ),
we could have worked equally well with the real part of 7757? ), since it is an algebraic set
containing PT(,]? ) and has the same codimension.

6.4. Proof of the addendum.

Proof of Theorem[1.Z Consider the set S,(,(LC ) given by Lemma and let S,g? )
be its real part. This is an algebraically closed saturated subset of GL(d,R) x
[gl(d,R)]™ which, by Proposition has codimension at least m + 1.

Consider the set T of 1-jets J € J'(U,GL(d,C)) that have a local expression
(u, A(u), By, ..., By,) with (A(u),By,...,Bn) € S,(,ﬂf). This does not depend on the
choice of the local coordinates, because Snﬂf) is saturated. By the same arguments
as in the proof of Theorem the set I' admits a Whitney stratification. Its
codimension is at least m + 1. Applying Proposition we obtain a C2-open
C*-dense set O ¢ C%(U,GL(d,C)) formed by maps A that are transverse to the
stratification.

Let O be the set provided by Theorem and consider a map A € @ ~O. Then
whenever a jet j'A(u) is poor, it does not belong to I'. Recalling Lemma we see
that the local expression of j' A(u) satisfies (after a change of basis) the hypotheses
of Lemma [2.14] Therefore parts [1| and [2| of the theorem follow respectively from
conclusions [[] and [ of the lemma. O

Remark 6.7. The proof of Theorem[I.2]also gives more information about the 1-jets that
appear generically for singular constant inputs (u,...,u): the associated matrix data is
conspicuously poor (see §[2.4]), and the matrix A(u) is unconstrained (see §[2.5)).

Remark 6.8. Properties [I] and [2| in Theorem are in fact dual to each other. If A
is the data representing the 1-jet of A at u, and A = A(A), then property [1| means that
there is an unique direction [v] € RP4~! such that A -v # C% Then property [2| means
that there is an unique direction [w] € RP*! such that A* - w # C%, where A is the
set of the transposes of the matrices in A. This fact can be proved easily using the dual
characterization of Lemma [B.121

APPENDIX A. THE CASE OF ONE-DIMENSIONAL INPUT

As we explained in § this appendix contains a basically independent dis-
cussion of the case dimy = 1. The prerequisites are all contained in Section 2]
and § In order to avoid technicalities at this point, we will be sometimes
informal, especially regarding questions of transversality.

Let us define the canonical constraints respectively of type 1, 2, 3, 4 as the
following relations:

(A1) Mz = A2 A = Aas, Al = =g, A=Az
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Recall from § [2.5] that an elementary constraint between variables A1, ..., A\g is a
relation that can be reduced to one of the four canonical constraints after a change
of indices. Each constraint has a unique type.

Let us say that a matrix A € GL(d,R) is (i)-constrained, for 1 < i < 4 if:

e its eigenvalues, counted with multiplicity, satisfy exactly one elementary
constraint, which is a type ¢ constraint,

o if there is a type 4 constraint between the eigenvalues, then the matrix A is
not diagonalizable.

Hence if a matrix A is not (i)-constrained for any 0 < ¢ < 4, then

e cither A is unconstrained, i.e., its eigenvalues (with multiplicity) satisfy no
constraint;

e or the eigenvalues of A satisfy at least two constraints;

e or A has a (multiple) eigenvalue corresponding to at least two Jordan blocks.

If either of the last two cases hold, we say that A is multiconstrained.

Proposition A.1. 1. The complement of the set of unconstrained matrices has
codimension 1 in GL(d,R).
2. The set of multiconstrained matrices has codimension 2 in GL(d,R).

Informal proof. Matrices that are not unconstrained have at least one constraint
on their eigenvalues, so the corresponding set has codimension 1.

Matrices that are very constrained either have at least two constraints on their
eigenvalues, or have an eigenvalue of multiplicity 2 and are diagonalizable. In both
cases, the corresponding set has codimension 2. O

Let us define adapted bases for matrices A that are not multiconstrained:

e If A is unconstrained then an adapted basis is a basis of eigenvectors.

o If Ais (i)-constrained, for ¢ = 1, 2, or 3 then an adapted basis is an (ordered)
basis of eigenvectors such that the corresponding eigenvectors Ap, ... Ay sat-
isfy the canonical type i constraint.

o If A is (4)-constrained then an adapted basis for A is a basis in which A is
written in the following modified Jordan formE

A1Ar
0 M

A3

Ad

Obviously, such adapted bases always exist.

If a matrix A is (i)-constrained then we say that a d x d matrix B is a good match
for A, if there is an adapted basis for A in which it writes as B = (b;;), where all
nondiagonal entries b;; are nonzero and if iy # bao, in the particular case where A
is 3-constrained.

The usefulness of this definition is explained by the following Propositions
and

Proposition A.2. If A is not multiconstrained and B is a good match for A then
the pair (A, B) is rich.

T he reason for using a modified Jordan form is that it makes the expression of Ad 4 simpler,
as we will see later.

15Actually7 the definition of a good match matrix is stronger than necessary for Proposition
to be true. But in order to avoid complications, we chose a condition that works for all types of
constraints.
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In other words, Pf‘c) is contained in the following set:

(A.2) &:={(A,B)eGL(d,C) x gl(d,C); either A is multiconstrained
or A is not multiconstrained but B is not a good match for A}.

Proposition A.3. 1. The set £ has codimension 1.
2. The set {(A, B) € &; A is not unconstrained} has codimension 2.

Informal proof. Proposition follows from Proposition and from the fact
that for each matrix A that is not multiconstrained, the set of B’s that are not
good matches for A has positive codimension in gl(d, C). O

Theorem in the case m = 1 follows from the propositions above. Therefore
the other main results (Theorems and in the m = 1 case also
follow from the propositions. For any of these results, the propositions give extra
information of practical value: with the explicit definition of the set £ in , we
know which 1-jets should be avoided in Theorem [I.I] for example. The discussion
given in Appendix [B] also applies; it gives explicit conditions on the 2-jet exten-
sion of the map A: U — GL(d,R) that ensure that A satisfies the conclusions of
Theorems [[1] and 2]

Proof of Proposition[A-4 Let A and B satisfy the hypotheses. We need to show
that the space A(A, B) defined by is a transitive subspace of gl(d,C). Let
I' :=sorbag, (B), so that A(A, B) = {Id} v T.

The matrix A is not multiconstrined and so has an adapted basis as above. We
change the basis so that A and B are “canonical”.

The proof is divided in cases according to the type of constraint. Except for the
(4)-constrained case, the matrix A is diagonal, and so the space I is described by

2.9).

Unconstrained case: It follows from Lemma .13 that if A is unconstrained and
diagonal then the only way for the pair (A, B) to be poor is that B has an off-
diagonal zero entry. (The reader should review the proof of Lemma )

(1)-constrained case: We see that the adjoint Ads has two eigenvalues (different
from 1) of multiplicity 2, namely )\1)\§I = )\gAgl and Ag)\fl = )\3)\51. By the same
reasoning as in the unconstrained case, it follows that {Id} v T" contains the space

{(yij) € 81(d,C); y11 =+ = Yaa, bio Y12 = bo3 Y23, by Y21 = b3y Y32}
This is a generalized Toeplitz space, and so by Example [2.2]it is transitive.
(2)-constrained case: The reasoning is very similar to that of the (1)-constrained
case, but now the adjoint has four eigenvalues (different from 1) of multiplicity 2.
The space A(A, B) contains the following subspace:

{(y”) egl(d,C); y11 = = Yaa , bf31y13 = b2_4lyz4,

bis vz = b3y ysa, by yo1 = bis yas, b3y ys1 = byy ysal-

Again, this is a generalized Toeplitz space, and so it is transitive.

(3)-constrained case: This case is a little different from the two previous ones.
The adjoint has an eigenvalue —1 of multiplicity 2. Recalling that b1; and byy are
different, and making use of the identity matrix, we see that A(A, B) contains the
following subspace:

I'={(yij) € 91(d,C); y33 = -+ = Yaa, bis Y12 = by yo1 }-
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This is not a generalized Toeplitz space. However, consider the linear automorphism
S that swaps the first two elements of the canonical basis of C™, and fixes the others.
Then

S - f = {(Z”) € g[(d, (C), 233 = " = Zdd » b;21222 = b;11211}
is a generalized Toeplitz space! By Remark the space S - T is transitive, and so
are I' and A(A, B).

(4)-constrained case: This case is more involved because the operator Ad4 is not
diagonalizable. We will explain its Jordan form. Let us explain visually how Ad4
acts: given any matrix, decompose it into blocks Cj; as in the following picture

Ca2 C23/Cay e Cayq
Cz2  |Cs3

Ca2 Cud

Cd2 e Cd

where the block Ca is a 2 x 2 matrix, the blocks Cy; are 2 x 1, the blocks Cjp are
1 x 2 and the others are 1 x 1. Then, the operator Ad leaves invariant the space
I';; of matrices whose nonzero coefficients lie inside the block C;;. Moreover, it is
easily computed that the operator Ad 4 has the following properties:

e restricting to the space I'oo, which we canonically identify to gl(2,C), one
has:
0 0 1 -1 0 0 0 1
AdA<1o>_(1—1>’ AdA(o 1>_<0 1)
10 1 -1 0 1 0 1
AdA(o 0)‘(0 0>’ AdA(o 0)‘(0 0>

One then easily computes that, in the ordered basis formed by vectors

0 -2 1 -1 0 0 1 0
J1=<0 0 ); J2=(0 1); J3=<1 0); J4=<0 1>,

the matrix of Ad4|Ty; is

e For any j > 3, identifying I's; to the space of 2 x 1 matrices, the matrix of

DY |

AdA\sz is < QOJ \ )\_1> in the basis formed by matrices /\2/\;1E17j =
24

Ao 0 :
0 and Fy ; = 1) where we use the notation E; ; from ([2.4).
e For any 7 > 3, identifying I'; 5 to the space of 1 x 2 matrices, the matrix of
-1

Ada|Tys is (/\12\)2 A\ )1\_1) in the basis formed by matrices —/\i/\;lEm =

24

(0 =X\A;') and B = (1 0).
o for 3 <i,j < d, (E;j) is a basis of I';;; it is an eigenvector with eigenvalue
PP
L)
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o The spaces I';;, for 2 < 4,j < d have respective spectra {)\i)\;l}, which for
i # j are pairwise disjoint and different from {1}.

The concatenation of the bases described above gives a Jordan basis for Ad 4.
Now take a matrix B that is a good match for A, and consider its expression as a
linear combination of the elements of that Jordan basis.

Claim A.4. All coefficients in this linear combination are nonzero, except possibly
the coefficients of the vectors Ji, Ja, J4 and the vectors Eq;, for all 3 <i < d.

The verification is direct.

Consider now the splitting Mat xq(C) = V@ A, where A is the subspace C.Jy ®
FE33®...® Eg4q of the space of diagonal matrices, and V' is the space spanned by
all other elements of the above Jordan basis. Note that

V=Ch+Ch+Ch)e| @ Ty
2<i,j<d
i#j

is a decomposition of V' into Ad 4-invariant subspaces with pairwise disjoint spectra.
Let 7 be the projection onto V' along A. It follows from the claim and Lemmas
and that m(B) is a cyclic vector for Ad4|V. So, using the Ad-invariance of
the spaces V and A, we have

7(T) = m(sorbaa, (B)) = sorbaa, (7(B)) = V.

Note that V' contains the matrices E;;, for all ¢ # j, hence {Id} v V is a generalized
Toeplitz space. As m projects along a subspace of diagonal matrices, {Id} v T is
again a generalized Toeplitz space and in particular is a transitive space.

We have considered the four types, and Proposition is proved. O

APPENDIX B. COMPLEMENTARY FACTS ABOUT SINGULAR CONSTANT INPUTS OF
GENERIC TYPE

In this appendix we give grounds for Remark We also discuss other control-
theoretic properties of generic semilinear systems, related to universal regularity.

B.1. Local persistence of singular inputs. Let A € C"(U,GL(d,R)), r > 1.
We will work upon Lemma [2.9[in order to obtain a more practical way to detect
that the 1-jet of A at a point corresponds to conspicuously poor data. (Recall from
Remark that this is the only type of poor data that appears generically.) For
example, in the m = 1, d = 2 case, we will see that conspicuous poorness means
that the angular velocity of one of the eigendirections vanishes (see Remark
below).

Suppose that ug € U is such that the matrix A(up) is diagonalizable over R and
with simple eigenvalues only. By Proposition there is a neighborhood Uy of
ug and C"-maps Ay, ..., Ag: Uy — C such that for all u € Uy, the complex numbers
Ai(u) are all distinct, and form the spectrum of A(w); moreover there exist a C”
map P: Uy — GL(d,R) such that for all u € Uy,

(B.1) A(u) = P(u) A(u) P~ (u) , where A(u) = Diag(A1(u), ..., Aa(u)).

For simplicity, let us consider first case where I/ is an interval in R (in par-
ticular m = 1). Then the normalized derivative of A at a point u can be iden-
tified with N(u) := A’(u) A=}(u). Consider the expression of N(u) in the basis
that diagonalizes A(u), that is, B(u) := P~'(u) N(u) P(u). Since £P~1(u) =
—P~Y(u) P'(u) P~ (u), we compute that

B(u) = A'(u) A7 (u) + Q(u) — A(u) Q(u) A (u),
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where
Q(u) := P71 (u) P'(u).
So the off-diagonal entries of the matrices B(u) and Q(u) are related by

bij(u) = (1 — /\i(u)/x\j(u)) gij(w) (i #j).
In view of Lemma we conclude the following: if for some uy € Uy
(B.2) there is an off-diagonal entry position (¢, j) such that ¢;;(us) =0
then the 1-jet j'A(uy) is poor.

Remark B.1. Let us give a geometrical interpretation of condition (B.2]). The columns

of P form a basis (v1,...,vq) of eigenvectors of A, and the rows of P~! form a basis

(f1,..., fa) of eigenfunctionals of A (in the sense that f; o A = \;f;); these two bases
dvj

are related by fi(v;) = di;. So qij = fi (E) is the component of the velocity of v;

in the direction of v;. For example, for d = 2, condition (B.2) means that one of the
eigendirections of A has zero angular speed at instant u = ux.

It is trivial to adapt the previous calculations to the higher dimensional case and
then conclude the following;:

Proposition B.2. Let (uy,...,un,) be coordinates in a chart domain Uy < U where

expression (B.1) holds. Consider matrices
_ oP
(B.3) Qr(u) := P~ (u) a—(u)

g,
If for some uy € Uy there is an off-diagonal entry position (i,7) such that
(B.4) for each k = 1,...,m, the (i,7)-entry of the matriz Q(uy) vanishes

then the 1-jet j'A(uy) is poor, that is, the constant input (us,...,us) (of any
length) is singular.

In the situation of Proposition assume additionally that the map

(B.5) D {L{o I C Km is a diffeomorphism.

u > [the (4, j)-entry of Qr ()], <p<rm,
In that case, the existence of a poor jet is persistent in the following way: If
f:l is SNufﬁcigntly C?-close to A then by Proposition we can express fl(u) =
P(u) A(u) P~Y(u) for u close to uy, where P and A are C?-close to P and A
respectively, and A is diagonal. The corresponding matrices Q, = P~1 % are
C'-close to @}, and the map

Dy — [the (i, j)-entry of Qk(u)]

is Cl-close to ®. By the fact that ®(uy) = (0,...,0), there is @ close to uy
such that ®(u) = (0,...,0). In particular the 1-jet j'A(4) is poor.

Now, concerning existence: It is evident that a domain Uy and 2-jets j2P(us)
satisfying conditions and actually exist; moreover we can always find
a map P: U — GL(d,R) with a prescribed 2-jet at a point uy. In view of the
discussion above, we conclude the following:

1<ksm

Proposition B.3 (Persistence of singular inputs). For any d > 1 and any d-
dimensional smooth manifold U, there exists a C?-open nonempty subset of maps
A€ C*(U,GL(d,R)) such that the following holds:

there exists u € U such that the constant inputs (u,...,u) of any length are all

singular for the system (1.4)).
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That is, one cannot improve Theorem replacing “discrete set” by “empty
set”.

We can also see why the statement of Theorem with “C2-open” replaced by
“Cl-open” is not true: Given any map A such that (B.4) holds at some point, we
can C'-perturb A (by C°-perturbing P) in a way such that (B.4) now holds for a
non-discrete set of points

B.2. Other control-theoretic properties. We now introduce a few control-
theoretic notions related to accessibility and regularity, and discuss the validity
of statements similar to Theorem [[.I] for these notions.

Consider a general control system (L.I). Fix a time length N, and let ¢y
denote the response map as in . We say that a trajectory determined by
(zo;ug, ..., un—1) is:

e locally accessiblﬂ if for every neighborhood V of (ug,...,un_1) in U", the
set ¢ ({xo} x V) has nonempty interior.
o strongly locally accessible if for every neighborhood V of (ug,...,unx—_1) in
UN | the set ¢ ({zo}x V) contains in its interior the final state ¢ (20; uo, - - -, Un—_1)-

The following implications are immediate:
regular = strongly locally accessible = locally accessible.

We say that an input (ug,...,un—1) is universally locally accessible (resp. univer-
sally strongly locally accessible) if the trajectory determined by (zo;uo, ..., un—1)
is locally accessible (resp. strongly locally accessible).

Now we come back to the context of projective semilinear control systems .
A (relatively weak) corollary of Theorem is that for generic maps A, universal
local accessibility holds at all constant inputs:

Proposition B.4. Let N € N and O = C?(U,GL(d,R)) be as in Theorem [1.1]
For any A € O, every constant input sequence of length N is universally locally
accessible.

Proof. If A € O then for every constant input sequence of length N we can find a
regular input sequence nearby. O

As we have shown in Proposition it is not possible to improve Proposi-
tion [B-4] by replacing “local accessibility” by “regularity”. Neither it is possible to
replace “local accessibility” by “strong local accessibility”, as the following simple
example (in m = 1, d = 2) shows:

Example B.5. For u € R, define

Pu) = (ulz §‘> . A(w) = Diag(2, 1)
Let U be an small open interval containing 0, and define A: &/ — GL(2,R) by (B.1). Let
€ € RP' correspond to the direction of the vector (1,0). Then for any subinterval V 3 0,
and any N > 0, the set

on({€o} x V) = {A(un—1) -+ Aluo) - & us € V'}

is an “interval” of RP* containing & = ¢n(&0;0,...,0) in its boundary. Therefore the
input (0,...,0) is not universally strongly locally accessible. A similar situation occurs
for any C?-perturbation of A.

16Using this idea and Baire’s theorem, one can also show that the conclusion of Theorem |[1.1]
is not true for Cl-generic maps A; actually for C'-generic A, the points u € U corresponding to
singular constant controls form a perfect set.

L7Beware: a different concept with this name appears in [CK2].
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AprPENDIX C. PROOF OF A COMPLEX VERSION OF THEOREM [L.1]

In the complex setting we consider instead holomorphic mappings A : U —
GL(d,C).

More precisely, given an open subset & < C™, we denote by H(U, GL(d, C)) the
set of holomorphic mappings A: U — GL(d,C) endowed with the usual topology
of uniform convergence on compact sets.

Theorem C.1. Given integers d = 2 and m = 1, there exists an integer N > 1
with the following properties. Let U < C™ be open, and let K < U be compact.
Then there exists an open and dense subset O of H(U,GL(d,C)) such that for any
A € O the constant inputs in KN are all universally reqular for the system ,
except for a finite subset.

We have the straightforward corollary:

Corollary C.2. Given integers d = 2 and m = 1, there exists an integer N > 1
with the following properties. LetU < C™ be an open subset. There exists a residual
subset R of H(U, GL(d,C)) such that for any A € R the constant inputs in UN are
all universally regular for the system , except for a discrete subset.

These results could probably be obtained in certain more general complex man-
ifolds. But in order to avoid technicalities, we consider only open subsets of C™.
Also, we use only elementary real transversality tools.

Proof of Theorem[C1. Let U = C™ be an open subset. We may identify the set of
1-jets from U to GL(d, C) with

U x GL(d, C) x gl(d,C)™.

As we did in Section [ and using Theorem [I.9] instead of Theorem we obtain

that the set of poor 1-jets from U to GL(d,C) is the algebraic subset U x P of
the space of 1-jets. Hence it admits a stratification

Z/[X'PSE):UXE”D-HDUXZQ.

Write U x PT(,;C) as the disjoint union U0<i<n X,; where each X; is a smooth sub-
manifold of dimension 7 in the jet space J' (U, GL(d, C)), and X,, has codimension
m.
Fix now a map A € H(U,GL(d,C)). For all v = (a,by,...b,) € C™*! and
u=(uy,...,uny) € C™, write

Py(u) =a+ Z brug.
i=1

d? .
For all v = (Ui,j)lgi,de € ((Cm+1) , write P, = [Pvivj]léi,jéd

®, = A+ P,. One can write the 1-jet extension j'A at the point v € U as
L A(u) = [u, A(u), By, ..., By] € U x GL(d,C) x [Matgxq(C)]™ .

and define the map

The same way, if we put v; j = (@i j,b1,ij;---,0m,,;), we have

3 Po(u) = [, Py(u), (br,ij)1<ij<ds - - > (bmiig)1<ij<d] -

Define the map F: v +— F, = j'®,. The evaluation map of F is:

eV {(Cm+1)d2 xU — U X Matdxd((C) X [Matdxd((c)]m
(v,u) — Fy(u)
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Hence,
Fev(vvu) = Jl(A + Pv)
= [, (A+ P (@), 016 yzsjea s (i) 1< 2|

Claim C.3. For all u, the map F*® restricts to a submersion from the (-, u)-fiber
to the [u, -]-fiber.

Proof. We want to prove that

v [(A + Pv)(u)a (bl,i,j)lgi,jgd PR (bm,i,j)lgi“jgd]

is a submersion, or equivalently that

v [Pv(“)7 (bl,i,j)1<i,j<d 1y (bm’i’j)lsi,jéd]

is a submersion. Noting that v = (a; j, bk ;) 1<i.i<a, this comes easily from the fact
: 1<ksm

that (a;;) — P,(u) is a submersion, for any fixed set of coefficients (by; ;) 1<i.i<a.

1<k<m

That claim immediately implies that F°¥ is a submersion. In particular it is
transverse to each X;. By the parametric transversality theorem (see [Hi, p. 79]),

2
there is a residual subset of parameters v in (Cm“)d such that F, = j'®, is
transverse to X;, for all 4.

When v goes to 0, ®, tends to A in H (U, GL(d,C)). Hence, the denseness in
H (U, GL(d,C)) of the maps A such that j'A is transverse to X;, for all i. Take
such a map A: for all 1, the image of jlzzl does not intersect Xgo L --- 1 X, and
intersects X,, (which has codimension m) only in a discrete subset.

Fix K’ < U a compact set that contains K in its interior. The image jlfl
restricted to K’ can only intersect X,, in a finite set I': indeed, any accumulation
point of that intersection set would have to be in Xy u - 1 X, 1, since X u
... U X, is closed, and this would contradict the fact that jljl does not intersect
XO \_|~'~I_|Xn_1.

By the choice of our topology, a small perturbation A of Ais C° close to A by
restriction to K’. By Cauchy’s formula, the map A is C2 close to A over the set K.
Hence, the (compact) image of j' A restricted to K is still far from Xou--- 1 X,_1,
and intersects X,, transversally in some e-neighborhood of I' inside X,,. Thus it
also has to intersect X, only on a finite set.

So we have found an open and dense subset of holomorphic maps whose 1-jets
above K intersect the set of N-poor jets only on a finite number of points. As a
consequence, for such maps, there are only finitely many constant singular inputs
in KV for the system [1.4, This concludes the proof of Theorem |C.1 O

APPENDIX D. DIMENSION OF CERTAIN ALGEBRAIC SETS OF MATRICES

In this appendix, which is independent from the rest of the paper, we prove
Theorem which was used in Section [5| This result is also used in [BGI].

D.1. Statement of the result. If M € Mat,x.,(C), let colM < C™ denote the
column space of M. A set X < Mat, x.,(C) is called column-invariant if

MeX
N € Mat,, m (C) = NelX.
colM = col N
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So a column-invariant set X is characterized by its set of column spaces. We enlarge
the latter set by including also subspaces, thus defining:

[X] := {E subspace of C"; E < col M for some M € X}.
Then we have:

Theorem D.1. Let X < Mat, «.m(C) be a nonempty algebraically closed, column-
invariant set. Suppose E is a vector subspace of C™ that does not belong to [X].
Then

codmX >m+1—dimFE.
It is obvious that the algebraicity hypothesis is indispensable.

Theorem follows without difficulty from intersection theory of the grassman-
nians (“Schubert calculus”). We tried to make the exposition the least technical as
possible, to make it accessible to non-experts (like ourselves).

D.2. A particular case. Define
(D.1) Ry = {A € Mat,, xm(C); rank A < }

We recall (see [Hal Prop. 12.2]) that this is an irreducible algebraically closed set
of codimension

(D.2) codim R, = (m —k)(n — k) it 0 < k < min(m,n).

Proof of Theorem[D.d] in the case E = C". If E = C™ then the hypothesis C™ ¢
[X] means that X < R,_;. We can assume that n — 1 < m, otherwise the
conclusion of the theorem is vacuous. Thus codim X > codimR,,_1 = m + 1 —n,
as we wanted to show. O

D.3. Reduction to a property of grassmannians. As we will see, to prove
Theorem it is sufficient to prove a dimension estimate (Theorem below)
for certain subvarieties of a grassmaniann.

D.3.1. Grassmannians. Given integers n > k > 1, the grassmanniann Gi(C") is
the set of the vector subspaces of C™ of dimension k.

The grassmannian can be interpreted as a subvariety of a higher dimensional
complex projective space using the Plicker embedding G (C™) — P(/\k C™), which
maps each V € Gi(C™) to [v; A -+ Avg], where {vy,...,vx} is any basis of V/ This
is clearly an one-to-one map. It can be shown (see e.g. [Hal p. 61ff]) that the image
is an algebraically closed subset of P( /\k C™). Tts dimension is

(D.3) dim G(C™) = k(n — k).

If F < C" is a vector space with dim F = e < k then we consider the following
subset of G (C™):

(D.4) Sp(E) :={V € Gx(C"); V > E}.

(This is a Schubert variety of a special type, as we will see later.) Since any
V € Si(E) can be written as E @ W for some V < W+, we see that Si.(E) is
homeomorphic to Gg_.(C"¢).

We will show that an algebraic set that avoids Si(E) cannot be too large:

Theorem D.2. Fiz integers 1 < e < k < n. Suppose that Y is an algebraically
closed subset of Gi(C™) that is disjoint from Si(E), for some e-dimensional sub-
space E < C"™. Then codimY = k+1—e.



48 BOCHI AND GOURMELON

D.3.2. Proof of Theorem assuming Theorem [D.Z Assuming Theorem for
the while, let us see how it yields Theorem [D-1]
Recalling notation (D.1]), define the quasiprojective variety

Rk = Rk AN kal .
We define a map 7y : Ry — Gr(C™) by A~ col A.

Lemma D.3. If X is an algebraically closed column-invariant subset of Ry, then
Y = mp(X) is algebraically closed subset of G (C™), and the codimension of Y
inside G,(C™) is the same as the codimension of X inside Ry,.

Proof. First, let us see that my: R, — Gr(C™) is a regular map. We identify
G (C™) with the image of the Pliicker embedding. In a Zariski neighborhood of
each matrix A € Ry, the map 7, can be defined as A — laj, A -+ A aj,] for some
j1 < -+ < jk, where a; is the j* column of A. This shows regularity.

Next, let us see that Y = 7 (X) is closed with respect to the classical (not
Zariski) topology. Consider the subset K of X formed by the matrices A € Ry,
whose first k columns form an orthonormal set, and whose m —k remaining columns
are zero. Then K is compact (in the classical sense), and thus so is 7 (K). But
column-invariance of X implies that 7, (K) = Y, so Y is closed (in the classical
sense).

It follows (see e.g. [Hal p.39]) from regularity of 7 is regular that the set Y is
constructible, i.e., it can be written as

P
Y = U Zl N W1 5
i=1
where Z; 2 W; are algebraically closed subsets of Gx(C™). We can assume that
each Z; is irreducible. It follows from [Mul Thrm. 2.33] that Z;, ~ W, = Z;, where
the bar denotes closure in the classical sense. In particular, Y = Y = Ui, Zi,
showing that Y is algebraically closed.

We are left to show the equality between codimensions. Since the codimen-
sion of an algebraically closed set equals the minimum of the codimensions of its
components, we can assume that X is irreducible.

By column-invariance of X, for each y € Y, the whole fiber 7~ 1(y) is contained
in X. All those fibers have the same dimension p = km. By [Ha, Thrm. 11.12],
dim X = dimY + km. By and (D.3), we have dim Ry, — dim G}, = km, so the
claim about codimensions follows. O

Proof of Theorem[D.d]. Let X < Mat,,«.n(C) be a nonempty algebraically closed,
column-invariant set. Suppose E is a vector subspace of C™ that does not belong
to [X]. Let e = dim E. We can assume e > 0 (otherwise the result is vacuously
true), and e < n (because the case e = n was already considered in §.

Notice that X ¢ R,,_1. Let

X,:=XnR, and Yj:= 7e(Xg), for 0 <k < min(m,n —1).
For every k with e < k < n, the set Y} is disjoint from the set Si(E) defined by
. In view of Lemma and Theorem we have
codimRk Xp,=codimY,>k+1—e.
So the codimension of X}, as a subset of Mat,, x., (C) is

codim X, = codim Rk + codimRk Xy
= (m—-k)(n—k)+k+1—e=:f(k).
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The function f(k) is decreasing on the interval 0 < k < min(m,n — 1). Therefore:

codim X = min codim Xy, > min f(k)
0<k<min(m,n—1) 0<k<min(m,n—1)

= f(min(m,n—1)) =m+1—e,
as claimed. This proves Theorem [D.I] modulo Theorem [D.2] a

The proof of Theorem will be given in § after we explain the necessary

tools in §§ [D.4]

D.4. Schubert calculus. Here we will outline some facts about the intersection
of Schubert varieties. The readable expositions [Bl, [Va] contain more information.

A (complete) flag in C™ is a sequence of subspaces Fy ¢ Fy < --- < F, with
dim F; = j. We denote F, = {F}}.

Given V e Gi(C™), its rank table (with respect to the flag F,) is the data
dim(V n F}), j = 0,...,n. The jumping numbers are the indexes j € {1,...,n}
such that dim(V n F;) —dim(V n F;_;) is positive (and thus equal to 1). Of course,
if one knows the jumping numbers, one know the rank table and vice-versa. Let
us define a third way to encode this information: Consider a rectangle of height m
and width n —m, divided in 1 x 1 squares. We form a path of square edges: Start in
the northeast corner of the rectangle. In the j* step (1 < j < n), if j is a jumping
number then we move one unit in the south direction, otherwise we move one unit
in the west direction. Since there are exactly k jumping numbers, the path ends
at the southwest corner of the rectangle. The Young diagram of V with respect to
the flag F, is the set of squares in the rectangle that lie northwest of the path. We
denote a Young diagram by A = (A1, Aa, ..., A\x), where )\; is the number of squares
in the i* row (from north to south). Its area A; + --- + i, is denoted by |A|.

Example D.4. Here is a possible rank table with k = 5, n = 12; the jumping numbers
are underlined:

j= 01 2 3 4 5 6 7 8 9 10 11 12
dim(WnF;)= 0 0 0 1 1 1 2 2 3 4 4 5 5
The associated path in the rectangle is:
Y
Y
and so the Young diagram is
} []
A=[1T] =(5,3,2,2,1).

In general, we have:

e A= (A1,..., ) is a possible Young diagram if and only if n — k > X\ >
ez A =0,
e If j; <--- < jj are the jumping numbers then \; = n — k — j; + 4.

The set of V' € G (C™) that have a given Young diagram A is called a Schubert
cell, denoted by Q(\) or Q(\, F,). Each Schubert cell is a topological disk of real
codimension 2|A|. The Schubert cells (for a fixed flag) give a CW decomposition
of the space G(C™). The closure of Q(\) (in either classical or Zariski topologies)
is the set of V' € G (C™) such that dim(V n F};) > ¢ for each i = 1,...,n (where
j1 < --+ < ji are the jumping numbers associated to A). These sets are closed
irreducible varieties, called Schubert varieties. (See e.g. [Ful, §9.4].)
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Example D.5. If E < C" is a subspace with dim £/ = e < k then the set Si(E) defined
by (D.4) is a Schubert variety Q (A, F,), where F, is any flag with F. = E and

(D.5) A=(n—k,...,n—k,0,...,0) =
[ S
e times k—e times

Let A*(k,n) denote the set of formal linear combinations with integer coefficients
of Young diagrams in the k x (n — k) rectangle. This is by definition an abelian

group.

Proposition D.6. There is a second binary operation called the cup product and
denoted by the symbol — that makes A*(k,n) a commutative ring, and is charac-
terized by the following properties:

If X and p are Young diagrams with respective areas v and s then their cup
product is of the form:

Avp=vi+--+vN.

where vy, ..., vy are Young diagrams with area v + s (possibly with repetitions,
possibly N = 0). Moreover, there are flags F,, G, H.(i) such that the manifolds
Q(\, F,) and Q(p, G,) are transverse and their intersection is | ) Q(v;, H.(i)),

Example D.7. Working in A*(2,4), let us compute the products of the Young diagrams
A=[TJand p = H Fix a flag F.. Then Q(), F.) is the set of W € G2(C*) that contain
Fi, and Q(u, F.) is the set of W e GQ((C4) that are contained in F3. Take another flag G

which is in general position with respect to F., that is F; n G4a—; = {0}. Then:
e The set Q(), Fu) n Q(), G.) contains a single element, namely Fi ® G1, and thus
equals Q((2,2), H,) = {H2} for an appropriate flag H.. This shows that A « A =

e The space F3 n G5 is 2-dimensional and thus is the single element of Q(u, Fu) N
Q(u,Ga). So = H}
e The set Q(\, Fu) n Q(u, Go) is empty, thus A~ u = 0.

However, if we work in A*(4,8) then it can be shown that:

o-m-from-fR g-B-E+F+ o-g-FuF

If we drop the terms that do not fit in a 2 x 2 rectangle, we reobtain the results for G2 (C?).

The general computation of the product A — p is not simple and can be done in
various ways — see e.g. [Val Fu]ﬁ For our purposes, however, it will be sufficient
to know when the product is zero or not. The answer is provided by the following
simple lemmaﬂ

Lemma D.8 ([Eu], p. 148-149). Let A and p be Young diagrams in the k x (n —k)
rectangle. The following two conditions are equivalent:
1. Awpu#0.
2. If one draws inside the k x (n — k) rectangle the Young diagrams of \ and
w, being the later rotated by 180° and put in the southeast corner, then the
two figures do not overlap (see Fig. @ Equivalently, \; + pr+1—s < n—k
foreveryi=1,...,n.

18Here is an online calculator: |young.sp2mi.univ-poitiers.fr/ cgi-bin/ form-prep/ marc/
LiE_form.act?action=LRR,
1n [Va) condition of the lemma is expressed as “the white checkers are happy”.


http://young.sp2mi.univ-poitiers.fr/cgi-bin/form-prep/marc/LiE_form.act?action=LRR
http://young.sp2mi.univ-poitiers.fr/cgi-bin/form-prep/marc/LiE_form.act?action=LRR
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M

FIGURE 5. Consider k = 5, n = 12, A = (5,3,2,2,1), and p = (5,5,4,2,0).
The picture shows that the non-overlap condition from Lemma is
satisfied, and in particular A « p s 0. (This example is reproduced from [Ful
p. 150].)

D.5. Intersection of subvarieties of the grassmannian. Next we explain how
the Schubert calculus sketched above can be used to obtain information about
intersection of general subvarieties of the Grassmannian, by means of cohomology
and Poincaré duality. Our primary source is [Ful, Appendix B]; also, [Hul is a
very readable account about the geometric interpretation of the cup product in
cohomology.

Any topological space X has singular homology groups H;X and cohomology
groups H'X (here taken always with integer coefficients). With the cup product
H'X x H'X — H*"J X the cohomology H*X = @ H'X has a ring structure.

If X is a real compact oriented manifold of dimension d then the homology group
H;X is canonically isomorphic to Z, with a generator [X] called the fundamental
class of X. In addition, there is Poincaré duality isomorphism H'X — Hy_; X,
which is given by a — a ~ [X] (taking the cap product with the fundamental
class). Let us denote by w — w™* the inverse isomorphism.

Next suppose Y and Z are compact oriented submanifolds of X, of codimensions
1 and j respectively. Also suppose that Y and Z have transverse intersection Y n Z,
which therefore is either empty or a compact submanifold of codimension i+ 7, which
is oriented in a canonical way. The images of the fundamental classes of Y, Z, and
Y n Z under the inclusions into X define homology classes that we denote (with
a slight abuse of notation) by [Y] € Hy_; X, [Z] € Hq—; X, [Y n Z] € Hy_,—; X.
Then their Poincaré duals [Y]* € H'X, [Z]* € H' X, and [Y n Z]* € HTI X are
related by:

Y] < (2 = [V~ 2]

That is, cup product is Poincaré dual to intersection.

Now consider the case where X is a projective nonsingular (i.e., smooth) complex
variety, and Y and Z are irreducible subvarieties of X. Obviously, the fundamental
class [ X ] makes sense, because X is a compact manifold with a canonical orientation
induced from the complex structure. A deeper fact (see [Ful Appendix B]) is that
fundamental classes [Y] and [Z] can also be canonically associated to the (possibly
singular) subvarieties Y and Z, and the Poincaré duality between cup product and
intersection works in this situation. More precisely, suppose that Y and Z are
transverse in the algebraic sense: Y n Z is a union of subvarieties Wy, ..., W,
whose codimensions are the sum of the codimensions of Y and Z, and for each
i=1,...,¢, the tangent spaces T,,Y and T,,Z are transverse for all w in a Zariski-
open subset of W;. Then each W; has its canonical fundamental class, and the
following duality formula holds:

[YT* < [Z]* = [Wh]* + - + [We]*.

In our application of this machinery, X will be the grassmannian Gy (C"). In
this case:
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e The fundamental classes of the Schubert varieties [Q(), F,)] do not depend
on the flag F,.

e Let oy denote the Poincaré dual of [Q(\, F,)]. Then H?"Gj(C") is a free
abelian group and the elements oy with |A\| = r form a set of generators.
(The cohomology groups of odd codimension are zero.)

e The cup product on cohomology agrees with the “cup” product of Young
diagrams explained in the previous section.

D.6. End of the proof. We are now able to give to prove Theorem Y

Proof of Theorem[D.3 Let 1 < e <k < n. Let E < C" be a subspace of dimension
e, and consider the set Sy (E) defined by (D.4). Recall from Example that this
is the Schubert variety for the Young diagram A given by .

Now consider a (nonempty) subvariety ¥ < G (C™) that is disjoint from Sy (E).
We want to give a lower bound for the codimension c of Y. We can of course assume
that Y is irreducible.

Let [Y]* be the dual of fundamental class of Y. This is a nonzero element of
H?°Gp(C™). It can be expressed as Y,n;0,,, where y; are Young diagrams with
area |u;| = ¢, and n; are nonzero integers. In fact we have n; > 0, because of the
canonical orientations induced by complex structure.

Since the intersection between Si(FE) and Y is empty (and in particular trans-
verse), Poincaré duality gives [Si(E)]* « [Y]* = 0. Therefore we have o) « 7, =
0 for each 1.

By Lemma if we draw the Young diagram of u; rotated by 180° and put
in the southeast corner of the k x (n — k) rectangle, then it overlaps the Young
diagram A pictured in . This is only possible if ¢ > k — e + 1; indeed the
Young diagram p with least area such that A — p # 0 is

W= ( 1,...,1 7O,...,O),
¥—\’__J &_\/__/
k—e+1 times e—1 times

for which the overlapping picture becomes:

This concludes the proof of Theorem [D.2} O
As explained in § [D-3:2] Theorem [D-1] follows.
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