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UNIVERSAL REGULAR CONTROL FOR GENERIC

SEMILINEAR SYSTEMS

JAIRO BOCHI AND NICOLAS GOURMELON

Abstract. We consider discrete-time projective semilinear control systems
ξt`1 “ Aputq ¨ ξt, where the states ξt are in projective space RPd´1, inputs
ut are in a manifold U of arbitrary dimension, and A : U Ñ GLpd,Rq is a
differentiable mapping.

An input sequence pu0, . . . , uN´1q is called universally regular if for any

initial state ξ0 P RPd´1, the derivative of the time-N state with respect to the
inputs is onto.

In this paper we deal with the universal regularity of constant input se-
quences pu0, . . . , u0q. Our main result states that for generic such control
systems, all constant inputs of sufficient length N are universally regular, ex-
cept for a discrete set. More precisely, the conclusion holds for a C2-open and
C8-dense set of maps A. We also show that the inputs on that discrete set are

nearly universally regular; indeed there is a unique non-regular initial state,
and its corank is 1.

In order to establish the result, we study the spaces of bilinear control
systems. We show that the codimension of the set of systems for which the
zero input is not universally regular coincides with the dimension of the con-
trol space. The proof is based on careful matrix analysis and some elemen-
tary algebraic geometry. Then the main result follows by applying standard
transversality theorems.

1. Introduction

1.1. Basic definitions and some questions. Consider discrete-time control sys-
tems of the form:

(1.1) xt`1 “ F pxt, utq, pt “ 0, 1, 2, . . . q
where F : X ˆ U Ñ X is map. We will always assume that the space X of states
and the space U of controls are manifolds, and that the map F is continuously
differentiable.

A sequence px0, . . . , xN ;u0, . . . , uN´1q satisfying (1.1) is called a trajectory of
lengthN ; it is uniquely determined by the initial state x0 and the input pu0, . . . , uN´1q.
Let φN denote the time-N transition map, which gives the final state as a function
of the initial state and the input:

(1.2) xN “ φN px0;u0, . . . , uN´1q.
We say that the system (1.1) is accessible from x0 in time N if the set φN ptx0uˆ

UN q of final states that can be reached from the initial state x0 has nonempty
interior.
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2 BOCHI AND GOURMELON

The implicit function theorem gives a sufficient condition for accessibility. If
the derivative of the map φN px0; ¨q at input pu0, . . . , uN´1q is an onto linear map1

then we say that the trajectory determined by px0;u0, . . . , uN´1q is regular. So the
existence of such a regular trajectory implies that the system is accessible from x0
in time N .

Let us call an input pu0, . . . , uN´1q universally regular if for every x0 P X , the
trajectory determined by px0;u0, . . . , uN´1q is regular; otherwise the input is called
singular.

The concept of universal regularity is central in this paper; it was introduced
by Sontag2 in [So] in the context of continuous-time control systems. The discrete-
time analogue was considered by Sontag and Wirth in [SW]. They showed that
if the system (1.1) is accessible from every initial condition x0 in uniform time
N then universally regular inputs do exist, provided one assumes the map F to
be analytic. In fact, under those hypotheses they showed that universally regular
inputs are abundant: in the space of inputs of sufficiently large length, singular
ones form a set of positive codimension.

In this paper, we are interested in control systems (1.1) where the next state
xt`1 depends linearly on the previous state xt (but non-linearly on ut, in general).
This means that the state space is Kd, where K is either R or C, and that (1.1)
now takes the form:

(1.3) xt`1 “ Aputq ¨ xt, where A : U Ñ MatdˆdpKq.
Following [CK1], we call this a semilinear control system.

In the case that the map A above takes values in the set GLpd,Kq of invertible
matrices of size d ě 2, we consider the corresponding projectivized control system:

(1.4) ξt`1 “ Aputq ¨ ξt,
where the states ξt take value in the projective space KPd´1 “ Kd

˚{K˚. We call
this a projective semilinear control system. The projectivized system is also a useful
tool for the study of the original system (1.3): see e.g. [Wi, CK2].

Universally regular inputs for projective semilinear control systems were first
considered by Wirth in [Wi]. Under his working hypotheses, the existence and
abundance of such inputs is guaranteed by the aforementioned result of [SW]; then
he uses universally regular inputs to obtain global controllability properties.

The purpose of this paper is to establish results on the existence and abundance
of universally regular inputs for projective semilinear control systems. Differently
from [SW, Wi], we will not necessarily assume our systems to be analytic. Let
us consider systems (1.4) with K “ R and A : U Ñ GLpd,Rq a map of class Cr,
for some fixed r ě 1. To compensate for less rigidity, we do not try to obtain
results that work for all Cr maps A, but only for generic ones, i.e., those maps in
a residual3 subset, or, even better, in an open dense subset.

To make things more precise, assume U is a C8 (real) manifold without bound-
ary.4 We will always consider the space CrpU ,GLpd,Rqq endowed with the strong
Cr topology5.

1This condition is usually written in terms of the rank of a certain matrix and it is usually
called the rank condition.

2Sontag calls these inputs universally nonsingular; we follow the terminology of [Wi, CK2].
3Recall that a subset of a Baire space is called residual if it is a countable intersection of open

dense subsets.
4Moreover, all manifolds are assumed to be Hausdorff paracompact with a countable base of

open sets, and of finite dimension.
5See e.g. [Hi]. Note that in the case that U is compact, this coincides with the usual uniform

Cr topology.
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Hence the first question we pose is this:

Taking N sufficiently large, is it true that for Cr-generic maps A, the
set of universally regular inputs in UN is itself generic?

It turns out that this question has a positive answer. Actually, we show in [BG2]
that for r great enough, for maps A in a Cr open and dense set, all inputs in
UN are universally regular, except for those in a stratified closed set of positive
codimension. So another natural question is this:

Fixed parameters d, dimU , N , and r, what is the minimum codimen-
sion of the set of singular inputs in UN that can occur for Cr-generic
maps A : U Ñ GLpd,Rq?

This question seems to be very difficult. However, we do have a sharp estimate if
we restrict ourselves to the subset of UN formed by non-resonant inputs, namely
those inputs pu0, . . . , uN´1q such that ui ‰ uj whenever i ‰ j (see [BG2]). To
investigate what happens for resonant inputs is a much tougher job.

In this paper we consider the most resonant case. Define a constant input of
length N as an element of UN of the form pu0, u0, . . . , u0q. We propose ourselves to
study universal regularity of inputs of this form. A possible interpretation is this:
Suppose the system is controlled by a “lever” that is very hard to move. Then we
want to know what positions of the lever are universally regular. For those positions
it is possible to perturb the state of the system in any desired direction with only
slight moves on the lever.

1.2. The main result. Our main result says that generically the singular constant
inputs form a very small set:

Theorem 1.1. Given d ě 2 and m ě 1, there exists N ě 1 with the following
properties. Let U be a smooth m-dimensional manifold without boundary. Then
there exists a C2-open C8-dense subset O of C2pU ,GLpd,Rqq such that for every
system (1.4) with A P O, all constant inputs of length N are universally regular,
except for those in a zero-dimensional (i.e., discrete) set.

By saying that a subset O of C2pU ,GLpd,Rqq is C8-dense, we mean that for all
r ě 2, the intersection of O with CrpU ,GLpd,Rqq is dense in CrpU ,GLpd,Rqq.

It is remarkable that the generic dimension of the set of singular constant inputs
(namely, 0) does not depend on the dimension m of the control space U , neither on
the dimension d´1 of the state space. A partial explanation for this phenomenon is
the following: First, the obstruction to universal regularity of the input pu, u, . . . , uq
is the combined degeneracy of the matrix Apuq and of the derivatives of A at u. If
m is small then the image of the generic map A will avoid too degenerate matrices,
which increases the chances of obtaining universal regularity. If m is large then
more degenerate matrices Apuq will inevitably appear; however the large number
of control parameters compensates, so universal control is still likely.

The singular inputs that appear in Theorem 1.1 are not only rare; we also show
that they are “almost” universally regular:

Theorem 1.2 (Addendum to Theorem 1.1). The set O Ă C2pU ,GLpd,Rqq in
Theorem 1.1 can be taken with the following additional properties: If A P O and a
constant input pu, . . . , uq of length N is singular then:

1. There is a single direction ξ0 P RPd´1 for which the corresponding trajectory
of system (1.4) is not regular.

2. The derivative of the map φN pξ0; ¨q at input pu, . . . , uq has corank6 1.

6The corank of a linear map L : V Ñ W is the number dimW ´ dimLpV q.
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To sum up, for generic systems (1.4), the universal regularity of constant inputs
can fail only in the weakest possible way: there is at most one non-regular state,
which can be moved in all directions but one.

Remark 1.3. We actually have a very precise description of the singular inputs that
appear in Theorem 1.2. We show that these singular inputs can be unremovable by
perturbations, and therefore Theorem 1.1 is optimal in the sense that there are C2-open
(actually even C1-open) sets of maps A for which the set of singular constant inputs is
nonempty. Also, by C1-perturbing any A in those C2-open sets, one can obtain an infinite
number of singular constant inputs. In particular, it is not possible to choose O to be
C1-open in the statement of the Theorem 1.1. See Appendix B.

Remark 1.4. The integer N is a function of d and m we did not try to estimate precisely.
However, we know that it is at most d2 (see Remark 1.7).

Remark 1.5. In the case of complex matrices (i.e., K “ C), we have a corresponding
version of Theorem 1.1 where the maps A are analytic; see Appendix C.

1.3. Reduction to the study of the set of poor data. The bulk of the proof
of Theorem 1.1 consists on the computation of the dimension of certain canonical
sets, as we now explain.

We fix A : U Ñ GLpd,Kq and consider the projective semilinear system (1.4).
Recall that 1-jet of the map A at a point u P U consists of the first order Taylor
approximation of A around u. By the chain rule, the universal regularity of an
input pu0, u1, . . . , uN´1q depends only on the 1-jets of A at points u0, . . . , uN´1.

Let us discuss the case of constant inputs pu0, . . . , u0q. If we take local coordi-
nates such that u0 “ 0 and replace the matrix map A : U Ñ GLpd,Kq by its linear
approximation, system (1.4) becomes:

(1.5) ξt`1 “
˜

A`
m
ÿ

j“1

ut,iCj

¸

ξt , pt “ 0, 1, 2, . . . q,

where A “ Apu0q and C1, . . . , Cm are the partial derivatives at 0. This is the
projectivization of a bilinear control system (see [El]). For these systems, the zero
input is a distinguished one and the focus of more attention.

To study system (1.5) it is actually more convenient to consider normalized
derivatives Bj “ CjA

´1, which intrinsically take values in the Lie algebra glpd,Kq.
Consider the matrix data A “ pA,B1, . . . , Bmq. We will explain how the universal
regularity of the zero input is expressed in linear algebraic terms. Recall that the
adjoint operator of A acts on glpd,Kq by the formula AdApBq “ ABA´1. Consider
the linear subspace ΛN pAq of glpd,Kq spanned by the matrices

Id and pAdAqipBjq, pi “ 0, . . . , n´ 1, j “ 1, . . . ,mq.
(The identity matrix appears because of the projectivization.) Then:

Proposition 1.6. The constant input p0, . . . , 0q of length N is universally regular
for system (1.5) if and only if the space ΛN pAq acts transitively on the set Kd

˚ of
nonzero vectors.

If ΛN pAq acts transitively on Kd
˚ for some N , then the data A is called rich;

otherwise it is called poor.

Remark 1.7. The spaces ΛN pAq form a nested sequence, which thus stabilize after
finitely many steps. It is actually easy to see that stabilization occurs at most at time
N “ d2. Therefore there are two possibilities: either the zero input of length d2 is univer-
sally regular, or the zero inputs of all lengths are singular.7

7In other words, if you’re old enough and still poor then you’ll never get rich.
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Let P
pKq
m denote the set of poor data.8 A major part of our work is to study

these sets. We prove:

Theorem 1.8. The set P
pRq
m is closed and semialgebraic, and its codimension in

GLpd,Rq ˆ pglpd,Rqqm is m.

Theorem 1.9. The set P
pCq
m is algebraic, and its (complex) codimension in GLpd,Cqˆ

pglpd,Cqqm is m.

So Theorems 1.8 and 1.9 say how frequent universal regularity of the zero input
is in the space of projective bilinear control systems (1.5)

1.4. Overview of the proofs. Theorem 1.1 follow rather directly from Theo-
rem 1.8 by applying standard results from transversality theory. More precisely,

the fact that the set P
pRq
m is semialgebraic implies that it has a canonical strati-

fication. This permits us to apply Thom’s jet transversality theorem and obtain
Theorem 1.1.

On the other hand, Theorem 1.8 follows from its complex version Theorem 1.9
by simple abstract arguments.

Thus everything is based on Theorem 1.9. One part of the result is easily ob-
tained: we give examples of small disks of codimension m formed by poor data, so

concluding that the codimension of P
pCq
m is at most m.

To prove the other inequality, one could try to exhibit an explicit codimension m
set containing all poor data. For m “ 1 this task is feasible (and we actually
perform it, because with these conditions we can actually check universal regularity
in concrete examples). However, form “ 2 already the task would be very laborious,
and to expect to find a general solution seems unrealistic.

Our actual approach to prove the lower bound on the codimension of P
pCq
m is

indirect. Crudely speaking, after careful matrix computations, we find some sets in

the complement of P
pCq
m that are reasonably “large” (basically in terms of dimen-

sion). Then, by using some abstract results of algebraic geometry, we are able to

show that P
pCq
m is “small”, thus proving the other half of Theorem 1.9.

Let us give more detail about this strategy. We decompose the set Pm “ P
pCq
m

into fibers:

Pm “
ď

APGLpd,Cq

tAu ˆ PmpAq, PmpAq Ă rglpd,Cqsm.

It is not very difficult to show that for generic A in GLpd,Cq, the fiber PmpAq has
precisely the wanted codimension m. However, for degenerate matrices A, the fiber
PmpAq may be much bigger. (For example, one can show that if A is an homothecy
and m ď 2d ´ 3 then PmpAq is the whole rglpd,Cqsm.) In order to show that
codimPm ě m, we need to make sure that those degenerate matrices with do not
form a large set. More precisely, we show that:

(1.6) @k P t0, . . . ,mu, codim
 

A P GLpd,Cq; codimPmpAq ď m´ k
(

ě k.

Let us explain how we prove (1.6). In order to estimate the dimension of PmpAq
for any matrix A P GLpd,Cq, we consider a quantity r “ rpAq which is the least
number such that a rich data of the form pA,C1, . . . , Crq exists. In particular, if
r “ rpAq ď m then the following affine space

(1.7)
 

pC1, C2, . . . , Cr, Br`1, . . . , Bmq; Bj P glpd,Cq
(

is contained in the complement of PmpAq.

8A more precise notation would be P
pKq
m,d

. However, we can think d as fixed; on the other hand

it is sometimes useful to change m.
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In certain situations, if two algebraic subsets have large enough dimensions then
they necessarily intersect; for example, two algebraic curves in the complex pro-
jective plane CP2 always intersect. This kind of phenomenon happens here: the
dimension of the affine space (1.7) forces a lower bound for the codimension of
PmpAq, namely:

(1.8) codimPmpAq ě m` 1 ´ rpAq.
So we need to show that matrices A with large rpAq are rare. A careful matrix

analysis provides an upper bound to rpAq based on the numbers and sizes of the
Jordan blocks of A, and on the occasional algebraic relations between the eigenval-
ues. This bound together with (1.8) implies (1.6) and therefore concludes the proof
of Theorem 1.9.

In fact, the results of this analysis are even better, and we conclude that the
codimension inequality (1.6) is strict when k ě 1. This implies that poor data

pA,B1, . . . , Bmq for which the matrix A is degenerate form a subset of P
pCq
m with

strictly bigger codimension. Thus we can show that the poor data that appear
generically are well-behaved, which leads to Theorem 1.2.

1.5. Other remarks. One can also study uniform regularity of periodic inputs of
higher period. Using our results for constant inputs, it is not difficult to derive
some (non-sharp) dimension bounds for singular periodic inputs. However, for
highly resonant non-periodic inputs, we have no idea on how to obtain reasonable
dimension estimates.

As mentioned above, in paper [BG2] we have dimension estimates for general
inputs. These estimates are basically obtained by avoiding highly resonant inputs
(which have large codimension themselves). Thus the results of [BG2] are indepen-
dent from those of these paper. The proofs there are less involved from the point of
view of matrix computations, but use more sophisticated transversality theorems.

Of course, it would be interesting to consider these kind of problems for other
Lie groups of matrices, but we will not pursue this issue here.

1.6. Organization of the paper. Section 2 contains some basic results about
transitivity of spaces of matrices and its relation with universal regularity. We also
obtain the easy parts of Theorems 1.8 and 1.9, namely (semi)algebraicity and the
upper codimension inequalities.

In Section 3 we introduce the concept of rigidity, which is related to the quantity
rpAq mentioned above. We state the central rigidity estimates (Theorem 3.7), which
consist into two parts. The first and easier part is proved in the same Section 3,
while the whole Section 4 is devoted to the proof of the second part.

Section 5 starts with some preliminaries in elementary algebraic geometry. Then
we use the rigidity estimates to prove Theorem 1.9, following the strategy outlined
above (§ 1.4). Theorem 1.8 follows easily. We also obtain a lemma that is needed
for the proof of Theorem 1.2.

In Section 6 we collect some basic facts about stratifications and transversality,
and then apply them together with the previous results to obtain Theorems 1.1
and 1.2.

The paper also has some appendices:
Appendix A basically reobtains the major results in the special case m “ 1,

where we actually gain additional information of practical value: as mentioned in
§ 1.4, it is possible to describe explicitly what 1-jets the map A should avoid in
order to satisfy the conclusions of Theorems 1.1 and 1.2. The arguments necessary
for the m “ 1 case are much simpler and more elementary than those in Sections 3
to 5. Therefore the appendix is also useful to give the reader some intuition about
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the general problem, and as a source of examples. Appendix A is written in a
slightly informal way, and it can be read after Section 2 (though the final part
requires Lemmas 3.1 and 3.2).

In Appendix B we take a closer look to the generic singular constant inputs, and
in particular we justify Remark 1.3. We also discuss the generic validity of some
control-theoretic properties related to accessibility and regularity.

In Appendix C we apply Theorem 1.9 to prove a version of Theorem 1.1 for
holomorphic mappings.

Finally, Appendix D proves the algebraic-geometric result which allows us to
obtain estimate Eq. (1.8).

2. Preliminary facts on the poor data

In this section, we review some basic properties related to poorness, and prove
the easy inequalities in Theorems 1.8 and 1.9.

2.1. Transitive spaces. Let E and F be finite-dimensional vector spaces over the
field K. Let LpE,F q be the space of linear maps from E to F . A vector subspace
Λ of LpE,F q is called transitive if for every v P E r t0u, we have Λ ¨ v “ F , where
Λ ¨ v “ tLpvq; L P Λu.

Under the identification LpKm,Knq “ MatmˆnpKq, we may also speak of tran-
sitive spaces of matrices.

Example 2.1. Recall that a Toeplitz matrix, resp. a Hankel matrix, is a matrix of the
form

¨

˚

˚

˚

˚

˚

˚

˝

t0 t1 ¨ ¨ ¨ td´1

t´1

...

... t1

t´d`1 ¨ ¨ ¨ t´1 t0

˛

‹

‹

‹

‹

‹

‹

‚

, resp.

¨

˚

˚

˚

˚

˚

˚

˚

˝

h1 ¨ ¨ ¨ hd´1 hd

... hd`1

hd´1

...

hd hd`1 ¨ ¨ ¨ h2d´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

The set of Toeplitz matrices and the set of complex Hankel matrices constitute examples
transitive subspaces of glpd,Kq. Transitivity of the Toeplitz space is a particular case of
Example 2.2, and transitivity of Hankel space follows from Remark 2.3. For K “ C, these
spaces are optimal, in the sense that they have the least possible dimension; see [Az].

Example 2.2. A generalized Toeplitz space is a subspace Λ of MatdˆdpKq (where d ě 2)
with the following property: For any two matrix entries pi1, j1q and pi2, j2q which are not in
the same diagonal (i.e., i1 ´ j1 ‰ i2 ´ j2), the linear map pbi,jqi,j P Λ ÞÑ pbi1,j1 , bi2,j2q P C2

is onto. Equivalently, a space is generalized Toeplitz if it can be defined by a number
of linear relations between the matrix coefficients so that each relation involves only the
entries on a same diagonal, and so that the relations do not force any matrix entry to be
zero. We will prove later (see § 3.3) that every generalized Toeplitz space is transitive.

Remark 2.3. If Λ is a transitive subspace of LpE,F q and P P LpE,Eq, Q P LpF, F q are
invertible operators then P ¨ Λ ¨ Q :“ tPLQ; L P Λu is a transitive subspace of LpE,F q.

Let us see that transitivity is a semialgebraic or algebraic property, according to
the field. Recall that:

‚ A subset of Kn is called algebraic if it is expressed by polynomial equations
with coefficients in K.

‚ A subset of Rn is called semialgebraic if it is expressed by finitely many
polynomial equations or inequalities with coefficients in R.

Proposition 2.4. Let N
pKq
m,n,k be the set of pB1, . . . , Bkq P rMatmˆnpKqsk “ Kmnk

such that spantB1, . . . , Bku is not transitive. Then:

1. The set N
pRq
m,n,k is semialgebraic.
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2. The set N
pCq
m,n,k is algebraic.

Proof. Consider the set of pB1, . . . , Bk, vq P rMatmˆnpKqsk ˆ Kn
˚ such that

spantB1, . . . , Bku ¨ v ‰ Km .

This is an algebraic set, because it is expressed by the vanishing of certain determi-

nants. Taking K “ R and projecting this set along the Rn
˚ fiber we obtain N

pRq
m,n,k;

so, by the Tarski–Seidenberg theorem (see [BCR, p. 26]), this set is semialgebraic,
proving part 1.

To see part 2, we take K “ C and projectivize the Cn
˚ fiber, obtaining an algebraic

subset rMatmˆnpCqsk ˆ CPn´1 whose projection along the CPn´1 fiber is N
pCq
m,n,k.

So part 2 follows from the fact that projections along projective fibers are closed
maps with respect to the Zariski topology (see Proposition 5.1 below). �

Another important fact is that complex transitivity of real matrices is a stronger
property than real transitivity:

Proposition 2.5. The real part of N
pCq
m,n,k (that is, its intersection with rMatmˆnpRqsk)

contains N
pRq
m,n,k.

Moreover, the inclusion can be strict. The explanation is this: real matrix data
can be R-transitive without being C-transitive because the directions that detect
non-transitivity are non-real. A formal proof and examples are provided in [BG1].

Remark 2.6. The codimension ofN
pCq
m,n,k is computed in [BG1]: it is maxpk´m´n`2, 0q.

We also observe in [BG1] that N
pRq
m,n,k can fail to be real-algebraic. But we will not need

those results in the present paper.

2.2. Universal regularity for constant inputs and richness. In this subsec-
tion we prove Proposition 1.6; in fact we prove a more precise result, and also fix
some notation.

Recall that if A P GLpd,Kq then the adjoint of A is the linear operator AdA on
glpd,Kq given by the formula AdApBq “ ABA´1.

If A : U Ñ GLpd,Cq is a differentiable map then the normalized derivative of A
at a point u is the linear map TuU Ñ glpd,Rq given by h ÞÑ pDApuq ¨ hq ˝A´1puq.

Let φN pξ0, ûq be the state ξN P KPd of the system (1.4) determined by the initial
state ξ0 and the input sequence û P UN . Let B2φN pξ0, ûq be the derivative of the
map φN pξ0, ¨q at û.

Fix a constant input û “ pu, . . . , uq P UN , and local coordinates on U around u.
Let Bj be the normalized partial derivatives of the map A at u with respect to the
ith coordinate. Consider the data A “ pA,B1, . . . , Bmq, where A “ Apuq. Define
the following subspace of glpd,Kq:

(2.1) ΛN pAq “ K ¨ Id ` span
0ďnăN´1

1ďjďm

 

AdnApBjq
(

,

Proposition 2.7. For all ξ0 P KPd´1 and any x0 P Kd r t0u representing ξ0,

rank B2φN pξ0, ûq “ dim
“

ΛN pAq ¨ pANx0q
‰

´ 1.

In particular (since A “ Apuq is invertible), the input û is universally regular if
and only if ΛN pAq is a transitive space, which is the statement of Proposition 1.6.

Proof of Proposition 2.7. Let ξ0 “ rx0s, where x0 P Kd r t0u. Let ψN px0, ûq be
the final state of the non projectivized system (1.3) determined by the initial state
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x0 and by the sequence of controls û P UN . Using local coordinates with u in the
origin, we have the following first order approximation for û » 0:

ψN px0, ûq » ANx0 `
ÿ

1ďjďm
0ďtăN

ut,jA
N´t´1BjA

t`1x0

“

¨

˝Id `
ÿ

1ďjďm
0ďnăN

uN´1´n,jAdnApBjq

˛

‚xN ,

where xN “ ψN px0, 0q “ ANx0. Therefore the image of B2ψN px0, ûq is the following
subspace of TANx0

Kd:

V “
˜

span
1ďjďm
0ďnăN

AdnABj

¸

¨ xN ,

The image of B2φN pξ0, ûq equals DπpxN qpV q, where π : Kd r t0u Ñ KPd´1 is
the canonical projection. Notice that KerDπpxq “ Kx for any x P Kd r t0u. It
follows that

rank B2φN pξ0, ûq “ dim rDπpxN qpV qs
“ dim

“

DπpxN q
`

KxN ` V
˘‰

“ dimrKxN ` V s ´ 1

Since KxN ` V “ ΛN pAq ¨ xN , the proposition is proved. �

The discussion above motivates the introduction of a more general notation,
which will be convenient later. Consider a linear operator H : E Ñ E, where E is
a finite-dimensional vector space over the field K. Given a vector v P E, the orbit
of v under H is the set tHnv; n ě 0u. Denote the space spanned by the orbit by
sorbH v. We have

sorbH v “
 

fpHq ¨ v; f is a polynomial with coefficients in K
(

.

It follows from the Cayley–Hamilton theorem that sorbH v is the space spanned by
the first dimE iterates of v:

sorbH v “ spantHnv; n “ 0, . . . , dimE ´ 1u.
Let us also denote

sorbHpv1, . . . , vnq “ sorbH v1 ` ¨ ¨ ¨ ` sorbH vn .

In this notation, the union ΛpAq :“ Ť

N ΛN pAq of the elements of the sequence
(2.1) is expressed as

(2.2) ΛpAq “ sorbAdA
pId, B1, . . . , Bmq, where A “ pA,B1, . . . , Bmq.

We have ΛN pAq “ ΛpAq for all N ě d2, as stated in Remark 1.7.

2.3. The sets of poor data. For emphasis, we repeat the definition already gave
at the introduction: The data A “ pA,B1, . . . , Bmq P GLpd,Kqˆrglpd,Kqsm is rich
if the space ΛpAq defined by (2.2) is transitive, and poor otherwise. The concept in
fact depends on the field under consideration. The set of such poor data is denoted

by P
pKq
m,d.

It follows immediately from Proposition 2.4 that P
pRq
m,d is a closed and semialge-

braic subset of GLpd,Rqˆrglpd,Rqsm and P
pCq
m,d is an algebraic subset of GLpd,Cqˆ

rglpd,Cqsm. This proves part of Theorems 1.8 and 1.9.
Also, by Proposition 2.5 the real poor data are contained in the real part of the

complex poor data, i.e.,

(2.3) P
pRq
m,d X

“

GLpd,Kq ˆ rglpd,Kqsm
‰

Ă P
pCq
m,d .
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Let us also note that the sets of poor data are saturated in the sense of the follow-
ing definition: A set Z Ă rMatdˆdpKqs1`m will be called saturated if pA,B1, . . . , Bmq P
Z implies that:

‚ For all P P GLpd,Kq, the tuple pP´1AP,P´1B1P, . . . , P
´1BmP q belongs to

Z.
‚ For all Q “ pqijq P GLpm,Kq, the tuple pA,B1

1, . . . , B
1
mq, where B1

i “
ř

j qijBj , belongs to Z.

Remark 2.8. 1. A subset rMatdˆdpKqs1`m is saturated if and only if it is invariant
under a certain action of the group GLpd,Kq ˆ GLpm,Kq.

2. The real part of a complex saturated set is saturated (in the real sense).

2.4. The easy codimension inequality of Theorems 1.8 and 1.9. Here we
will discuss the simplest examples of poor data.

To begin, notice that if A P GLpd,Cq is diagonalizable then so is AdA. Indeed,
assume without loss of generality that A “ Diagpλ1, . . . , λdq. Consider the basis
tEi,j ; i, j P t1, . . . , duu of glpd,Cq, where
(2.4) Ei,j is the matrix whose only nonzero entry is a 1 in the pi, jq position.

Then AdApEi,jq “ λiλ
´1
j Ei,j . We summarize this fact as:

(2.5) AdA “ Diag

¨

˚

˝

1 λ1λ
´1
2 ¨ ¨ ¨

λ2λ
´1
1 1
...

. . .

˛

‹

‚
.

So if f is a polynomial and B “ pbijq then

(2.6) the pi, jq-entry of the matrix pfpAdAqqpBq is fpλiλ´1
j qbij .

The data A “ pA,B1, . . . , Bmq P GLpd,Kq ˆ glpd,Kqm is called conspicuously
poor if there exists a change of bases P P GLpd,Kq such that:

‚ the matrix P´1AP is diagonal;
‚ the matrices P´1BkP have a zero entry in a common off-diagonal position;
more precisely, there are indices i0, j0 P t1, . . . , du with i0 ‰ j0 such that for
each k P t1, . . . ,mu, the pi0, j0q entry of the matrix P´1BkP vanishes.

(As in the definition of poorness, the concept depends on the field K.)

Lemma 2.9. Conspicuously poor data are poor.

Proof. Let A “ pA,B1, . . . , Bmq be conspicuously poor. With a change of basis we
can assume that A is diagonal. Let pe1, . . . , edq be the canonical basis of Kd. Let
pi, jq be the entry position where all Bi’s have a zero entry. By (2.6), all matrices
in the space ΛpAq given by (2.2) have a zero entry in the pi0, j0q position. In
particular, there is no L P ΛpAq such that L ¨ ej0 “ ei0 , showing that this space is
not transitive. �

The converse of this lemma is certainly false. (Many examples appear in Appen-
dix A; see also Example 3.6.) However, we will see in § 2.5 that the converse holds
for generic A.

We will use Lemma 2.9 to prove the easy codimension inequalities for Theo-
rems 1.8 and 1.9; first we need to recall the following9:

9Proposition 2.10 follows from the implicit function theorem; for a proof using complex analysis,
see [Ka, p. 67].
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Proposition 2.10. Suppose A P MatdˆdpKq is diagonalizable over K and with
simple eigenvalues only. Then there is a neighborhood of A where the eigenvalues
vary smoothly, and where the eigenvectors can be chosen to vary smoothly.

Proposition 2.11 (Easy half of Theorems 1.8 and 1.9). For both K “ R or C, we

have codimK P
pKq
m ď m.

Proof. Using Proposition 2.10, we can exhibit smoothly embedded disks of codi-
mension m inside GLpd,Kq ˆ glpd,Kqm formed by conspicuously poor data. �

2.5. Unconstrained matrices. The material from this subsection is used in the
proof of Theorem 1.2, but not in the proof of Theorem 1.1. It is also used in
Appendix A.

If p is an irreducible factor of the polynomial λiλℓ ´λjλk then the relation p “ 0
is called an elementary constraint in the variables λ1, . . . , λd. Every elementary
constraint can be written, after a permutation of the indices 1, . . . , d, as one of the
following:

‚ a type 1 constraint: λ1λ3 “ λ22.
‚ a type 2 constraint: λ1λ4 “ λ2λ3.
‚ a type 3 constraint: λ1 “ ´λ2.
‚ a type 4 constraint: λ1 “ λ2.

We say that a matrix A P GLpd,Rq is unconstrained if its eigenvalues, counted
with multiplicity, do not satisfy any elementary constraint.

Remark 2.12. A matrix A is unconstrained if and only if AdA has the maximal possible
number of distinct eigenvalues, namely, d2´d`1. This is obvious from (2.5) if one restricts
to diagonalizable matrices A. The general case follows from the fact (which we will prove
rigorously in § 4.3) that the multiplicities of the eigenvalues of AdA are those “predicted”
by formula (2.5).

Let us see that the converse of Lemma 2.9 holds for unconstrained A:

Lemma 2.13. Suppose that the data A “ pA,B1, . . . , Bmq P GLpd,Kq ˆ glpd,Kqm
is poor and that the matrix A is unconstrained. Then A is conspicuously poor.

Proof. Suppose A is unconstrained. In particular, A has simple spectrum. With a
change of basis we can assume that A is diagonal.

Now suppose that A “ pA,B1, . . . , Bmq is not conspicuously poor. This means
that for each off-diagonal position there is at least of of the matrices Bk that has
a non-zero entry in that position. (Notice that this fact does not depend on the
change of basis chosen before.)

Since A is unconstrained, the values λiλ
´1
j , where pi, jq runs on the matrix

positions outside the diagonal, are pairwise different, and all different from 1. Recall
that one can always (using Lagrange formula) find a polynomial whose values at
finitely many different points are prescribed. So It follows from (2.6) that the
space ΛpAq contains all matrices pyijq such that y11 “ ¨ ¨ ¨ “ ydd, and in particular,
all Toeplitz matrices. So ΛpAq is transitive, i.e., A is not poor. This proves the
lemma. �

Let us establish another simple result, which is related to Theorem 1.2. Denote
by pe1, . . . , edq the canonical basis of Cd.

Lemma 2.14. Suppose that the data A “ pA,B1, . . . , Bmq P GLpd,Cq ˆ glpd,Cqm
has the following properties:

1. A is an unconstrained diagonal matrix;
2. there are indices i0, j0 P t1, . . . , du with i0 ‰ j0 such that for each k P

t1, . . . ,mu, the pi0, j0q entry of the matrix Bk vanishes;
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3. the off-diagonal vanishing entry position pi0, j0q above is unique.

Then:

1. There is a single direction rvs P CPd´1 such that ΛpAq¨v ‰ Cd, namely rej0s.
2. The space ΛpAq ¨ ej0 has codimension 1; in fact, it equals spantei; i ‰ i0u.

Proof. Under the assumptions on A, the space ΛpAq contains
 

pyijq P glpd,Cq; y11 “ ¨ ¨ ¨ “ ydd, yi0j0 “ 0
(

.

The conclusions follow easily. �

After the preliminaries above, the optional Appendix A can be read (as we
mentioned in § 1.6).

3. Rigidity

The aim of this section is to state Theorem 3.7 and prove its first part. Along
the way we will establish several lemmas which will be reused in the proof of the
second part of the theorem in Section 4.

3.1. Acyclicity. Consider a linear operator H : E Ñ E, where E is a finite-
dimensional complex vector space.

The operator H is called cyclic if it has a cyclic vector, that is, some v P E such
that sorbH v is the whole space E. The following two lemmas are useful to find
cyclic vectors, when they exist:

Lemma 3.1. Suppose that E “ Cℓ and that H is a Jordan block:

H “

¨

˚

˚

˝

λ 1

1

λ

˛

‹

‹

‚

.

Then a vector v “ px1, . . . , xℓq is cyclic for H if and only if xℓ ‰ 0.

Proof. For any polynomial f we have (see [Ga, page 100]):

fpHq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

fpλq f 1pλq
1!

f2pλq
2! ¨ ¨ ¨ fpℓ´1qpλq

pℓ´1q!

...

f2pλq
2!

f 1pλq
1!

fpλq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

So the space spanned by the powers of H is the space of upper triangular Toeplitz
matrices. The rest of the proof is an easy exercise. �

Lemma 3.2. Let E be a finite-dimensional complex vector space and let H : E Ñ E

be a linear operator. Assume that E1, . . . , Ek Ă E are H-invariant subspaces and
that the spectra of A|Ei (1 ď i ď k) are pairwise disjoint. If v1 P E1, . . . , vk P Ek

then

sorbHpv1, . . . , vkq “ sorbHpv1 ` ¨ ¨ ¨ ` vkq .
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Proof. The Ą part is trivial; let us show the Ă part. Take w P sorbHpv1, . . . , vkq, so
w “ ř

fipHq ¨ vi, where each fi is a polynomial. Let pi be the minimal polynomial
of H|Ei, and let qi “ ś

j‰i pj . Since the spectra of A|Ei are pairwise disjoint,
the polynomials pi are pairwise relatively prime, and so the polynomials qi are
jointly relatively prime. Since polynomials form a principal ideal domain, there
exist polynomials gi such that

ř

giqi “ 1. Using that qipHq ¨ vj “ 0 if i ‰ j, we
have:

w “
ÿ

i

fipHq ¨ vi “
ÿ

i

fipHq
˜

ÿ

j

gjpHqqjpHq
¸

¨ vi

“
ÿ

i

fipHqgipHqqipHq ¨ vi “
˜

ÿ

i

fipHqgipHqqipHq
¸

¨
ÿ

j

vj .

That is, w “ fpHq ¨ řj vj for some polynomial f , as we wanted to show. �

We define the acyclicity of H as the least number n of vectors v1, . . . , vn P E
such that sorbHpv1, . . . , vnq “ E. We denote n “ acycH. So acycH “ 1 means
that H is a cyclic operator.

Let us relate acyclicity with the Jordan normal form of H. The geometric mul-
tiplicity of an eigenvalue λ of H is the number of corresponding Jordan blocks or,
equivalently, the dimension of the kernel of H´λId. The following fact is probably
well-known, but since we could not find a precise reference we provide a proof:10

Proposition 3.3. The acyclicity of an operator equals the maximum of the geo-
metric multiplicities of its eigenvalues.

Proof. Let λ1, . . . , λk be the eigenvalues of H, counted without multiplicity, and
E “ E1 ‘ ¨ ¨ ¨ ‘ Ek be the splitting into generalized eigenspaces. Let ni be the
geometric multiplicity of λi, and let n “ maxni.

Using Lemma 3.1, we find vi,1, . . . , vi,ni
P Ei such that sorbHpvi,1, . . . , vi,ni

q “
Ei. Define vi,j “ 0 for ni ă j ď n. Consider wj “ řk

i“1 vi,j , for j “ 1, . . . , n. By
Lemma 3.2, sorbH wj “ sorbHpv1,j , . . . , vk,jq. So

sorbHpw1, . . . , wnq “
ÿ

j

sorbHpv1,j , . . . , vk,jq “
ÿ

i

sorbHpvi,1, . . . , vi,nq “ E.

This shows that acycH ď n.
To show the reverse inequality, assume that n “ n1, for example. For each vector

in E, write its coordinates with respect to the Jordan basis, and the consider only
the coordinates corresponding to the rightmost columns of the Jordan blocks for
λ1. This defines a linear map P : E Ñ Cn such that PH “ λ1P . Now take any
vectors u1, . . . , un´1 P E. Then the space S “ sorbHpu1, . . . , un´1q is sent by P to
the vector space spantPu1, . . . , Pun´1u, which has dimension ď n. Since P is onto
Cn, the space S cannot be the whole E. This shows that acycH ě n, completing
the proof. �

Remark 3.4. The operators which interest us most are H “ AdA, where A P GLpd,Cq.
It is useful to observe that the geometric multiplicity of 1 as an eigenvalue of AdA equals

the the codimension of the conjugacy class of A inside GLpd,Cq. To prove this, consider
the map ΨA : GLpd,Cq Ñ GLpd,Cq given by ΨApXq “ AdXpAq. The derivative at X “ Id
is H ÞÑ HA´AH; so KerDΨApIdq “ KerpAdA ´ idq. Therefore when X “ Id, the rank of
DΨApXq equals the geometric multiplicity of 1 as an eigenvalue of AdA. To see that this is

10The usual textbook approach is the other way around: one uses results about cyclic operators
to obtain the Jordan normal form; see e.g. [Ga].
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true for any X, notice that ΨA “ ΨAdX pAq ˝RX´1 (where R denotes a right-multiplication
diffeomorphism of GLpd,Cq).

We will see later (Lemma 4.15) that 1 is the eigenvalue of AdA with the biggest geomet-
ric multiplicity. By Proposition 3.3, we conclude that acycAdA equals the codimension
of the conjugacy class of A.

3.2. Definition of rigidity, and the main rigidity estimate. Let E and F be
finite-dimensional complex vector spaces. Let H be a linear operator action on the
space LpE,F q. We define the rigidity of H, denoted rigH, as the least n such that
there exist L1, . . . , Ln P LpE,F q so that sorbHpL1, . . . , Lnq is transitive. Therefore

1 ď rigH ď acycH .

For technical reasons, we also define a modified rigidity of H, denoted rig` H.
The definition is the same, with the difference that if E “ F then L1 is required to
be the identity map in LpE,Eq. Of course,

rigH ď rig` H ď rigH ` 1.

We want to give a reasonably good estimate of the modified rigidity of AdA for
any fixed A P GLpd,Cq. (This will be achieved in Lemma 4.18.) We assume that
d ě 2; so rig` AdA ě 2. The next example shows that “most” matrices A have the
lowest possible rig` AdA.

Example 3.5. If A P GLpd,Cq is unconstrained (see § 2.5) then rig` AdA “ 2. Indeed
if we take a matrix B P glpd,Cq whose expression in the base that diagonalizes A has no
zeros off the diagonal then, by Lemma 2.13, ΛpA,Bq “ sorbAdA

pId, Bq is rich.
More generally, if A P GLpd,Cq is little constrained (see Appendix A) then it follows

from Proposition A.2 that rig` AdA “ 2.

Example 3.6. Consider A “ Diagp1, α, α2q where α “ e2πi{3. (In the terminology of § 2.5,
A has constraints of type 1.) Since Ad3

A is the identity, we have dim sorbAdA
pId, Bq ď 4

for any B P glp3,Cq. By the result of Azoff [Az] already mentioned at Example 2.1, the
minimum dimension of a transitive subspace of glp3,Cq is 5. This shows that rig` AdA ě 3.
(Actually, equality holds, as we will see in Example 3.10 below.)

Let T be the set of roots of unity. Define an equivalence relation — on the set
C˚ of nonzero complex numbers by:

(3.1) λ — λ1 ô λ{λ1 P T.
We also say that λ, λ1 are equivalent mod T .

For A P GLpd,Cq, we denote

(3.2) cpAq :“ number of different classes mod T of the eigenvalues of A.

We now state a technical result which has a central role in our proofs, as explained
informally in § 1.4:

Theorem 3.7. Let d ě 2 and A P GLpd,Cq. Then:

1. If cpAq “ d then rig` AdA “ 2.
2. If cpAq ă d then rig` AdA ď acycAdA ´ cpAq ` 1.

Remark 3.8. When cpAq “ d, we have acycAdA “ d (this will follow from Lemma 4.15);
so the conclusion of part 2 does not hold in this case.

Remark 3.9. The conditions of A being unconstrained and A having cpAq “ d both mean
that A in “non-degenerate”. Both of them imply small rigidity, according to Example 3.5
and part 1 of Theorem 3.7. It is important, however, not to confuse the two properties;
in fact, none implies the other.
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Example 3.10. Consider again A as in Example 3.6. The eigenvalues of AdA are 1, α,
and α2, each with multiplicity 3; so Proposition 3.3 gives acycAdA “ 3. So Theorem 3.7
tell us that rig` AdA ď 3, which is actually sharp.

The proof of part 1 of Theorem 3.7 will be given in § 3.5 after a few preliminaries
(§§ 3.3 and 3.4). These preliminaries are also used in the proof of the harder part 2,
which will be given in Section 4.

3.3. A criterion for transitivity. We will show the transitivity of certain spaces
of matrices that remotely resemble Toeplitz matrices.

Let t, s be positive integers. Let R1 be a partition of the interval r1, ts “
t1, . . . , tu into intervals, and let R2 be a partition of r1, ss into intervals. Let R
be the product partition. We will be interested in matrices of the following special
form:

(3.3) M “ pmi,jq 1ďiďt
1ďjďs

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚ 0 0

0 MR 0

0 0 ˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where R is an element of the product partitionR, andMR is the submatrix pmi,jqpi,jqPR.
Let Λ be a vector space of t ˆ s matrices. For each R P R, say of size k ˆ ℓ, we

define the following space of matrices:

(3.4) ΛrRs “
 

N P MatkˆℓpCq ; D M P Λ of the form (3.3) with MR “ N
(

.

We regard Λ as a subspace of LpCt,Csq. If the rectangle R is rp, p` ks ˆ rq, q ` ℓs,
we regard the space ΛrRs as a subspace of

L
`

t0up´1 ˆ Ck ˆ t0ut´p´k, t0uq´1 ˆ Cℓ ˆ t0us´q´ℓ
˘

.

Lemma 3.11. Assume that ΛrRs is transitive for each R P R. Then Λ is transitive.

An interesting feature of the lemma which will be useful later is that it can be
applied recursively. Before giving the proof of the lemma, we illustrate its usefulness
by showing the transitivity of generalized Toeplitz spaces:

Proof of Example 2.2. Consider the partition of r1, ds2 into 1 ˆ 1 “rectangles”. If
Λ is a generalized Toeplitz space then ΛrRs “ Mat1ˆ1pCq “ C for each rectangle R.
These are transitive spaces, so Lemma 3.11 implies that Λ is transitive. �

Before proving Lemma 3.11, notice the following dual characterization of tran-
sitivity, whose proof is immediate:

Lemma 3.12. A subspace Λ Ă LpCt,Csq is transitive iff for any non-zero vector
u P Ct and any non-zero linear functional φ P pCsq˚ there exists M P Λ such that
φpM ¨ uq ‰ 0.

Proof of Lemma 3.11. Take any non-zero vector u “ pu1, . . . , utq in Ct and a non-
zero functional φpv1, . . . , vsq “ řs

j“1 φjvj in pCsq˚. By Lemma 3.12, we need to

show that there exists M “ pxijq P Λ such that

(3.5) φpM ¨ uq “
t
ÿ

i“1

s
ÿ

j“1

φjxijui

is non-zero.
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Let i0 be the least index such that ui ‰ 0, and let j0 be the greatest index such
that φj ‰ 0. Let R be the element of R that contains pi0, j0q. Notice that if M
is of the form (3.3) then the pi, jq-entries of M that are above left (resp. below
right) of R do not contribute to the sum (3.5), because φi (resp. uj) vanishes. That

is, φpM ¨ uq depends only on MR and is given by
ř

pi,jqPR φjxijui; Since ΛrRs is

transitive, by Lemma 3.12 there is a choice of a matrix M P Λ of the form (3.3) so
that φpM ¨ uq ‰ 0. So we are done. �

3.4. Preorder in the complex plane. We consider the set C˚{T of equivalence
classes of the relation (3.1). Since T is the torsion subgroup of C˚, the quotient
C˚{T is an abelian torsion-free group. Therefore it admits a multiplication-invariant
total order ď, by a result of Levi [Le].11

Let rzs P C˚{T denote the equivalence class of z P C˚. Let us extend the
notation, writing z ď z1 if rzs ď rz1s. Then ď becomes a multiplication-invariant
total preorder on C˚ that induces the equivalence relation —. In other words, for
all z, z1, z2 P C˚ we have:

‚ z ď z1 or z1
ď z;

‚ z ď z1 and z1
ď z ðñ z — z1;

‚ z ď z1 and z1
ď z2 ùñ z ď z2;

‚ z ď z1 ùñ zz2
ď z1z2.

It follows that:

‚ z ď z1 ùñ pz1q´1
ď z´1.

We write z ă z1 when z ď z1 and z ffi z1.

3.5. Proof of the easy part of Theorem 3.7.

Proof of part 1 of Theorem 3.7. If cpAq “ d then in particular all eigenvalues are
different and so the matrix A is diagonalizable. So with a change of basis we can
assume that A “ Diagpλ1, . . . , λdq. We can also assume that the eigenvalues are
increasing with respect to the preorder introduced in § 3.4:

λ1 ă λ2 ă ¨ ¨ ¨ ă λd .

Fix any matrixB with only nonzero entries, and consider the space Λ “ sorbAdA
X,

which is described by (2.6). We will use Lemma 3.11 to show that Λ is transitive.
Let R be the partition of r1, ds2 into 1ˆ1 rectangles. Given a cell R “ tpi0, j0qu P R
and a coefficient t P C, there exists a polynomial f such that fpλiλ´1

j q equals t if

λiλ
´1
j “ λi0λ

´1
j0

and equals 0 otherwise. Because the eigenvalues are ordered,

M “ fpAdAq ¨ B is a matrix in Λ of the form (3.3). Also, MR “ ptq. So ΛrRs “ C,
which is transitive. This shows that rig AdA “ 1, and rig` AdA ď 2. Thus, as
d ě 2, we have rig` AdA “ 2. �

4. Proof of the hard part of the rigidity estimate

This section is wholly devoted to prove part 2 of Theorem 3.7. In the course of the
proof we need to introduce some terminology and to establish several intermediate
results. None of these are used in the rest of the paper, apart form a simple
consequence, which is Remark 4.16.

11Let us give a direct proof of the existence of an invariant order on C˚{T . There is an
isomorphism between R ‘ pR{Qq and C˚{T , namely px, yq ÞÑ exppx ` 2πiyq. So it suffices to find
an invariant order in R{Q (and then take the lexicographic order). Take a Hamel basis B of the

Q-vector space R so that 1 P B. Then R{Q is a direct sum of abelian groups
À

xPB, x‰1 xQ. Order

each xQ in the usual way, take any total order on B, and consider the induced lexicographic order
on R{Q.
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4.1. The normal form. Let A P GLpd,Cq. In order to describe the estimate on
rig` AdA, we need to put A in a certain normal form, which we now explain.

We fix a preorder ď on C˚ as in § 3.4.
Let λ1, . . . , λr be the eigenvalues of A, listed without repetitions, and with

respective multiplicities s1, . . . , sr. Assume they are ordered:

(4.1) λ1 ď ¨ ¨ ¨ ď λr .

Reindex the sequence of eigenvalues λ1, . . . , λr as

λ1,1 — λ1,2 — ¨ ¨ ¨ — λ1,r1 ă λ2,1 — λ2,2 — ¨ ¨ ¨ — λ2,r2 ă ¨ ¨ ¨
Write each eigenvalue in polar coordinates:

λi,j “ ri exppθi,j
?

´1q, where ri ą 0 and 0 ď θi,j ă 2π.

Reorder the eigenvalues so that, for each i,

θi,1 ă θi,2 ă ¨ ¨ ¨ ă θi,ri .

With a change of basis, we can assume that A has modified Jordan form:

(4.2) A “

¨

˚

˝

A1

. . .

Ar

˛

‹

‚
, Ak “

¨

˚

˝

λkDtk,1

. . .

λkDtk,τk

˛

‹

‚
,

where tk,1 ` ¨ ¨ ¨ ` tk,τk “ sk and Dt is the following tˆ t Jordan block:

(4.3) Dt “

¨

˚

˚

˝

1 1

1

1

˛

‹

‹

‚

.

The matrix A will be fixed from now on.

4.2. Geography. This subsection contains several definitions which will be fun-
damental in all arguments until the end of the section. We will define certain
subregions of the set t1, . . . , du2 of matrix entry positions, which depend on the
normal form of the matrix A. Later we will see they are related to AdA-invariant
subspaces. We will use “geographical” terms for those regions: islands, cities, and
districts. The regions will have some numerical attributes (banner, area, popula-
tion); these attributes may seem mysterious initially, but later we will relate them
with numerical invariants of AdA (eigenvalues, multiplicities, geometric multiplic-
ities). We also introduce other attributes of the regions (northern and southern
cities, latitude of a district) which will be useful later in the proofs of our rigidity
estimates.

Recall A is a matrix in normal form as explained in § 4.1. Define three partitions
Pi, Pc, Pd of the set r1, ds “ t1, . . . , du into intervals:

‚ The partition Pi corresponds to equivalence classes of eigenvalues under the
relation —: the right endpoints of its atoms are the numbers s1 ` ¨ ¨ ¨ ` sk
where k “ r or k is such that λk ă λk`1.

‚ The partition Pc corresponds to eigenvalues: the right endpoints of its atoms
are the numbers s1 ` ¨ ¨ ¨ ` sk, where 1 ď k ď r. So Pc refines Pi.

‚ The partition Pd corresponds to Jordan blocks: the right endpoints of its
atoms are the numbers s1 ` ¨ ¨ ¨ ` sk´1 ` tk,1 ` ¨ ¨ ¨ ` tk,ℓ, where 1 ď k ď r

and 1 ď ℓ ď τk. So Pd refines Pc.
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For ˚ “ i, c, d, let P2
˚ be the partition of the square r1, ds2 into rectangles that are

products of atoms of P˚. The elements of P2
i are called islands, the elements of P2

c

are called cities, and elements of P2
d are called districts. Thus the world W “ r1, ds2

is a disjoint union of islands, each of them is a disjoint union of cities, each of them
is a disjoint union of districts.

Example 4.1. Suppose d “ 17, A has r “ 5 eigenvalues

λ1 “ exp 1
2
πi, λ2 “ exp 7

6
πi, λ3 “ exp 11

6
πi, λ4 “ 2 exp 1

6
πi, λ5 “ 2 exp 5

6
πi

with respective Jordan blocks of sizes 4, 2, 1; 3, 2; 2; 2, 1. Then there are 4 islands, 25
cities, and 64 districts. See Fig. 1.

pop. 3

lat. 0

pop. 2

lat. 1

pop. 2

lat. ´1

pop. 2

lat. 0

pop. 1

lat. ´2

pop. 1

lat. ´1

15 ‚a

9 ‚a

2 ‚a

11 ‚b

4 ‚b

5 ‚b

S

5 ‚c

11 ‚c

S

4 ‚c

S

2 ‚a

1 ‚a1 ‚c S

1 ‚b

5 òa

S

3 òb

4 òc

S

2 òa

S

2 òb

S

1 òc

S

5 óa

3 óc S

4 ób

2 óa

2 óc

1 ób

Figure 1. The geography corresponding to Example 4.1. Thick (resp., thin,

dashed) lines represent island (resp., city, district) borders. Population and
latitude of each district inside a selected city are indicated. The population
of each city is recorded in its upper left corner, along with a symbolic repre-
sentation of its banner. There are three banner classes (‚ “ r1s, ó “ r2s and
ò “ r1{2s), each of them with 3 different banners. Southern cities are marked
with S.

For each city (or district) we define its row eigenvalue and its column eigenvalue
in the obvious way: If a city C equals Ik ˆ Iℓ where Ik and Iℓ are intervals with
right endpoints s1 ` ¨ ¨ ¨ ` sk and s1 ` ¨ ¨ ¨ ` sℓ, respectively, then the row eigenvalue
of C is λk and the column eigenvalue of C is λℓ. The row and column eigenvalues of
a district D are defined respectively as the row and column eigenvalues of the city
that contains D.

Let C be a city with row eigenvalue λi,j and column eigenvalue λk,ℓ. The banner

of C is defined by λ´1
k,ℓλi,j . The argument of the city is the quantity θk,ℓ ´ θi,j P

p´2π, 2πq. (It coincides, modulo 2π, with the argument of the banner.) The city is
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called southern within its island if it has strictly negative argument, and northern
within its island otherwise.

Each district D has an address of the type “ith row, jth column, city C”; then
the latitude of the district D within the city C is defined as j ´ i. See an example in
Fig. 1.

If two cities lie in the same island then their banners are equivalent mod T . Thus
every island has a well-defined banner class in C˚{T .

If a district, city, or island intersects the diagonal tp1, 1q, . . . , pd, dqu then we call
it equatorial. Equatorial regions are always square. Thus every equatorial city has
banner 1 and every city with banner 1 lies on a equatorial island.

The area of a district, city, island or world is defined as the product of its sides.
The population of a district is defined as the minimum of its sides. Populations of
cities, islands and world are defined as the sum of the areas and populations of the
corresponding districts.

Let us notice some facts on the location of the banners (which will be useful to
apply Lemma 3.11):

Lemma 4.2. Let C be a city in an island I. Consider the divisions of the world W

and the island I as in Fig. 2.

W

I

ˆ
I

ˆ

`

C

`

Figure 2. The divisions of W and I in Lemma 4.2.

Let β be the banner of the city C, and let rβs be the banner class of the island I.
Then:

1. All the islands with banner class rβs are inside the regions marked with ˆ.
2. If the city C is northern (resp. southern) within I then the all the northern

(resp. southern) cities with same banner β are inside the regions marked
with `.

Proof. In view of the ordering of the eigenvalues (4.1), the banner class increases
strictly (with respect to the order ă, of course) when we move rightwards or upwards
to another island. So Claim (1) follows.

The argument of a city takes values in the interval p´2π, 2πq. It increases strictly
by moving rightwards or upwards inside I. If two cities in the same island are both
northern or both southern then they have the same banner if and only if they have
the same argument. So Claim (2) follows. �

4.3. The adjoint in geographical terms. Given any d ˆ d matrix X “ pxi,jq
and a district, city or island R “ rp, p ` ts ˆ rq, q ` ss we define the submatrix
of X corresponding to R as pxi,jqpi,jqPR. We regard the space of R-submatrices as

L
`

t0up´1 ˆ Ct ˆ t0ud´p´t, t0uq´1 ˆ Cs ˆ t0ud´q´s
˘

, or as the set of dˆ d matrices
whose entries outside R are all zero. Such spaces are denoted by R˝, and are invariant
under AdA. Indeed, if R “ D is a district then identifying D

˝ with MattˆspCq, the
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action of AdA|D˝ is given by

X ÞÑ λkλ
´1
ℓ DtXD

´1
s ,

where λkλ
´1
ℓ is the banner of D, and Dt, Ds are Jordan blocks defined by (4.3).

If R is an equatorial district, city, or island we will refer to the dˆd-matrix in R
˝

whose R-submatrix is the identity as the identity on R
˝. The following observation

will be useful:

Lemma 4.3. If D is an equatorial district then the identity on D
˝ is a eigenvalue

of the operator AdA|D˝ corresponding to a Jordan block of size 1 ˆ 1.

Proof. Suppose D has size t ˆ t. Assume that the claim is false. This means that
there exists a matrix X P MattˆtpCq such that DtXD

´1
t “ X ` Id, which is

impossible because X and X ` Id have different spectra. �

We are going to prove the following:

Lemma 4.4. For each district D, the only eigenvalue of AdA|D˝ is the banner of
the city that contains D. Moreover, the geometric multiplicity of the eigenvalue is
the population of the district.

The following facts are immediate consequences:

‚ The eigenvalues of AdA are the banners of cities.
‚ The multiplicity of the eigenvalue β for the operator AdA is the total area
of cities of banner β.

‚ The geometric multiplicity of the eigenvalue β for AdA is the total population
of cities of banner β.

Lemma 4.4 is equivalent to the following:

Lemma 4.5. Let Ut,s be the linear operator on MattˆspCq given by

Ut,spXq “ DtXD
´1
s ,

where Dt, Ds are Jordan blocks defined by (4.3). Then the only eigenvalue of Ut,s

is 1, and its geometric multiplicity is minpt, sq.
The rest of this subsection is devoted to prove Lemma 4.5. To begin, notice that:

(4.4) D´1
s “

¨

˚

˚

˚

˚

˚

˚

˝

1 ´1 1 ¨ ¨ ¨ p´1qs´1

...

1

´1

1

˛

‹

‹

‹

‹

‹

‹

‚

.

To describe Ut,s, it suffices to describe its action on the matrices Ei,j whose
unique nonzero entry is a 1 in the pi, jq position. Using (4.4), we obtain

Ut,spEi,jq “
s
ÿ

p“j

p´1qk´jpEi,p ` Ei´1,pq ,

or, visually:

Ut,s

¨

˚

˚

˚

˚

˚

˚

˚

˝

1

˛

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 ´1 1 ¨ ¨ ¨ ˘1
1 ´1 1 ¨ ¨ ¨ ˘1

˛

‹

‹

‹

‹

‹

‹

‹

‚

.
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The picture above suggests a way of “embedding” all the maps Ut,s into a single
infinite-dimensional model. More precisely, consider the space M of infinite ma-
trices of the form X “ pxk,ℓqk,ℓď0, where k, ℓ are non-positive integers, that have
only finitely many non-zero entries. For each pair of positive integers t, s, define a
monomorphism ιt,s : MattˆspCq Ñ M by

pbi,jqi,j ÞÑ pxk,ℓqk,ℓ where xk,ℓ “
#

bt`k,s`ℓ if k ą ´t and ℓ ą ´s,
0 otherwise

Define a linear operator U : M Ñ M by

pxk,ℓqk,ℓ ÞÑ pyk,ℓqk,ℓ where yk,ℓ “
ℓ
ÿ

q“´8

p´1qℓ´qpxk,q ` xk´1,qq ,

Then the following diagram commutes:

MattˆspCq ιt,s
//

Ut,s

��

M

U

��

MattˆspCq ιt,s
// M

Let us prove a few facts about the operator U . It is convenient to consider also
N “ U ´ id.

If X “ pxk,ℓq P M and n “ 1, 2, . . . , then we define the nth diagonal of X as the
n-tuple px0,´pn´1q, x´1,´pn´2q, . . . , x´pn´1q,0q. Define the height hpXq of X as 0 if

X “ 0, otherwise hpXq is the maximal n such that X has a nonzero nth diagonal.
It is clear that

(4.5) hpNpXqq ă hpXq if X ‰ 0.

It follows that the operator N is nilpotent, in the sense that every orbit eventually
hits zero.

Lemma 4.6. Let X “ pxk,ℓq P M and let Z “ pzk,ℓq “ NpXq. If hpXq ď n then
the nth diagonal of X can be determined from its first element and the pn ´ 1qth
diagonal of Z by the formula

x´p,´pn´1´pq “ x0,´pn´1q `
p´1
ÿ

q“0

z´q,´pn´2´qq , pp “ 0, 1, . . . , n´ 1q.

Proof. It suffices to see that, for each q “ 0, 1, . . . , n´ 2,

z´q,´pn´2´qq “ x´pq`1q,´pn´2´qq ´ x´q,´pn´1´qq . �

For each t “ 1, 2, . . . , let It P M denote the image under ιt,t of the tˆ t identity
matrix. A linear combination of matrices of this type is a matrix with constant
diagonals and so will be called a Toeplitz matrix.

Lemma 4.7. UpXq “ X if and only if X is a Toeplitz matrix.

Proof. Since the tˆ t identity is fixed by the Ut,t, we conclude that It is fixed by U ,
proving the “if” part.

To see the converse, take X “ pxk,ℓq in the kernel of N . Let n “ hpXq be height
of X. By Lemma 4.6, the nth diagonal of X is constant, say pc, c, . . . , cq. Thus
X ´ cIn has height at most n ´ 1, and belongs to the kernel of N . It follows by
induction in n that X is a Toeplitz matrix. �
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Proof of Lemma 4.5. Since U ´ id is nilpotent, so is Ut,s ´ id, which means that
the only eigenvalue of Ut,s is 1.

The matrices I1, I2, . . . , Iminpt,sq belong to the image of ιt,s; therefore their
inverse images are eigenvectors of Ut,s. The space V spanned by these eigenvectors
is exactly

 

M P MattˆspCq; ιt,spMq is a Toeplitz matrix
(

.

By Lemma 4.7, V is also the space of the eigenvectors of Ut,s. This proves that the
geometric multiplicity of Ut,s is minpt, sq. �

Remark 4.8. It is natural to ask what are the sizes of the Jordan blocks corresponding to
the eigenvectors exhibited in the proof of Lemma 4.4. We don’t know the answer, except
for the last eigenvector ι´1

t,s pIminpt,sqq, which corresponds to a 1 ˆ 1 Jordan block. This
fact, which generalizes Lemma 4.3, can be easily shown using Lemma 4.6.

4.4. Rigidity estimates for districts and cities.

Lemma 4.9. For any district D, we have rig`pAdA|D˝q ď pop D.

Proof. By Lemma 4.4 (and Proposition 3.3), AdA|D˝ has acyclicity n “ pop D, that
is, there are matrices X1, . . . , Xn P D

˝ such that sorbAdA
pX1, . . . , Xnq is the whole

D
˝ (and, in particular, is transitive in D

˝). So rigpAdA|D˝q ď n, which proves the
lemma for non-equatorial districts.

If D is an equatorial district then, by Lemma 4.3, D˝ splits invariantly into two
subspaces, one of them spanned by the the identity matrix on D

˝. So we can choose
the matrices Xi above so that X1 is the identity. This shows that rig`pAdA|D˝q ď
n. �

In all that follows, we adopt the convention max∅ “ 0.

Lemma 4.10. For any city C,

rig`pAdA|C˝q ď
ÿ

ℓ latitude

max
D is a district of C
with latitude ℓ

rig`pAdA|D˝q .

Proof. For each district D in C, let rpDq “ rig`pAdA|D˝q. Take matrices XD,1, . . . ,

XD,rpDq such that ΛD :“ sorbAdA

`

XD,1, . . . , XD,rpDq

˘

is a transitive subspace of D˝,
and XD,1 is the identity matrix in D

˝ if D is an equatorial district. Define XD,j “ 0
for j ą rpDq. For each latitude ℓ, let nℓ be the maximum of rpDq over the districts
D of C with latitude ℓ, and let

Yℓ,j “
ÿ

D is a district of C
with latitude ℓ

XD,j , for 1 ď j ď nℓ.

Notice that if C is an equatorial city then Y0,1 is the identity matrix in C
˝. Consider

the space

∆ “ sorbAdA

 

Yℓ,j ; ℓ is a latitude, 1 ď j ď nℓ

(

.

We claim that for every district D in C and for every M P ΛD, we can find some
N P ∆ with the following properties:

‚ the submatrix ND equals M ;
‚ for every district D1 in D that has a different latitude than D, the submatrix
ND1 vanishes.

Indeed, if M “ řrpDq
j“1 fjpAdAqXD,j for certain polynomials fj , we simply take N “

řrpDq
j“1 fjpAdAqYℓ,j , where ℓ is the latitude of D.

In notation (3.4), the claim we have just proved means that ∆rDs Ą ΛD. So we can
apply Lemma 3.11 and conclude that ∆ is a transitive subspace of C˝. Therefore
rig`pAdA|C˝q ď ř

nℓ, as we wanted to show. �
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Example 4.11. Using Lemmas 4.9 and 4.10, we see that the city C whose district popu-
lations are indicated in Fig. 1 has rig`pAdA|C˝q ď 5.

In fact, we will not use Lemmas 4.9 and 4.10 directly, but only the following
immediate consequence:

Lemma 4.12. For every city C we have rig`pAdA|C˝q ď pop C. The inequality is
strict if has more than one row of districts and more that one column of districts.

4.5. Comparative demographics. If R is a district, city or island, we define its
row projection πrpRq as the unique equatorial district, city or island (respectively)
that is in the same row as R. Analogously, we define the column projection πcpRq.

Lemma 4.13. For any city C, we have

pop C ď popπrpCq ` popπcpCq
2

.

Moreover, equality implies that the number of rows of districts for C equals the
number of columns of districts.

This is a clear consequence of the abstract lemma below, taking xα, α P F0

(resp. α P F1) as the sequence of heights (resp. widths) of districts in C, counting
repetitions.

Lemma 4.14. Let F be a nonempty finite set, and let xα be positive numbers
indexed by α P F . Take any partition F “ F0 \ F1. For ǫ, δ P t0, 1u, let

Σǫδ “
ÿ

pα,βqPFǫˆFδ

minpxα, xβq .

Then

Σ01 “ Σ10 ď Σ00 ` Σ11

2
.

Moreover, equality implies that F0 and F1 have the same cardinality.

Proof. We will in fact prove the stronger fact:

(4.6) Σ00 ´ 2Σ01 ` Σ11 ě
`

|F0| ´ |F1|
˘2

min
αPF

xα ,

where |¨| denotes set cardinality. The proof is by induction on |F |. It clearly holds
for |F | “ 1. Fix some n and assume that (4.6) always holds when |F | “ n. Take a
set F with |F | “ n` 1, and take positive numbers xα, α P F . We can assume that
F “ t1, . . . , n ` 1u and that x1 ě ¨ ¨ ¨ ě xn`1. Take any partition F “ F0 \ F1.
Without loss of generality, assume that n`1 P F0. Apply the induction hypothesis
to F 1 “ t1, . . . , nu, obtaining

Σ1
00 ´ 2Σ1

01 ` Σ1
11 ě

`

|F0| ´ 1 ´ |F1|q2xn.

We have

Σ00 “ Σ1
00 `

`

2|F0| ´ 1
˘

xn`1 , Σ01 “ Σ1
01 ` |F1|xn`1 , and Σ11 “ Σ1

11 ,

so (4.6) follows. �

If R is an island or the world, let pop1 R denote the banner 1 population on R,
that is, the sum of the populations of the cities in R with banner 1.

Let us give the following useful consequence of Lemma 4.13:

Lemma 4.15. acycAdA “ pop1 W.
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Proof. By Proposition 3.3, acycAdA is the maximum of the geometric multiplicities
of the eigenvalues of AdA. Those eigenvalues are the banners β, and the geometric
multiplicity of each β is the worldwide total population with banner β. Thus, to
prove the lemma we have to show that banner 1 has biggest worldwide population.

Let β be a banner. Then, using Lemma 4.13,
ÿ

C is a city

with banner β

pop C ď 1

2

ÿ

C is a city

with banner β

popπrpCq ` 1

2

ÿ

C is a city

with banner β

popπcpCq .

Since no two cities in the same row (resp. column) can have the same banner, the
restriction of πr (resp. πc) to the set of cities with banner β is a one-to-one map.
This allows us to conclude. �

Remark 4.16. The Jordan type of a matrix A P MatdˆdpCq consists on the following
data:

1. The number of different eigenvalues.
2. For each eigenvalue, the number of Jordan blocks and their sizes.

It follows from Lemma 4.15 that these data is sufficient to determine acycAdA. (Of course,
one can easily write down a formula; see e.g. [Ga, p. 222] or [Ar, p. 241].)

4.6. Rigidity estimate for islands.

Lemma 4.17. For any island I,

rig`pAdA|I˝q ď pop1 πrpIq ` pop1 πcpIq
2

.

In order to prove this lemma, it is convenient to consider separately the cases of
non-equatorial and equatorial islands.

Proof of Lemma 4.17 when I is non-equatorial. For each banner β in I, let nβ (resp.
sβ) be the maximum of rig`pAdA|C˝q over the northern (resp. southern) cities C

in I with banner β. For each city C with banner β, choose matrices XC,1, . . . ,
XC,nβ`sβ P C

˝ such that:

‚ ΛC :“ sorbAdA
pXC,1, . . . , XC,mq is a transitive subspace of C˝;

‚ if C is southern then X1 “ X2 “ ¨ ¨ ¨ “ Xnβ
“ 0;

‚ if C is northern then Xnβ`1 “ ¨ ¨ ¨ “ Xnβ`sβ “ 0.

Also, let XC,j “ 0 for j ą nβ ` sβ .
Next, define

(4.7) Yβ,j “
ÿ

C is a city

of I with banner β

XC,j

and

(4.8) Zj “
ÿ

β banner on I

Yβ,j

Consider the space

∆ “ sorbAdA
pZ1, . . . , Zmq, where m “ max

β banner on I
pnβ ` sβq

It follows from Lemma 3.2 that

∆ “ sorbAdA

 

Yβ,j ; β is a banner, 1 ď j ď nβ ` sβ
(

.

Recall notation (3.4). We claim that

(4.9) ΛC Ă ∆rCs.

Indeed, given M P ΛC, write M “ ř

j fjpAdAqXC,j , where the fj ’s are polynomi-

als and fj ” 0 whenever XC,j “ 0. Consider N “ ř

j fjpAdAqYβ,j , where β is
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the banner of C. Then it follows from Lemma 4.2 (part 2) that N P ∆rCs. This
shows (4.9). So, by Lemma 3.11, ∆ is a transitive subspace of I˝, showing that
rig`pAdA|I˝q ď m.

To complete the proof of the lemma in the non-equatorial case, we will show
that

(4.10) m ď pop1 πrpIq ` pop1 πcpIq
2

.

Let β be the banner for which nβ ` sβ attains the maximum m. If nβ ą 0, let
CN be a northern city within I with banner β and rig`pAdA|C˝

N q “ nβ . If sβ ą 0,
let CS be a southern city within I with banner β and rig`pAdA|C˝

Sq “ sβ . Assume
for the moment that both cities exist. Let C1, C2, C3, C4 be projected equatorial
cities as in Fig. 3.

W

I1

I2

I

C1

C2

C3

C4

CS

CN

Figure 3. C1 “ πrpCN q, C2 “ πrpCSq, C3 “ πcpCSq, C4 “ πcpCN q.

Then

m “ rig`pAdA|CN q ` rig`pAdA|CSq
(i)
ď pop CN ` pop CS

(ii)
ď 1

2

`

pop C1 ` ¨ ¨ ¨ ` pop C4
˘

ď 1
2

`

pop1 I1 ` pop1 I2
˘

,

where (i) and (ii) follow respectively from Lemmas 4.12 and 4.13. This proves (4.10)
in this case. If there is no southern city or no northern city within I with banner 1
then the proof of (4.10) is easier.

So the lemma is proved for non-equatorial I. �

We now consider equatorial islands. There is an exceptional kind of island for
which the proof of the rigidity estimate has to follow a different strategy. An island
is called exotic if it has only the banners 1 and ´1 (so it is equatorial and has 4
cities), each city has a single district, and all districts have the same population.

Proof of Lemma 4.17 when I is equatorial non-exotic. As in the previous case, let
nβ (resp. sβ) be the maximum of rig`pAdA|C˝q over the northern (resp. southern)
cities C in I with banner β.

We claim that

(4.11) nβ ` sβ ă pop1 I for all banners β ‰ 1 in I.

Let us postpone the proof of this inequality and see how to conclude.
Let M “ pop1 I. In view of Lemma 4.12 and relation (4.11), for each island C

we can take matrices XC,1, . . . , XC,M P C
˝ such that:
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‚ ΛC :“ sorbAdA
pXC,1, . . . , XC,M q is a transitive subspace of C˝;

‚ XC,M “ 0 if C is non-equatorial;
‚ XC,M is the identity in C

˝ if C is equatorial.

Then define matrices Zj as before: by (4.7) and (4.8). Here we have that ZM is
the identity matrix in I

˝. As before, sorbAdA
pZ1, . . . , ZM q is a transitive subspace

of I˝. Hence rig`pAdA|I˝q ď M “ pop1 I, as desired.

Now let us prove (4.11). Consider a banner β ‰ 1 in I. Let CN (resp. CS) be a
northern (resp. southern) city within I with banner β and of maximal population;
assume for the moment that both cities exist. Let C1, C2, C3, C4 be projected
equatorial cities as in Fig. 4.

I

C1

C2

C3

C4

CN

CS

Figure 4. C1 “ πcpCSq, C2 “ πrpCN q, C3 “ πcpCN q, C4 “ πrpCSq. It is
possible that C1 “ C2 or C3 “ C4.

Then

nβ ` sβ “ rig`pAdA|CN q ` rig`pAdA|CSq
ď pop CN ` pop CS(4.12)

ď 1
2

`

pop C1 ` ¨ ¨ ¨ ` pop C4
˘

(4.13)

ď pop1 I.(4.14)

Inequality (4.12) follows from Lemma 4.12, inequality (4.13) follows from Lemma 4.13,
and inequality (4.14) holds because the cities C1, . . . , C4 are equatorial, and any
city can appear at most twice in this list. So

(4.15) nβ ` sβ ď pop1 I.

In the case that there is no northern city or no southern city with banner β (i.e.,
nβ or sβ vanishes), a simpler argument shows that strict inequality holds in (4.15).

Now assume by contradiction that (4.11) does not hold. Then we must have
equality in (4.15). By what we just saw, both cities CN and CS above exist. Then
the inequalities in (4.12)–(4.14) become equalities. Since (4.14) is an equality, there
must be exactly two equatorial cities in I. So the non-equatorial banner β satisfies
β´1 “ β, that is, β “ ´1. Since (4.13) is an equality, it follows from Lemma 4.13
that both non-equatorial cities are district-square. So there is some ℓ such that all
four cities in I have ℓ rows of districts and ℓ columns of districts. Since (4.12) is an
equality, Lemma 4.12 implies that ℓ “ 1. That is, I is a exotic island, a situation
which we excluded a priori. This contradiction proves (4.11) and Lemma 4.17 in
the present case. �

We now come to exotic islands. In all the previous cases, the transitive subspace
we found had some vaguely Toeplitz form. For exotic islands, however, this strategy
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is not efficient.12 What we are going to do is to find a transitive space of vaguely
Hankel form, namely the following:

(4.16) Λk “
"ˆ

P M

M N

˙

; M , N , P are k ˆ k matrices

*

.

Notice that Λk “ Sk ¨ Γk, where

Sk “
ˆ

0 Id
Id 0

˙

and Γk “
"ˆ

M N

P M

˙

; M , N , P are k ˆ k matrices

*

.

Since Γk is a generalized Toeplitz space, it follows from Remark 2.3 that Λk is
transitive.

Proof of Lemma 4.17 when I is exotic. If I is exotic then it has size 2k ˆ 2k for
some k, and the operator AdA|I˝ is given by X ÞÑ AdLpXq, where

L “
ˆ

D 0
0 ´D

˙

, and D “ Dk is the Jordan block (4.3).

Let V be unique AdD-invariant subspace of MatkˆkpCq that has codimension 1 and
does not contain the identity matrix (which exists by Lemma 4.3). Take matrices
X1, . . . , Xk P MatkˆkpCq such that X1 “ Id and V “ sorbAdD

pX2, . . . , Xkq. Define
Y1, . . . , Yk P Mat2kˆ2kpCq by

Y1 “
ˆ

Id 0
0 Id

˙

, Yj “
ˆ

Xj 0
0 0

˙

for 2 ď j ď k,

Then

sorbAdL
pY1, . . . , Ykq “

"ˆ

xId `K 0
0 xId

˙

; x P C, K P V
*

.

For j “ k ` 1, . . . , 2k, define

Yj “
ˆ

0 Xj´k

Xj´k Xj´k

˙

.

Then, by Lemma 3.2,

sorbAdL
pYk`1, . . . , Y2kq “

"ˆ

0 M

M N

˙

; M, N P MatkˆkpCq
*

.

Therefore sorbAdL
pY1, . . . , Y2kq is the transitive space given by (4.16). Since Y1 is

the identity on I, this shows that rig`pAdA|I˝q ď 2k “ pop1 I, concluding the
proof of Lemma 4.17. �

4.7. The final rigidity estimate. Let c “ cpAq be the number of equivalence
classes mod T of eigenvalues of A.

Lemma 4.18. If c ă d then

rig` AdA ď pop1 W ´ c` 1 .

Proof. Let m “ pop1 W ´ c` 1. For each island I, let

rpIq “
X

1
2 ppop1 πrpIq ` pop1 πcpIqq

\

.

We claim that

(4.17) rpIq ď
#

m if I is an equatorial island,

m´ 1 if I is a non-equatorial island.

Let us postpone the proof of this and see how to conclude the lemma.
In view of Lemma 4.17 and relation (4.17), for each island I we can take matrices

XI,1, . . . , XI,m P I
˝ such that:

12For those who have read Appendix A, notice that the simplest exotic island appears when
A has a type 3 constraint; we have dealt with them in the proof of Proposition A.2.
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‚ ΛI :“ sorbAdA
pXI,1, . . . , XI,mq is a transitive subspace of I˝;

‚ XI,m “ 0 if I is non-equatorial;
‚ XI,m is the identity in I

˝ if I is equatorial.

Define matrices:

Yα,j “
ÿ

I is an island

with banner class α

XI,j pα is a banner class, 1 ď j ď mq,

Zj “
ÿ

α is a banner class

Yα,j p1 ď j ď mq.

So Zm is the dˆ d identity matrix. Consider the space

∆ “ sorbAdA
pZ1, . . . , Zmq.

It follows from Lemma 3.2 that

∆ “ sorbAdA

 

Yα,j ; α is a banner class, 1 ď j ď m
(

.

We claim that every island I,

(4.18) ΛI Ă ∆rIs.

Indeed, if M P I then we can write M “ ř

j fjpAdAqXI,j , where the fj ’s are

polynomials. Consider N “ ř

j fjpAdAqYα,j , where α is the banner class of I. It

follows Lemma 4.2 (part 1) that N P ∆rIs. This proves (4.18). So, by Lemma 3.11,
∆ is a transitive subspace of MatdˆdpCq, showing that rig` AdA ď m.

To conclude the proof we have to show estimate (4.17). First consider a equato-
rial island I. Since there are c equatorial islands, and each of them has a positive
banner 1 population, we conclude that rpIq ď m, as claimed.

Now take a non-equatorial I. Applying what we just proved for the equatorial
islands πrpIq and πcpIq, we conclude that rpIq ď m. Now assume that (4.17) does
not hold for I, that is, rpIq “ m. Then

pop1 πrpIq “ pop1 πcpIq “ m “ pop1 W ´ c` 1.

Since pop1 W ě pop1 πrpIq`pop1 πcpIq`c´2, we have m “ 1 and pop1 W “ c. This
means that pop1 Ĩ “ 1 for all equatorial islands Ĩ, which is only possible if c “ d.
However, this case was excluded by hypothesis.

This proves (4.17) and hence Lemma 4.18. �

Example 4.19. If A is the matrix of Example 4.1 then Lemma 4.18 gives the estimate
rig` AdA ď 28. A more careful analysis (going through the proofs of the lemmas) would
give rig` AdA ď 7 (see Example 4.11).

Proof of part 2 of Theorem 3.7. Apply Lemmas 4.15 and 4.18. �

5. Proof of the hard part of the codimension m theorem

We showed in Proposition 2.11 that codimP
pKq
m ď m. In this section, we will

prove the reverse inequalities. More precisely, we will first prove Theorem 1.9 and
then deduce Theorem 1.8 from it.

5.1. Preliminaries on elementary algebraic geometry.
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5.1.1. Quasiprojective varieties. An algebraic subset of Cn is also called an affine
variety. A projective variety is a subset of CPn that can be expressed as the zero set
of a family of homogeneous polynomials in n`1 variables. The Zariski topology on
an (affine or projective) variety X is the topology whose closed sets are the (affine
or projective) subvarieties of X.

An open subset U of a projective variety X is called a quasiprojective vari-
ety. We consider in U the induced Zariski topology. The affine space Cn can be
identified with a quasiprojective variety. namely its image under the embedding
pz1, . . . , znq ÞÑ p1 : z1 : ¨ ¨ ¨ : znq.

IfX and Y are quasi-projective varieties then the productXˆY can be identified
with a quasiprojective variety, namely its image under the Segre embedding; see
[Sh, § 5.1].

The following is an important and very useful property of projective varieties.
(See [Sh, p. 58] for a proof).

Proposition 5.1. If X is a projective variety and Y is a quasiprojective variety
then the projection p : X ˆ Y Ñ Y takes Zariski closed sets to Zariski closed sets.

A quasiprojective variety is called irreducible if it cannot be written as a non-
trivial union of two quasiprojective varieties (that is, none contains the other).

5.1.2. Dimension. The dimension dimX of an irreducible quasiprojective variety
X may be defined in various equivalent ways (see for instance [Ha, p. 133ff]). It will
be sufficient for us to know that there exists an (intrinsically defined) subvariety Y
of the singular points of X such that in a neighborhood of each point of XrY , the
set X is a complex submanifold of dimension (in the classical sense of differential
geometry) dimX; moreover, each irreducible component of Y has dimension strictly
less than dimX.

The dimension of a general quasiprojective variety is by definition the maximum
of the dimensions of the irreducible components.

Remark 5.2. The dimension of a quasiprojective variety U Ă CPn coincides with the
dimension of its Zariski-closure in CPn (see [Ha, p. 135]).

The following lemma is useful to estimate the codimension of an algebraic set X
from information about the fibers of a certain projection π : X Ñ Y .13

Lemma 5.3. Let Y be a quasiprojective variety. Let X Ă Y ˆCPn be a nonempty
algebraically closed set. Let π : X Ñ Y be the projection along CPn. Then:

1. For each j ě 0, the set

Cj “ ty P Y ; codimπ´1pyq ď ju
is algebraically closed in Y .

2. The dimension of X is given in terms of the dimensions of the Cj’s by:

(5.1) codimX “ min
j; Cj‰∅

`

j ` codimCj

˘

.

The lemma is a consequence of standard theorems in algebraic geometry but for
the reader’s convenience let us spell out the details.

Proof of Lemma 5.3. In what follows, all topologies are of course Zariski. We will
prove the equivalent “dual form” of the lemma, namely, that the sets

Yk “
 

y P πpXq; dimπ´1pyq ě k
(

are algebraically closed in Y , and

(5.2) dimX “ max
k; Yk‰∅

`

k ` dimYk
˘

.

13A slightly similar result is [SW, Prop. 16].
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First, the sets Xk “ tx P X; dimπ´1pπpxqq ě ku are closed. (see [Ha,
Thrm. 11.12]). So, by Proposition 5.1, Yk “ πpXkq is closed.

For each k with Xk ‰ ∅, let Xk,i indicate the irreducible components of Xk. Let

µpk, iq “ min
xPXk,i

dimπ´1pπpxqq .

Then, by [Ha, Thrm. 11.12] (and Remark 5.2),

dimXk,i “ µpk, iq ` dimπpXk,iq .
By definition, µpk, iq ě k; moreover equality holds unless Xk,i Ă Xk`1. So

Xk,i Ć Xk`1 ñ dimXk,i “ k ` dimπpXk,iq ď k ` dimYk .

Since X “ Ť

Xk,iĆXk`1
Xk,i, this proves the ď inequality in (5.2).

To prove the converse inequality, fix any k with Yk ‰ ∅. Find i such that
dimπpXk,iq “ dimYk. Then

dimX ě dimXk,i “ µpk, iq ` dimYk ě k ` dimYk.

This proves (5.2) and hence the lemma. �

Remark 5.4. Lemma 5.3 works with the same statement if CPn is replaced by Cn`1,
provided one assumes that X Ă Y ˆ Cn`1 is homogeneous in the second factor (i.e.,
py, zq P X implies py, tzq P X for every t P C). Indeed, this follows from the fact that the
projection Cn`1 r t0u Ñ CPn preserves codimension of homogeneous sets.

5.1.3. Dimension estimates for sets of vector subspaces. If M P MatnˆmpKq, let
colM Ă Kn denote the column space of M . A set X Ă MatnˆmpKq is called
column-invariant if

M P X
N P MatnˆmpKq
colM “ colN

,

.

-

ñ N P X.

So a column-invariant set X is characterized by its set of column spaces. We enlarge
the latter set by including also subspaces, thus defining:

(5.3) vXw :“
 

E subspace of Kn; E Ă colM for some M P X
(

.

In Appendix D we prove:

Theorem D.1. Let X Ă MatnˆmpCq be an algebraically closed, column-invariant
set. Suppose E is a vector subspace of Cn that does not belong to vXw. Then

codimX ě m` 1 ´ dimE .

5.1.4. The real part of an algebraic set. Let X be an algebraically closed subset of
Cn. The real part of X is defined as X XRn. This is an algebraically closed subset
of Rn. Indeed, generators of the corresponding ideal f1, . . . , fk in CrT1, . . . , Tns can
be replaced by the corresponding real and imaginary parts polynomials.

As in the complex case, there are many equivalent algebraic-geometric definitions
of dimensions of real algebraic or semialgebraic sets. We just point out that a
real algebraic or semialgebraic set admits a stratification into real manifolds such
that the maximal differential-geometric dimension of the strata coincides with the
algebraic-geometric dimension (see [BCR, p. 50]).

Proposition 5.5. If X is an algebraically closed subset of Cn then dimRpXXRnq ď
dimCX.

If V is a real (resp. complex) variety V and p P V then let rnkppV q denote the
real (resp. complex) rank of V at p, as defined by Whitney [Wh]. In that paper,
he also shows:
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‚ For any (real or complex) variety V , for any point p P V the rank rnkppV q
is greater than the codimension of V .

‚ If V is real (resp. complex) there is a point p P V such that the real (resp.
complex) rank satisfies rnkppV q “ codimRpV q (resp. rnkppV q “ codimCpV q).

‚ Given a real variety V Ă Rn, there is a unique smallest complex variety
V ˚ Ă Cn containing V (in particular, V is the real part of V ˚). Then we
have rnkppV ˚q “ rnkppV q.

Proof of Proposition 5.5. Let V be the real variety X X Rn. Let p P V such
that rnkppV q “ codimRpV q. Consider the unique smallest complex variety then
rnkppV ˚q “ rnkppV q. In particular codimRpV ˚q ě codimCpV ˚q. Since V ˚ Ă X,
the proposition follows. �

5.2. Rigidity and the dimension of the poor fibers. For simplicity of notation,

let us write Pm “ P
pCq
m . Also, for A P GLpd,Cq, write:

rpAq :“ rig` AdA ´ 1 .

We decompose the set Pm of poor data in fibers:

(5.4) Pm “
ď

APGLpd,Cq

tAu ˆ PmpAq, where PmpAq Ă glpd,Cqm .

Lemma 5.6. For any A P GLpd,Cq, the codimension of PmpAq in glpd,Cqm is at
least m` 1 ´ rpAq.

The lemma follows easily from Theorem D.1 above:

Proof. Fix A P GLpd,Cq, and write r “ rpAq. We can assume that r ď m, otherwise
there is nothing to prove. By definition, there exists a r-dimensional subspace

E Ă glpd,Cqm such that sorbAdA
pId _ Eq is transitive. Identify glpd,Cq with Cd2

and thus regard PmpAq as a subset of Matd2ˆmpCq. Since the set Pm is algebraically
closed and saturated (recall § 2.3), the fiber PmpAq is algebraically closed and
column-invariant, as required by Theorem D.1. In the notation (5.3), we have
E R vPmpAqw. So applying Theorem D.1, the lemma is proved. �

5.3. How rare is high rigidity? For simplicity of notation, let us write:

apAq :“ acycAdA for A P GLpd,Cq.
So Theorem 3.7 says that rpAq ď apAq ´ cpAq provided cpAq ă d.

Lemma 5.7. For any integer k ě 1, the set

Mk “
 

A P GLpd,Cq; rpAq ě k
(

;

is algebraically closed in GLpd,Cq; moreover if Mk ‰ ∅ then

codimMk

#

“ 0 if k “ 1,

ě k if k ě 2.

Lemma 5.7 is basically a consequence of Theorem 3.7, using the following con-
struction:

Lemma 5.8. There is a family GpAq of subsets of GLpd,Cq, indexed by A P
GLpd,Cq, such that the following properties hold:

‚ Each GpAq contains A.
‚ Each GpAq is an immersed manifold of codimension apAq ´ cpAq.
‚ There are only countably many different sets GpAq.
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The informal proof of the lemma goes as follows: For each A P GLpd,Cq, let
GpAq be the set of matrices that have the same Jordan type as A (as defined in
Remark 4.16), and (at least) the same mod T relations between the eigenvalues.
Then GpAq contains the conjugacy class of A, which by Remark 3.4 has codimension
apAq. We can also move the eigenvalues (keeping the mod T relations); this gives
cpAq extra degrees of freedom, so the codimension of GpAq is apAq ´ cpAq. Since
there are only finitely many Jordan types of d ˆ d matrices, and only countably
many mod T relations, there are only countably many different sets GpAq. A formal
proof of Lemma 5.8 follows:

Proof. First suppose that A P GLpd,Cq is a matrix in Jordan form:

A “

¨

˚

˝

Bt1pλ1q
. . .

Btnpλnq

˛

‹

‚
, where Btpλq :“

¨

˚

˚

˝

λ 1

1

λ

˛

‹

‹

‚

P MattˆtpCq.

Let c “ cpAq; by the definition (3.2), we can choose numbers

µ1, . . . , µc P C˚ , θ1, . . . , θn P T , k1, . . . , kn P t1, . . . , cu
such that λi “ θiµki

for each i “ 1, . . . , n. Let U be the subset of py1, . . . , ycq P Cc

such that

yk ‰ 0 for each k,(5.5)

i ‰ j ñ θiyki
‰ θjykj

.(5.6)

Define a map Φ: U Ñ GLpd,Cq by:

Φpy1, . . . , ycq “

¨

˚

˝

Bn1
pθ1yk1

q
. . .

Bnk
pθnykn

q

˛

‹

‚
.

For every y P U , condition (5.6) assures that Φpyq has the same Jordan type as A,
and therefore, by Remark 4.16, apΦpyqq “ apAq.

We define the set GpAq as the image of the map Ψ “ ΨA : GLpd,Cq ˆ U Ñ
GLpd,Cq given by ΨpX, yq “ AdXpΦpyqq.

Let us check that property 5.8 holds. Let B1Ψ and B2Ψ denote the partial
derivatives with respect to X and y, respectively. As we have seen in Remark 3.4,
the rank of B1ΨpX, yq is equal to d2 ´ apΦpyqq “ d2 ´ apAq for every pX, yq. We
claim that

(5.7) pB2ΨpX, yqq´1pimage of B1ΨpX, yqq “ t0u;
To see this, consider the map Γ: MatdˆdpCq Ñ Cd that associates to each matrix
the coefficients of its characteristic polynomial. Then B1pΓ ˝ ΨqpX, yq “ 0, while
B2pΓ˝Ψqp0, 0q is one-to-one. So (5.7) follows. As a result, the rank of the derivative
of Ψ is equal to d2 ´ apAq ` cpAq at every point. Therefore, by the Rank Theorem,
the image of Ψ is an immersed manifold of codimension apAq ´ cpAq.

For arbitrary A P GLpd,Cq, we define GpAq “ GpA0q, where A0 is the Jordan
form of A. Each set GpAq depends only on the data n and pti, θi, kiqi“1,...,n; therefore
there are only countably many different sets GpAq. �

Remark 5.9. It is not difficult to show that each GpAq is a actually a submanifold of
GLpd,Cq, but we won’t need this.

Proof of Lemma 5.7. If k “ 1 thenM1 “ GLpd,Cq (since d ě 2), so there is nothing
to prove. Consider k ě 2. We have already shown in § 2.3 that Pk is algebraic.
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Since Mk “ tA P GLpd,Cq; @X̂ P glpd,Cqk, pA, X̂q P Pku, it is evident that Mk is
algebraically closed as well. We are left to estimate its dimension.

Take a nonsingular point A0 of Mk where the local dimension is maximal. Let
D be the intersection of Mk with a small neighborhood of A0; it is an embedded
disk. Each A P D has rpAq ě 2; therefore by (both parts of) Theorem 3.7, we have
apAq ´ cpAq ě rpAq ě k. So, in terms of the sets from Lemma 5.8,

D Ă
ď

A s.t. apAq´cpAqěk

GpAq.

The right hand side is a countable union of immersed manifolds of codimension at
least k. It follows (e.g. by Baire Theorem) that D (and henceMk) has codimension
at least k. �

5.4. Proof of Theorem 1.9. Now we apply Lemmas 5.6 and 5.7 to prove one of
our major results:

Proof of Theorem 1.9. The set Pm Ă GLpd,Cq ˆ rglpd,Cqsm is homogeneous in the
second factor. Using Lemma 5.3 together with Remark 5.4, we obtain that the sets

(5.8) Cj “
 

A P GLpd,Cq; codimPmpAq ď j
(

are algebraically closed in GLpd,Cq, and
codimPm “ min

j; Cj‰∅

`

j ` codimCj

˘

.

By Lemma 5.6, we have Cj Ă Mm`1´j . Therefore, by Lemma 5.7,

(5.9) Cj ‰ ∅ ñ codimCj

#

ě 0 if j “ m,

ě m´ j ` 1 if j ď m´ 1.

So codimPm ě m, as we wanted to show. �

The proof above only used that codimCj ě m ´ j. On the other hand, using
the full power of (5.9) we obtain:

Scholium 5.10. The set of poor data in “fat fibers”, namely

Fm :“
 

pA,B1, . . . , Bmq P PpCq
m ; codimPmpAq ď m´ 1

(

,

has codimension at least m` 1 in GLpd,Cq ˆ rglpd,Cqsm.

Proof. The projection of Fm on GLpd,Cq is Cm´1. Use Lemma 5.3 (together with
Remark 5.4) and (5.9). �

5.5. The real case.

Proof of Theorem 1.8. The real part of P
pCq
m is a real algebraic set which, in view

of Proposition 5.5, has codimension at least m. Recall from § 2.3 that this set

contains the semialgebraic set P
pRq
m , which therefore has codimension at least m.

Since we already knew from Proposition 2.11 that codimP
pRq
m ď m, the theorem is

proved. �

5.6. Additional information. Let us improve upon Scholium 5.10 and so prepare
the ground for the proof of Theorem 1.2. This part is not necessary for the proof
of Theorem 1.1.

Recall from § 2.3 the definition of saturated set.

Lemma 5.11. There exists a saturated algebraically closed set Sm Ă GLpd,Cq ˆ
rMatdˆdpCqsm of codimension at least m ` 1 such that for all pA,B1, . . . , Bmq P
Pm r Sm, the following properties hold:

1. A is unconstrained;



34 BOCHI AND GOURMELON

2. if P P GLpd,Cq is such that P´1AP is a diagonal matrix then there are
indices i0, j0 P t1, . . . , du with i0 ‰ j0 such that for each k P t1, . . . ,mu, the
pi0, j0q entry of the matrix P´1BkP vanishes;

3. for each choice of P above, the off-diagonal vanishing entry position pi0, j0q
is unique.

Notice that each data in Pm rSm, after a change of basis, satisfies precisely the
hypotheses of Lemma 2.14.

In order to prove the lemma, we begin by checking algebraicity of the constraints:

Lemma 5.12. The set K Ă GLpd,Cq of constrained matrices is an algebraically
closed subset of codimension 1.

Proof. Multiply all constraints, obtaining a polynomial in the variables λ1, . . . ,
λd. This polynomial is symmetric, and therefore (see e.g. [La, Thrm. IV.6.1]) can
be written as a polynomial function of the elementary symmetric polynomials in
the variables λ1, . . . , λd. Now substitute each elementary symmetric polynomial
in this expression by the corresponding coefficient of the characteristic polynomial
of the matrix A. This gives a polynomial function on the entries of the matrix A
that vanishes if and only if A is constrained. It is obvious that the corresponding
algebraic set K has codimension 1. �

Now we check algebraicity of double vanishing:

Lemma 5.13. There exists a saturated algebraically closed subset D of GLpd,Cq ˆ
rMatdˆdpCqsm such that if pA,B1, . . . , Bmq P D and A has simple spectrum then
property 2 from Lemma 5.11 is satisfied, but property 3 is not.

Proof. First, consider the subsetX Ă rMatdˆdpCqs1`mˆpCPd´1q2 formed by tuples
pA,B1, . . . , Bm, rvs, rwsq such that

rAvs “ rvs, rA˚ws “ rws, w˚v “ 0, w˚Bkv “ 0 for each k “ 1, . . . ,m,

where v and w are regarded as column-vectors and the star denotes transposition.
The set X is obviously algebraic; thus, by Proposition 5.1, so is its projection Y on
rMatdˆdpCqs1`m.

Let A be a matrix with simple spectrum. Then pA,B1, . . . , Bmq belongs to Y
if and only if property 2 from Lemma 5.11 is satisfied. In particular, the fiber of
Y over A is a union of affine subspaces of rMatdˆdpCqsm. Intersections of those
affine spaces correspond to points where the uniqueness property 3 is not satisfied.
These points of intersection are singular points of Y . Conversely, it is clear that the
variety Y is smooth at the points on the fiber over A where property 3 is satisfied.

So let Z be the (algebraically closed) set of singular points of Y . It is straight-
forward to see that the set Y is saturated. Recalling Remark 2.8 (part 1) and the
fact that a group acting on a variety preserves singular points, we see that the set
Z is saturated as well.

We define D as the set Z minus the tuples pA,B1, . . . , Bmq with detA “ 0. Then
D has all the required properties. �

Proof of Lemma 5.11. For simplicity of writing we will omit the m subscripts.
Let π : P Ñ GLpd,Cq be the projection on the first matrix. Define

S “ π´1pKq Y pD X Pq,
where K and D come respectively from Lemmas 5.12 and 5.13. Then S is a satu-
rated algebraically closed subset of P. If A “ pA,B1, . . . , Bmq P P r S then:

‚ A R K, which is property 1;
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‚ since A P P, it follows from Lemma 2.13 that A is conspicuously poor, and
so property 2 holds;

‚ since A R D, property 3 also holds.

To complete the proof of the lemma, we need to show that codimS ě m ` 1.
We will use the following inclusion:

(5.10) S Ă F Y
`

π´1pKq r F
˘

loooooooomoooooooon

F 1

Y
`

pD X Pq r π´1pKq
˘

loooooooooooomoooooooooooon

F2

.

where F comes from Scholium 5.10. Recall that F equals π´1pCm´1q, where Cj is
given by (5.8), and it has codimension at least m` 1.

We apply Lemma 5.3 and Remark 5.4 to the set F 1 Ă Y 1 ˆ rglpd,Cqsm, where
Y 1 “ GLpd,Cq r Cm´1. Since K has codimension at least 1 in Y 1, and the fibers
of F 1 all have codimension at least m, we conclude that that codimF 1 ě m` 1.

Next, we want to apply Lemma 5.3 and Remark 5.4 to the set F2 Ă Y 2 ˆ
rglpd,Cqsm, where Y 2 “ GLpd,CqrK. For each A P Y 2, it follows from Lemma 5.13
that the fiber of F2 over A (which is the same as the fiber of D over A) has
codimension 2m in rglpd,Cqsm, corresponding to the 2m different matrix entries
that must vanish. We conclude that codimF2 ě 2m.

We have seen that each of the three sets on the right-hand side of (5.10) has
codimension at least m` 1. So the same is true for S, as we wanted to prove. �

6. Proof of the main results

6.1. Stratifications. We first recall a few notions about stratifications. We refer
the reader to [GWPL, Ma] for details and proofs.

Let Σ be a closed subset of a smooth (i.e., C8) manifold X. A smooth stratifi-
cation of Σ is a filtration by closed subsets

Σ “ Σn Ą Σn´1 Ą ¨ ¨ ¨ Ą Σ0

such that and for each i, the set Xi “ Σi r Σi´1 (where Σ´1 :“ ∅) either is a
smooth submanifold of M without boundary and of dimension i, or is empty. Each
connected component of Xi is called a stratum. The codimension of a stratified
space is the lowest codimension of strata. This does not depend on the choice of
the stratification.

Note that, apart for discrete subsets Σ Ă X, if there is one smooth stratification,
then there are infinitely many others. However, the subsets that we will be dealing
with will be endowed with certain canonical stratifications:

Theorem 6.1 (Existence of canonical stratifications). Any algebraic set Σ Ă CN

admits a canonical smooth stratification, whose strata are complex submanifolds of
CN . Any closed semialgebraic set Σ Ă RN admits a canonical smooth stratification,
whose strata are semialgebraic submanifolds of RN .

In the case of an irreducible algebraic set Σ Ă Cn, the canonical stratification
can be obtained as follows: The connected components of the set of regular (i.e.,
non-singular) points form the higher-dimensional strata; then one decomposes the
set of singular points of Σ into irreducible components and proceeds by induction.

In any case, those canonical stratifications are uniquely characterized by a certain
minimality property. In particular, the canonical stratifications are equivariant
under polynomial automorphisms of the ambient space.

Another important property of the canonical stratifications is that they sat-
isfy the so-called Whitney conditions. We will not recall here those conditions,
which would be rather technical; we will only write down some of their properties.
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A smooth stratification that satisfies the Whitney conditions is called a Whitney
stratification.

Proposition 6.2 (Basic properties of Whitney stratifications). Let X, Y be smooth
manifolds. Let

(6.1) Σn Ą ¨ ¨ ¨ Ą Σ0

be a filtration of a set Σ Ă X. Then:

1. Being a Whitney stratification is a local property of a filtration: So if (6.1)
is a Whitney stratification of Σ then Σn X U Ą ¨ ¨ ¨ Ą Σ0 X U is a Whitney
stratification of ΣXU , and conversely if each point in Σ has an open neigh-
borhood U Ă X such that Σn XU Ą ¨ ¨ ¨ Ą Σ0 XU is a Whitney stratification
of Σ X U then (6.1) is a Whitney stratification of Σ.

2. If (6.1) is a Whitney stratification of Σ then Σn ˆ Y Ą ¨ ¨ ¨ Ą Σ0 ˆ Y is is a
Whitney stratification of Σ ˆ Y Ă X ˆ Y .

3. If (6.1) is a Whitney stratification of Σ and f : X Ñ Y is a smooth diffeo-
morphism then fpΣnq Ą ¨ ¨ ¨ Ą fpΣ0q is a Whitney stratification of fpΣq Ă Y .

Let us now discuss how stratifications behave with respect to transversality.
Let f : X Ñ Y be a C1 map. Let Σ “ Σd Ą ¨ ¨ ¨ Ą Σ0 be a stratification of
a closed subset Σ of Y . One says that f is transverse to that stratification (in
symbols, f JX Σ) if it is transverse to each of its strata. Transversality to a
general stratification is not an open condition. However, we obtain openness if the
stratification is Whitney:

Proposition 6.3 (Transversality is open). Let X, Y be C8 manifolds without
boundary. Let Σ “ Σd Ą ¨ ¨ ¨ Ą Σ0 be a Whitney stratification of a closed subset of
Y . Then the set O “ tf P C1pX,Y q; f JX Σu is open in C1pX,Y q (with respect to
the strong topology).

Actually, only the first of the Whitney conditions is necessary here (use the
(1)ñ(3) implication of Trotman’s theorem [Tr]).

6.2. Jets and jet transversality. We recall the basic notions on jets and state
the transversality theorems we will need; see [Hi] for details.

Let X, Y be smooth manifolds without boundary. If 1 ď r ă 8, an r-jet from
X to Y is an equivalence class of pairs px, fq, where x P X, f is a Cr map from a
neighborhood of x to Y , and where px, fq is equivalent to px1, f 1q if x “ x1 and f
and f 1 have same derivatives at x up to order r. We denote by JrpX,Y q the space
of r-jets from X to Y . It is a smooth manifold.

For all 1 ď s ď 8, we denote by CspX,Y q the space of Cs-maps from X to Y ,
endowed with the strong topology.

Given 1 ď r ă s ď 8 and a map g P CspX,Y q, the r-jet extension is the map
jrg : X Ñ JrpX,Y q that sends x to the equivalence class jrgpxq of px, gq. Then the
mapping

jr : CspX,Y q Ñ Cs´r pX, JrpX,Y qq
is continuous.

Theorem 6.4 (Jet transversality). Let 1 ď r ă s ď 8. Let X and Y be C8 mani-
folds without boundary. Let W Ă JrpX,Y q be a C8 submanifold without boundary.
Then the Cs-maps g : X Ñ Y for which the r-jet extension jrg is transverse to W
form a residual subset of CspX,Y q.

Let us now show the following:
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Proposition 6.5. Let X, Y be C8-manifolds without boundary. Let Σ Ă J1pX,Y q
be a Whitney stratified closed subset. Then tf P C2pX,Y q; j1f JX Σu is C2-open
and C8-dense in C2pX,Y q.

Here, as in the introduction, we say that a subset of C2pX,Y q is C8-dense if its
intersection with CrpX,Y q is Cr-dense, for every r ě 2.

Proof of Proposition 6.5. By Proposition 6.3, the set tF : X Ñ j1pX,Y q; F JX Σu
is open in C1

`

X, J1pX,Y q
˘

. Hence the set O :“ tf : X Ñ Y ; j1f JX Σu is open in

C2pX,Y q.
Fix r ě 2. Given a Whitney stratification Σn Ą ¨ ¨ ¨ Ą Σ0 of Σ, let Zi “

Σi r Σi´1 be the corresponding decomposition into smooth submanifolds. By the
jet transversality theorem (Theorem 6.4), each set Ri “ tf P CrpX,Y q; j1f JX Ziu
is residual. Thus OXCrpX,Y q “ Ş

i Ri is C
r-dense. This concludes the proof. �

6.3. Proof of the main result. We now use Theorem 1.8 and the tools explained
above to prove our main result. Before going into the proof itself, let us deal with
a technical detail.

By Theorem 1.8, P
pRq
m is a closed semialgebraic subset of GLpd,Rq ˆ glpd,Rqm.

Since Theorem 6.1 concerns semialgebraic subsets of affine space, we proceed as

follows. First, enlarge P
pRq
m by including all pA,B1, . . . , Bmq with detA “ 0, thus

obtaining a subset Γ̂ of rMatdˆdpRqs1`m which is also closed and semialgebraic. By

Theorem 6.1, the set Γ̂ admits a canonical Whitney stratification

Γ̂ “ Γ̂n Ą ¨ ¨ ¨ Ą Γ̂0 .

Now we remove all pA,B1, . . . , Bmq with detA “ 0 from each Γ̂i, thus (by locality
property 1 in Proposition 6.2) obtaining a Whitney stratification of codimension m:

(6.2) PpRq
m “ Γn Ą ¨ ¨ ¨ Ą Γ0 .

(We may have Γn “ Γn´1.) Since the stratification of Γ̂ is canonical, the strati-
fication (6.2) is invariant under polynomial automorphisms of the set GLpd,Rq ˆ
glpd,Rqm that preserve P

pRq
m .

Proof of Theorem 1.1. Let U be a smooth manifold without boundary and of di-
mension m. Given local coordinates on an open set U Ă U , the set of 1-jets from
U to GLpd,Rq may be identified with the set

U ˆ GLpd,Rq ˆ glpd,Rqm.
Indeed, a jet J represented by a pair pu,Aq can be identified with the point

pu,Apuq, B1, . . . , Bmq P U ˆ GLpd,Rq ˆ glpd,Rqm,
where Bi P MatdˆdpRq is the normalized derivative of A at u, along the ith coordi-
nate. Let us say that the 1-jet J is rich if the data A “ pApuq, B1, . . . , Bmq is rich,
or equivalently, if for sufficiently large N , the input pu, . . . , uq P UN is universally
regular for the system (1.4). If the jet is not rich then it is called poor.

Define a filtration

(6.3) Σn Ą ¨ ¨ ¨ Ą Σ0

of the set of poor jets from U to GLpd,Rq as follows: a jet J represented as
above in local coordinates by pu,Apuq, B1, . . . , Bmq belongs to Σi if and only if
pApuq, B1, . . . , Bmq belongs to the set Γi in (6.2). We need to check that this defi-
nition does not depend on the choice of the local coordinates. Indeed, this follows

from the fact that P
pRq
m is a saturated set (see § 2.3) using the invariance property

of the stratification (6.2) explained above.
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We claim that the filtration (6.3) is a Whitney stratification of codimension m.
Indeed, the intersection of the filtration with the open subset J1pU,GLpd,Rqq of
J1pU ,GLpd,Rqq is identified (through a smooth diffeomorphism) with the filtration

U ˆ Γn Ą ¨ ¨ ¨ Ą U ˆ Γ0.

So the claim follows from Proposition 6.2.
Applying Proposition 6.5, we obtain a C2-open C8-dense setO Ă C2pU ,GLpd,Cqq

formed by maps A that are transverse to the stratification (6.3) of the set of poor
jets. Since the codimension of the stratification equals the dimension of the man-
ifold U , if A P O then the points u for which j1Apuq is poor form a 0-dimensional
set. This proves Theorem 1.1. �

Remark 6.6. In the proof above, instead of working with the semialgebraic set P
pRq
m ,

we could have worked equally well with the real part of P
pCq
m , since it is an algebraic set

containing P
pRq
m and has the same codimension.

6.4. Proof of the addendum.

Proof of Theorem 1.2. Consider the set S
pCq
m given by Lemma 5.11, and let S

pRq
m

be its real part. This is an algebraically closed saturated subset of GLpd,Rq ˆ
rglpd,Rqsm which, by Proposition 5.5, has codimension at least m` 1.

Consider the set Γ̃ of 1-jets J P J1pU ,GLpd,Cqq that have a local expression

pu,Apuq, B1, . . . , Bmq with pApuq, B1, . . . , Bmq P S
pRq
m . This does not depend on the

choice of the local coordinates, because S
pRq
m is saturated. By the same arguments

as in the proof of Theorem 1.1, the set Γ̃ admits a Whitney stratification. Its
codimension is at least m ` 1. Applying Proposition 6.5, we obtain a C2-open
C8-dense set Õ Ă C2pU ,GLpd,Cqq formed by maps A that are transverse to the
stratification.

Let O be the set provided by Theorem 1.1. and consider a map A P OXÕ. Then
whenever a jet j1Apuq is poor, it does not belong to Γ̃. Recalling Lemma 5.11, we see
that the local expression of j1Apuq satisfies (after a change of basis) the hypotheses
of Lemma 2.14. Therefore parts 1 and 2 of the theorem follow respectively from
conclusions 1 and 2 of the lemma. �

Remark 6.7. The proof of Theorem 1.2 also gives more information about the 1-jets that
appear generically for singular constant inputs pu, . . . , uq: the associated matrix data is
conspicuously poor (see § 2.4), and the matrix Apuq is unconstrained (see § 2.5).

Remark 6.8. Properties 1 and 2 in Theorem 1.2 are in fact dual to each other. If A
is the data representing the 1-jet of A at u, and Λ “ ΛpAq, then property 1 means that
there is an unique direction rvs P RPd´1 such that Λ ¨ v ‰ Cd. Then property 2 means
that there is an unique direction rws P RPd´1 such that Λ˚ ¨ w ‰ Cd, where Λ is the
set of the transposes of the matrices in Λ. This fact can be proved easily using the dual
characterization of Lemma 3.12.

Appendix A. The case of one-dimensional input

As we explained in § 1.4, this appendix contains a basically independent dis-
cussion of the case dimU “ 1. The prerequisites are all contained in Section 2
and § 3.1. In order to avoid technicalities at this point, we will be sometimes
informal, especially regarding questions of transversality.

Let us define the canonical constraints respectively of type 1, 2, 3, 4 as the
following relations:

(A.1) λ1λ3 “ λ22, λ1λ4 “ λ2λ3, λ1 “ ´λ2, λ1 “ λ2 .
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Recall from § 2.5 that an elementary constraint between variables λ1, . . . , λd is a
relation that can be reduced to one of the four canonical constraints after a change
of indices. Each constraint has a unique type.

Let us say that a matrix A P GLpd,Rq is piq-constrained, for 1 ď i ď 4 if:

‚ its eigenvalues, counted with multiplicity, satisfy exactly one elementary
constraint, which is a type i constraint,

‚ if there is a type 4 constraint between the eigenvalues, then the matrix A is
not diagonalizable.

Hence if a matrix A is not piq-constrained for any 0 ď i ď 4, then

‚ either A is unconstrained, i.e., its eigenvalues (with multiplicity) satisfy no
constraint;

‚ or the eigenvalues of A satisfy at least two constraints;
‚ or A has a (multiple) eigenvalue corresponding to at least two Jordan blocks.

If either of the last two cases hold, we say that A is multiconstrained.

Proposition A.1. 1. The complement of the set of unconstrained matrices has
codimension 1 in GLpd,Rq.

2. The set of multiconstrained matrices has codimension 2 in GLpd,Rq.
Informal proof. Matrices that are not unconstrained have at least one constraint
on their eigenvalues, so the corresponding set has codimension 1.

Matrices that are very constrained either have at least two constraints on their
eigenvalues, or have an eigenvalue of multiplicity 2 and are diagonalizable. In both
cases, the corresponding set has codimension 2. �

Let us define adapted bases for matrices A that are not multiconstrained:

‚ If A is unconstrained then an adapted basis is a basis of eigenvectors.
‚ If A is piq-constrained, for i “ 1, 2, or 3 then an adapted basis is an (ordered)
basis of eigenvectors such that the corresponding eigenvectors λ1, . . . λd sat-
isfy the canonical type i constraint.

‚ If A is p4q-constrained then an adapted basis for A is a basis in which A is
written in the following modified Jordan form14:

¨

˚

˚

˚

˚

˚

˝

λ1 λ1
0 λ1

λ3
. . .

λd

˛

‹

‹

‹

‹

‹

‚

.

Obviously, such adapted bases always exist.
If a matrix A is piq-constrained then we say that a dˆd matrix B is a good match

for A, if there is an adapted basis for A in which it writes as B “ pbijq, where all
nondiagonal entries bij are nonzero and if b11 ‰ b22, in the particular case where A
is 3-constrained.

The usefulness of this definition is explained by the following Propositions A.2
and A.315:

Proposition A.2. If A is not multiconstrained and B is a good match for A then
the pair pA,Bq is rich.

14The reason for using a modified Jordan form is that it makes the expression of AdA simpler,

as we will see later.
15Actually, the definition of a good match matrix is stronger than necessary for Proposition A.2

to be true. But in order to avoid complications, we chose a condition that works for all types of
constraints.
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In other words, P
pCq
1 is contained in the following set:

(A.2) E :“
 

pA,Bq P GLpd,Cq ˆ glpd,Cq; either A is multiconstrained

or A is not multiconstrained but B is not a good match for A
(

.

Proposition A.3. 1. The set E has codimension 1.
2. The set tpA,Bq P E ; A is not unconstrainedu has codimension 2.

Informal proof. Proposition A.3 follows from Proposition A.1 and from the fact
that for each matrix A that is not multiconstrained, the set of B’s that are not
good matches for A has positive codimension in glpd,Cq. �

Theorem 1.9 in the case m “ 1 follows from the propositions above. Therefore
the other main results (Theorems 1.1, 1.2, 1.8 and C.1) in the m “ 1 case also
follow from the propositions. For any of these results, the propositions give extra
information of practical value: with the explicit definition of the set E in (A.2), we
know which 1-jets should be avoided in Theorem 1.1, for example. The discussion
given in Appendix B also applies; it gives explicit conditions on the 2-jet exten-
sion of the map A : U Ñ GLpd,Rq that ensure that A satisfies the conclusions of
Theorems 1.1 and 1.2.

Proof of Proposition A.2. Let A and B satisfy the hypotheses. We need to show
that the space ΛpA,Bq defined by (2.2) is a transitive subspace of glpd,Cq. Let
Γ :“ sorbAdA

pBq, so that ΛpA,Bq “ tIdu _ Γ.
The matrix A is not multiconstrined and so has an adapted basis as above. We

change the basis so that A and B are “canonical”.
The proof is divided in cases according to the type of constraint. Except for the

p4q-constrained case, the matrix A is diagonal, and so the space Γ is described by
(2.6).

Unconstrained case: It follows from Lemma 2.13 that if A is unconstrained and
diagonal then the only way for the pair pA,Bq to be poor is that B has an off-
diagonal zero entry. (The reader should review the proof of Lemma 2.13.)

p1q-constrained case: We see that the adjoint AdA has two eigenvalues (different
from 1) of multiplicity 2, namely λ1λ

´1
2 “ λ2λ

´1
3 and λ2λ

´1
1 “ λ3λ

´1
2 . By the same

reasoning as in the unconstrained case, it follows that tIdu _ Γ contains the space
 

pyijq P glpd,Cq; y11 “ ¨ ¨ ¨ “ ydd , b
´1
12 y12 “ b´1

23 y23 , b
´1
21 y21 “ b´1

32 y32
(

.

This is a generalized Toeplitz space, and so by Example 2.2 it is transitive.

p2q-constrained case: The reasoning is very similar to that of the p1q-constrained
case, but now the adjoint has four eigenvalues (different from 1) of multiplicity 2.
The space ΛpA,Bq contains the following subspace:

 

pyijq P glpd,Cq; y11 “ ¨ ¨ ¨ “ ydd , b
´1
13 y13 “ b´1

24 y24 ,

b´1
12 y12 “ b´1

34 y34 , b
´1
21 y21 “ b´1

43 y43 , b
´1
31 y31 “ b´1

34 y34
(

.

Again, this is a generalized Toeplitz space, and so it is transitive.

p3q-constrained case: This case is a little different from the two previous ones.
The adjoint has an eigenvalue ´1 of multiplicity 2. Recalling that b11 and b22 are
different, and making use of the identity matrix, we see that ΛpA,Bq contains the
following subspace:

Γ̃ “
 

pyijq P glpd,Cq; y33 “ ¨ ¨ ¨ “ ydd , b
´1
12 y12 “ b´1

21 y21
(

.
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This is not a generalized Toeplitz space. However, consider the linear automorphism
S that swaps the first two elements of the canonical basis of Cn, and fixes the others.
Then

S ¨ Γ̃ “
 

pzijq P glpd,Cq; z33 “ ¨ ¨ ¨ “ zdd , b
´1
12 z22 “ b´1

21 z11
(

is a generalized Toeplitz space! By Remark 2.3, the space S ¨ Γ̃ is transitive, and so
are Γ̃ and ΛpA,Bq.
p4q-constrained case: This case is more involved because the operator AdA is not
diagonalizable. We will explain its Jordan form. Let us explain visually how AdA
acts: given any matrix, decompose it into blocks Cij as in the following picture

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

C22 C23 C24 . . . C2d

C32 C33 . . .

C42 C44 . . .

...
...

...
. . .

Cd2 . . . Cdd

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

where the block C22 is a 2 ˆ 2 matrix, the blocks C2j are 2 ˆ 1, the blocks Ci2 are
1 ˆ 2 and the others are 1 ˆ 1. Then, the operator AdA leaves invariant the space
Γij of matrices whose nonzero coefficients lie inside the block Cij . Moreover, it is
easily computed that the operator AdA has the following properties:

‚ restricting to the space Γ22, which we canonically identify to glp2,Cq, one
has:

AdA

ˆ

0 0
1 0

˙

“
ˆ

1 ´1
1 ´1

˙

; AdA

ˆ

0 0
0 1

˙

“
ˆ

0 1
0 1

˙

AdA

ˆ

1 0
0 0

˙

“
ˆ

1 ´1
0 0

˙

; AdA

ˆ

0 1
0 0

˙

“
ˆ

0 1
0 0

˙

One then easily computes that, in the ordered basis formed by vectors

J1 “
ˆ

0 ´2
0 0

˙

; J2 “
ˆ

1 ´1
0 ´1

˙

; J3 “
ˆ

0 0
1 0

˙

; J4 “
ˆ

1 0
0 1

˙

,

the matrix of AdA|Γ11 is
¨

˚

˚

˝

1 1
1 1

1
1

˛

‹

‹

‚

.

‚ For any j ě 3, identifying Γ2j to the space of 2 ˆ 1 matrices, the matrix of

AdA|Γ2j is

ˆ

λ2λ
´1
j 1

0 λ2λ
´1
j

˙

in the basis formed by matrices λ2λ
´1
j E1,j “

ˆ

λ2λ
´1
j

0

˙

and E2,j “
ˆ

0
1

˙

, where we use the notation Ei,j from (2.4).

‚ For any i ě 3, identifying Γi,2 to the space of 1 ˆ 2 matrices, the matrix of

AdA|Γi2 is

ˆ

λiλ
´1
2 1
0 λiλ

´1
2

˙

in the basis formed by matrices ´λiλ´1
2 Ei,1 “

`

0 ´λiλ´1
2

˘

and Ei2 “
`

1 0
˘

.
‚ for 3 ď i, j ď d, pEijq is a basis of Γij ; it is an eigenvector with eigenvalue

λiλ
´1
j .
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‚ The spaces Γij , for 2 ď i, j ď d have respective spectra tλiλ´1
j u, which for

i ‰ j are pairwise disjoint and different from t1u.
The concatenation of the bases described above gives a Jordan basis for AdA.

Now take a matrix B that is a good match for A, and consider its expression as a
linear combination of the elements of that Jordan basis.

Claim A.4. All coefficients in this linear combination are nonzero, except possibly
the coefficients of the vectors J1, J2, J4 and the vectors Eii, for all 3 ď i ď d.

The verification is direct.
Consider now the splitting MatdˆdpCq “ V ‘∆, where ∆ is the subspace CJ4 ‘

E33 ‘ . . . ‘ Edd of the space of diagonal matrices, and V is the space spanned by
all other elements of the above Jordan basis. Note that

V “ pCJ1 ` CJ2 ` CJ3q ‘

¨

˝

à

2ďi,jďd
i‰j

Γij

˛

‚

is a decomposition of V into AdA-invariant subspaces with pairwise disjoint spectra.
Let π be the projection onto V along ∆. It follows from the claim and Lemmas 3.1
and 3.2 that πpBq is a cyclic vector for AdA|V . So, using the AdA-invariance of
the spaces V and ∆, we have

πpΓq “ π
`

sorbAdA
pBq

˘

“ sorbAdA
pπpBqq “ V.

Note that V contains the matrices Eij , for all i ‰ j, hence tIdu _V is a generalized
Toeplitz space. As π projects along a subspace of diagonal matrices, tIdu _ Γ is
again a generalized Toeplitz space and in particular is a transitive space.

We have considered the four types, and Proposition A.2 is proved. �

Appendix B. Complementary facts about singular constant inputs of
generic type

In this appendix we give grounds for Remark 1.3. We also discuss other control-
theoretic properties of generic semilinear systems, related to universal regularity.

B.1. Local persistence of singular inputs. Let A P CrpU ,GLpd,Rqq, r ě 1.
We will work upon Lemma 2.9 in order to obtain a more practical way to detect
that the 1-jet of A at a point corresponds to conspicuously poor data. (Recall from
Remark 6.7 that this is the only type of poor data that appears generically.) For
example, in the m “ 1, d “ 2 case, we will see that conspicuous poorness means
that the angular velocity of one of the eigendirections vanishes (see Remark B.1
below).

Suppose that u0 P U is such that the matrix Apu0q is diagonalizable over R and
with simple eigenvalues only. By Proposition 2.10, there is a neighborhood U0 of
u0 and Cr-maps λ1, . . . , λd : U0 Ñ C such that for all u P U0, the complex numbers
λipuq are all distinct, and form the spectrum of Apuq; moreover there exist a Cr

map P : U0 Ñ GLpd,Rq such that for all u P U0,

(B.1) Apuq “ P puq∆puqP´1puq , where ∆puq “ Diagpλ1puq, . . . , λdpuqq.
For simplicity, let us consider first case where U is an interval in R (in par-

ticular m “ 1). Then the normalized derivative of A at a point u can be iden-
tified with Npuq :“ A1puqA´1puq. Consider the expression of Npuq in the basis
that diagonalizes Apuq, that is, Bpuq :“ P´1puqNpuqP puq. Since d

duP
´1puq “

´P´1puqP 1puqP´1puq, we compute that

Bpuq “ ∆1puq∆´1puq `Qpuq ´ ∆puqQpuq∆´1puq ,
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where

Qpuq :“ P´1puqP 1puq .
So the off-diagonal entries of the matrices Bpuq and Qpuq are related by

bijpuq “
`

1 ´ λipuq{λjpuq
˘

qijpuq pi ‰ jq.
In view of Lemma 2.9, we conclude the following: if for some u˚ P U0

(B.2) there is an off-diagonal entry position pi, jq such that qijpu˚q “ 0

then the 1-jet j1Apu˚q is poor.

Remark B.1. Let us give a geometrical interpretation of condition (B.2). The columns
of P form a basis pv1, . . . , vdq of eigenvectors of A, and the rows of P´1 form a basis
pf1, . . . , fdq of eigenfunctionals of A (in the sense that fi ˝ A “ λifi); these two bases

are related by fipvjq “ δij . So qij “ fi

´

dvj
du

¯

is the component of the velocity of vj

in the direction of vi. For example, for d “ 2, condition (B.2) means that one of the
eigendirections of A has zero angular speed at instant u “ u˚.

It is trivial to adapt the previous calculations to the higher dimensional case and
then conclude the following:

Proposition B.2. Let pu1, . . . , umq be coordinates in a chart domain U0 Ă U where
expression (B.1) holds. Consider matrices

(B.3) Qkpuq :“ P´1puq BP
Buk

puq .

If for some u˚ P U0 there is an off-diagonal entry position pi, jq such that

(B.4) for each k “ 1, . . . ,m, the pi, jq-entry of the matrix Qkpu˚q vanishes

then the 1-jet j1Apu˚q is poor, that is, the constant input pu˚, . . . , u˚q (of any
length) is singular.

In the situation of Proposition B.2, assume additionally that the map

(B.5) Φ:

#

U0 Ñ Im Φ Ă Km

u ÞÑ rthe pi, jq-entry of Qkpuqs1ďkďm

is a diffeomorphism.

In that case, the existence of a poor jet is persistent in the following way: If
Ã is sufficiently C2-close to A then by Proposition 2.10 we can express Ãpuq “
P̃ puq ∆̃puq P̃´1puq for u close to u˚, where P̃ and ∆̃ are C2-close to P and ∆

respectively, and ∆̃ is diagonal. The corresponding matrices Q̃k “ P̃´1 BP̃
Buk

are

C1-close to Qk and the map

Φ̃ : u ÞÑ
”

the pi, jq-entry of Q̃kpuq
ı

1ďkďm

is C1-close to Φ. By (B.5) the fact that Φpu˚q “ p0, ..., 0q, there is ũ close to u˚

such that Φ̃puq “ p0, ..., 0q. In particular the 1-jet j1Ãpũq is poor.
Now, concerning existence: It is evident that a domain U0 and 2-jets j2P pu˚q

satisfying conditions (B.4) and (B.5) actually exist; moreover we can always find
a map P : U Ñ GLpd,Rq with a prescribed 2-jet at a point u˚. In view of the
discussion above, we conclude the following:

Proposition B.3 (Persistence of singular inputs). For any d ě 1 and any d-
dimensional smooth manifold U , there exists a C2-open nonempty subset of maps
A P C2pU ,GLpd,Rqq such that the following holds:

there exists u P U such that the constant inputs pu, . . . , uq of any length are all
singular for the system (1.4).
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That is, one cannot improve Theorem 1.1 replacing “discrete set” by “empty
set”.

We can also see why the statement of Theorem 1.1 with “C2-open” replaced by
“C1-open” is not true: Given any map A such that (B.4) holds at some point, we
can C1-perturb A (by C0-perturbing P ) in a way such that (B.4) now holds for a
non-discrete set of points.16

B.2. Other control-theoretic properties. We now introduce a few control-
theoretic notions related to accessibility and regularity, and discuss the validity
of statements similar to Theorem 1.1 for these notions.

Consider a general control system (1.1). Fix a time length N , and let φN
denote the response map as in (1.2). We say that a trajectory determined by
px0;u0, . . . , uN´1q is:

‚ locally accessible17 if for every neighborhood V of pu0, . . . , uN´1q in UN , the
set φN ptx0u ˆ V q has nonempty interior.

‚ strongly locally accessible if for every neighborhood V of pu0, . . . , uN´1q in
UN , the set φN ptx0uˆV q contains in its interior the final state φN px0;u0, . . . , uN´1q.

The following implications are immediate:

regular ñ strongly locally accessible ñ locally accessible.

We say that an input pu0, . . . , uN´1q is universally locally accessible (resp. univer-
sally strongly locally accessible) if the trajectory determined by px0;u0, . . . , uN´1q
is locally accessible (resp. strongly locally accessible).

Now we come back to the context of projective semilinear control systems (1.4).
A (relatively weak) corollary of Theorem 1.1 is that for generic maps A, universal
local accessibility holds at all constant inputs:

Proposition B.4. Let N P N and O Ă C2pU ,GLpd,Rqq be as in Theorem 1.1.
For any A P O, every constant input sequence of length N is universally locally
accessible.

Proof. If A P O then for every constant input sequence of length N we can find a
regular input sequence nearby. �

As we have shown in Proposition B.3, it is not possible to improve Proposi-
tion B.4 by replacing “local accessibility” by “regularity”. Neither it is possible to
replace “local accessibility” by “strong local accessibility”, as the following simple
example (in m “ 1, d “ 2) shows:

Example B.5. For u P R, define

P puq “

ˆ

1 u

u2 1

˙

, ∆puq “ Diagp2, 1q.

Let U be an small open interval containing 0, and define A : U Ñ GLp2,Rq by (B.1). Let
ξ0 P RP1 correspond to the direction of the vector p1, 0q. Then for any subinterval V Q 0,
and any N ą 0, the set

φN ptξ0u ˆ V
N q “

 

Apun´1q ¨ ¨ ¨Apu0q ¨ ξ0 ui P V
(

is an “interval” of RP1 containing ξ0 “ φN pξ0; 0, . . . , 0q in its boundary. Therefore the
input p0, . . . , 0q is not universally strongly locally accessible. A similar situation occurs
for any C2-perturbation of A.

16Using this idea and Baire’s theorem, one can also show that the conclusion of Theorem 1.1
is not true for C1-generic maps A; actually for C1-generic A, the points u P U corresponding to

singular constant controls form a perfect set.
17Beware: a different concept with this name appears in [CK2].
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Appendix C. Proof of a complex version of Theorem 1.1

In the complex setting we consider instead holomorphic mappings A : U Ñ
GLpd,Cq.

More precisely, given an open subset U Ă Cm, we denote by HpU ,GLpd,Cqq the
set of holomorphic mappings A : U Ñ GLpd,Cq endowed with the usual topology
of uniform convergence on compact sets.

Theorem C.1. Given integers d ě 2 and m ě 1, there exists an integer N ě 1
with the following properties. Let U Ă Cm be open, and let K Ă U be compact.
Then there exists an open and dense subset O of HpU ,GLpd,Cqq such that for any
A P O the constant inputs in KN are all universally regular for the system (1.4),
except for a finite subset.

We have the straightforward corollary:

Corollary C.2. Given integers d ě 2 and m ě 1, there exists an integer N ě 1
with the following properties. Let U Ă Cm be an open subset. There exists a residual
subset R of HpU ,GLpd,Cqq such that for any A P R the constant inputs in UN are
all universally regular for the system (1.4), except for a discrete subset.

These results could probably be obtained in certain more general complex man-
ifolds. But in order to avoid technicalities, we consider only open subsets of Cm.
Also, we use only elementary real transversality tools.

Proof of Theorem C.1. Let U Ă Cm be an open subset. We may identify the set of
1-jets from U to GLpd,Cq with

U ˆ GLpd,Cq ˆ glpd,Cqm.
As we did in Section 6, and using Theorem 1.9 instead of Theorem 1.8, we obtain

that the set of poor 1-jets from U to GLpd,Cq is the algebraic subset U ˆ P
pCq
m of

the space of 1-jets. Hence it admits a stratification

U ˆ PpCq
m “ U ˆ Σn Ą ¨ ¨ ¨ Ą U ˆ Σ0.

Write U ˆ P
pCq
m as the disjoint union

Ů

0ďiďnXi where each Xi is a smooth sub-

manifold of dimension i in the jet space J1 pU ,GLpd,Cqq, and Xn has codimension
m.

Fix now a map A P HpU ,GLpd,Cqq. For all v “ pa, b1, . . . bmq P Cm`1 and
u “ pu1, . . . , umq P Cm, write

Pvpuq “ a`
m
ÿ

i“1

bkuk.

For all v “ pvi,jq1ďi,jďd P
`

Cm`1
˘d2

, write Pv “
“

Pvi,j

‰

1ďi,jďd
and define the map

Φv “ A` Pv. One can write the 1-jet extension j1A at the point u P U as

j1Apuq “ ru,Apuq, B1, . . . , Bms P U ˆ GLpd,Cq ˆ rMatdˆdpCqsm .

The same way, if we put vi,j “ pai,j , b1,i,j , . . . , bm,i,jq, we have

j1Pvpuq “ ru, Pvpuq, pb1,i,jq1ďi,jďd, . . . , pbm,i,jq1ďi,jďds .
Define the map F : v ÞÑ Fv “ j1Φv. The evaluation map of F is:

F ev :

#

`

Cm`1
˘d2

ˆ U Ñ U ˆ MatdˆdpCq ˆ rMatdˆdpCqsm

pv, uq ÞÑ Fvpuq
.
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Hence,

F evpv, uq “ j1pA` Pvq

“
”

u, pA` Pvq puq, pb1,i,jq1ďi,jďd
, . . . , pbm,i,jq1ďi,jďd

ı

Claim C.3. For all u, the map F ev restricts to a submersion from the p¨, uq-fiber
to the ru, ¨s-fiber.

Proof. We want to prove that

v ÞÑ
”

pA` Pvqpuq, pb1,i,jq1ďi,jďd
, . . . , pbm,i,jq1ďi,jďd

ı

is a submersion, or equivalently that

v ÞÑ
”

Pvpuq, pb1,i,jq1ďi,jďd
, . . . , pbm,i,jq1ďi,jďd

ı

is a submersion. Noting that v “ pai,j , bk,i,jq 1ďi,jďd
1ďkďm

, this comes easily from the fact

that pai,jq ÞÑ Pvpuq is a submersion, for any fixed set of coefficients pbk,i,jq 1ďi,jďd
1ďkďm

.

�

That claim immediately implies that F ev is a submersion. In particular it is
transverse to each Xi. By the parametric transversality theorem (see [Hi, p. 79]),

there is a residual subset of parameters v in
`

Cm`1
˘d2

such that Fv “ j1Φv is
transverse to Xi, for all i.

When v goes to 0, Φv tends to A in H pU ,GLpd,Cqq. Hence, the denseness in

H pU ,GLpd,Cqq of the maps Â such that j1Â is transverse to Xi, for all i. Take

such a map Â: for all i, the image of j1Â does not intersect X0 \ ¨ ¨ ¨ \ Xn´1 and
intersects Xn (which has codimension m) only in a discrete subset.

Fix K 1 Ă U a compact set that contains K in its interior. The image j1Â
restricted to K 1 can only intersect Xn in a finite set Γ: indeed, any accumulation
point of that intersection set would have to be in X0 \ ¨ ¨ ¨ \ Xn´1, since X0 \
. . . \ Xn is closed, and this would contradict the fact that j1Â does not intersect
X0 \ ¨ ¨ ¨ \Xn´1.

By the choice of our topology, a small perturbation Ã of Â is C0 close to Â by
restriction to K 1. By Cauchy’s formula, the map Ã is C2 close to Â over the set K.
Hence, the (compact) image of j1Ã restricted to K is still far from X0 \¨ ¨ ¨\Xn´1,
and intersects Xn transversally in some ǫ-neighborhood of Γ inside Xn. Thus it
also has to intersect Xn only on a finite set.

So we have found an open and dense subset of holomorphic maps whose 1-jets
above K intersect the set of N -poor jets only on a finite number of points. As a
consequence, for such maps, there are only finitely many constant singular inputs
in KN for the system 1.4. This concludes the proof of Theorem C.1. �

Appendix D. Dimension of certain algebraic sets of matrices

In this appendix, which is independent from the rest of the paper, we prove
Theorem D.1, which was used in Section 5. This result is also used in [BG1].

D.1. Statement of the result. If M P MatnˆmpCq, let colM Ă Cn denote the
column space of M . A set X Ă MatnˆmpCq is called column-invariant if

M P X
N P MatnˆmpCq
colM “ colN

,

.

-

ñ N P X.
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So a column-invariant set X is characterized by its set of column spaces. We enlarge
the latter set by including also subspaces, thus defining:

vXw :“
 

E subspace of Cn; E Ă colM for some M P X
(

.

Then we have:

Theorem D.1. Let X Ă MatnˆmpCq be a nonempty algebraically closed, column-
invariant set. Suppose E is a vector subspace of Cn that does not belong to vXw.
Then

codimX ě m` 1 ´ dimE .

It is obvious that the algebraicity hypothesis is indispensable.

Theorem D.1 follows without difficulty from intersection theory of the grassman-
nians (“Schubert calculus”). We tried to make the exposition the least technical as
possible, to make it accessible to non-experts (like ourselves).

D.2. A particular case. Define

(D.1) Rk :“
 

A P MatnˆmpCq; rankA ď k
(

.

We recall (see [Ha, Prop. 12.2]) that this is an irreducible algebraically closed set
of codimension

(D.2) codimRk “ pm´ kqpn´ kq if 0 ď k ď minpm,nq.

Proof of Theorem D.1 in the case E “ Cn. If E “ Cn then the hypothesis Cn R
vXw means that X Ă Rn´1. We can assume that n ´ 1 ď m, otherwise the
conclusion of the theorem is vacuous. Thus codimX ě codimRn´1 “ m ` 1 ´ n,
as we wanted to show. �

D.3. Reduction to a property of grassmannians. As we will see, to prove
Theorem D.1 it is sufficient to prove a dimension estimate (Theorem D.2 below)
for certain subvarieties of a grassmaniann.

D.3.1. Grassmannians. Given integers n ą k ě 1, the grassmanniann GkpCnq is
the set of the vector subspaces of Cn of dimension k.

The grassmannian can be interpreted as a subvariety of a higher dimensional

complex projective space using the Plücker embedding GkpCnq Ñ P pŹk
Cnq, which

maps each V P GkpCnq to rv1 ^ ¨ ¨ ¨ ^vks, where tv1, . . . , vku is any basis of V / This
is clearly an one-to-one map. It can be shown (see e.g. [Ha, p. 61ff]) that the image

is an algebraically closed subset of P pŹk
Cnq. Its dimension is

(D.3) dimGkpCnq “ kpn´ kq.
If E Ă Cn is a vector space with dimE “ e ď k then we consider the following

subset of GkpCnq:
(D.4) SkpEq :“

 

V P GkpCnq; V Ą E
(

.

(This is a Schubert variety of a special type, as we will see later.) Since any
V P SkpEq can be written as E ‘ W for some V Ă WK, we see that SkpEq is
homeomorphic to Gk´epCn´eq.

We will show that an algebraic set that avoids SkpEq cannot be too large:

Theorem D.2. Fix integers 1 ď e ď k ă n. Suppose that Y is an algebraically
closed subset of GkpCnq that is disjoint from SkpEq, for some e-dimensional sub-
space E Ă Cn. Then codimY ě k ` 1 ´ e.
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D.3.2. Proof of Theorem D.1 assuming Theorem D.2. Assuming Theorem D.2 for
the while, let us see how it yields Theorem D.1.

Recalling notation (D.1), define the quasiprojective variety

R̂k :“ Rk rRk´1 .

We define a map πk : R̂k Ñ GkpCnq by A ÞÑ colA.

Lemma D.3. If X is an algebraically closed column-invariant subset of R̂k then
Y “ πkpXq is algebraically closed subset of GkpCnq, and the codimension of Y

inside GkpCnq is the same as the codimension of X inside R̂k.

Proof. First, let us see that πk : R̂k Ñ GkpCnq is a regular map. We identify
GkpCnq with the image of the Plücker embedding. In a Zariski neighborhood of

each matrix A P R̂k, the map πk can be defined as A ÞÑ raj1 ^ ¨ ¨ ¨ ^ ajk s for some
j1 ă ¨ ¨ ¨ ă jk, where aj is the jth column of A. This shows regularity.

Next, let us see that Y “ πkpXq is closed with respect to the classical (not

Zariski) topology. Consider the subset K of X formed by the matrices A P R̂k

whose first k columns form an orthonormal set, and whosem´k remaining columns
are zero. Then K is compact (in the classical sense), and thus so is πkpKq. But
column-invariance of X implies that πkpKq “ Y , so Y is closed (in the classical
sense).

It follows (see e.g. [Ha, p.39]) from regularity of πk is regular that the set Y is
constructible, i.e., it can be written as

Y “
p
ď

i“1

Zi rWi ,

where Zi Ń Wi are algebraically closed subsets of GkpCnq. We can assume that
each Zi is irreducible. It follows from [Mu, Thrm. 2.33] that Zi rWi “ Zi, where
the bar denotes closure in the classical sense. In particular, Y “ Y “ Ťp

i“1 Zi,
showing that Y is algebraically closed.

We are left to show the equality between codimensions. Since the codimen-
sion of an algebraically closed set equals the minimum of the codimensions of its
components, we can assume that X is irreducible.

By column-invariance of X, for each y P Y , the whole fiber π´1pyq is contained
in X. All those fibers have the same dimension µ “ km. By [Ha, Thrm. 11.12],

dimX “ dimY ` km. By (D.2) and (D.3), we have dim R̂k ´ dimGk “ km, so the
claim about codimensions follows. �

Proof of Theorem D.1. Let X Ă MatnˆmpCq be a nonempty algebraically closed,
column-invariant set. Suppose E is a vector subspace of Cn that does not belong
to vXw. Let e “ dimE. We can assume e ą 0 (otherwise the result is vacuously
true), and e ă n (because the case e “ n was already considered in § D.2).

Notice that X Ă Rn´1. Let

Xk :“ X X R̂k and Yk :“ πkpXkq, for 0 ď k ď minpm,n´ 1q.
For every k with e ď k ă n, the set Yk is disjoint from the set SkpEq defined by
(D.4). In view of Lemma D.3 and Theorem D.2, we have

codimR̂k
Xk “ codimYk ě k ` 1 ´ e .

So the codimension of Xk as a subset of MatnˆmpCq is

codimXk “ codim R̂k ` codimR̂k
Xk

ě pm´ kqpn´ kq ` k ` 1 ´ e “: fpkq .
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The function fpkq is decreasing on the interval 0 ď k ď minpm,n´ 1q. Therefore:

codimX “ min
0ďkďminpm,n´1q

codimXk ě min
0ďkďminpm,n´1q

fpkq

“ fpminpm,n´ 1qq “ m` 1 ´ e,

as claimed. This proves Theorem D.1 modulo Theorem D.2. �

The proof of Theorem D.2 will be given in § D.6, after we explain the necessary
tools in §§ D.4, D.5.

D.4. Schubert calculus. Here we will outline some facts about the intersection
of Schubert varieties. The readable expositions [Bl, Va] contain more information.

A (complete) flag in Cn is a sequence of subspaces F0 Ă F1 Ă ¨ ¨ ¨ Ă Fn with
dimFj “ j. We denote F‚ “ tFiu.

Given V P GkpCnq, its rank table (with respect to the flag F‚) is the data
dimpV X Fjq, j “ 0, . . . , n. The jumping numbers are the indexes j P t1, . . . , nu
such that dimpV XFjq´dimpV XFj´1q is positive (and thus equal to 1). Of course,
if one knows the jumping numbers, one know the rank table and vice-versa. Let
us define a third way to encode this information: Consider a rectangle of height m
and width n´m, divided in 1ˆ1 squares. We form a path of square edges: Start in
the northeast corner of the rectangle. In the jth step (1 ď j ď n), if j is a jumping
number then we move one unit in the south direction, otherwise we move one unit
in the west direction. Since there are exactly k jumping numbers, the path ends
at the southwest corner of the rectangle. The Young diagram of V with respect to
the flag F‚ is the set of squares in the rectangle that lie northwest of the path. We
denote a Young diagram by λ “ pλ1, λ2, . . . , λkq, where λi is the number of squares
in the ith row (from north to south). Its area λ1 ` ¨ ¨ ¨ ` λk is denoted by |λ|.
Example D.4. Here is a possible rank table with k “ 5, n “ 12; the jumping numbers
are underlined:

j “ 0 1 2 3 4 5 6 7 8 9 10 11 12
dimpW X Fjq “ 0 0 0 1 1 1 2 2 3 4 4 5 5

The associated path in the rectangle is:
✛✛

❄✛✛

❄✛

❄

❄✛

❄✛
and so the Young diagram is

λ “ “ p5, 3, 2, 2, 1q.

In general, we have:

‚ λ “ pλ1, . . . , λkq is a possible Young diagram if and only if n ´ k ě λ1 ě
¨ ¨ ¨ ě λk ě 0.

‚ If j1 ă ¨ ¨ ¨ ă jk are the jumping numbers then λi “ n´ k ´ ji ` i.

The set of V P GkpCnq that have a given Young diagram λ is called a Schubert
cell, denoted by Ωpλq or Ωpλ, F‚q. Each Schubert cell is a topological disk of real
codimension 2|λ|. The Schubert cells (for a fixed flag) give a CW decomposition
of the space GkpCnq. The closure of Ωpλq (in either classical or Zariski topologies)
is the set of V P GkpCnq such that dimpV X Fjiq ě i for each i “ 1, . . . , n (where
j1 ă ¨ ¨ ¨ ă jk are the jumping numbers associated to λ). These sets are closed
irreducible varieties, called Schubert varieties. (See e.g. [Fu, §9.4].)
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Example D.5. If E Ă Cn is a subspace with dimE “ e ď k then the set SkpEq defined
by (D.4) is a Schubert variety Ω̄pλ, F‚q, where F‚ is any flag with Fe “ E and

(D.5) λ “
`

n ´ k, . . . , n ´ k
looooooooomooooooooon

e times

, 0, . . . , 0
looomooon

k´e times

˘

“

Let A˚pk, nq denote the set of formal linear combinations with integer coefficients
of Young diagrams in the k ˆ pn ´ kq rectangle. This is by definition an abelian
group.

Proposition D.6. There is a second binary operation called the cup product and
denoted by the symbol ` that makes A˚pk, nq a commutative ring, and is charac-
terized by the following properties:

If λ and µ are Young diagrams with respective areas r and s then their cup
product is of the form:

λ ` µ “ ν1 ` ¨ ¨ ¨ ` νN .

where ν1, . . . , νN are Young diagrams with area r ` s (possibly with repetitions,

possibly N “ 0). Moreover, there are flags F‚, G‚, H
piq
‚ such that the manifolds

Ω̄pλ, F‚q and Ω̄pµ,G‚q are transverse and their intersection is
Ť

Ω̄pνi, Hpiq
‚ q.

Example D.7. Working in A˚p2, 4q, let us compute the products of the Young diagrams

λ “ and µ “ . Fix a flag F‚. Then Ω̄pλ, F‚q is the set of W P G2pC4q that contain

F1, and Ω̄pµ, F‚q is the set of W P G2pC4q that are contained in F3. Take another flag G‚

which is in general position with respect to F‚, that is Fi X G4´i “ t0u. Then:

‚ The set Ω̄pλ, F‚q X Ω̄pλ,G‚q contains a single element, namely F1 ‘ G1, and thus
equals Ω̄pp2, 2q, H‚q “ tH2u for an appropriate flag H‚. This shows that λ ` λ “

.

‚ The space F3 X G3 is 2-dimensional and thus is the single element of Ω̄pµ, F‚q X

Ω̄pµ,G‚q. So µ ` µ “ .

‚ The set Ω̄pλ, F‚q X Ω̄pµ,G‚q is empty, thus λ ` µ “ 0.

However, if we work in A˚p4, 8q then it can be shown that:

` “ ` ` , ` “ ` ` , ` “ ` .

If we drop the terms that do not fit in a 2ˆ2 rectangle, we reobtain the results for G2pC4q.

The general computation of the product λ ` µ is not simple and can be done in
various ways – see e.g. [Va, Fu].18 For our purposes, however, it will be sufficient
to know when the product is zero or not. The answer is provided by the following
simple lemma19:

Lemma D.8 ([Fu], p. 148–149). Let λ and µ be Young diagrams in the kˆ pn´kq
rectangle. The following two conditions are equivalent:

1. λ ` µ ‰ 0.
2. If one draws inside the k ˆ pn ´ kq rectangle the Young diagrams of λ and
µ, being the later rotated by 180˝ and put in the southeast corner, then the
two figures do not overlap (see Fig. 5). Equivalently, λi ` µk`1´i ď n ´ k

for every i “ 1, . . . , n.

18Here is an online calculator: young.sp2mi.univ-poitiers.fr/ cgi-bin/ form-prep/ marc/

LiE form.act?action=LRR
19In [Va] condition 2 of the lemma is expressed as “the white checkers are happy”.

http://young.sp2mi.univ-poitiers.fr/cgi-bin/form-prep/marc/LiE_form.act?action=LRR
http://young.sp2mi.univ-poitiers.fr/cgi-bin/form-prep/marc/LiE_form.act?action=LRR
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Figure 5. Consider k “ 5, n “ 12, λ “ p5, 3, 2, 2, 1q, and µ “ p5, 5, 4, 2, 0q.

The picture shows that the non-overlap condition (2) from Lemma D.8 is

satisfied, and in particular λ ` µ ‰ 0. (This example is reproduced from [Fu,

p. 150].)

D.5. Intersection of subvarieties of the grassmannian. Next we explain how
the Schubert calculus sketched above can be used to obtain information about
intersection of general subvarieties of the Grassmannian, by means of cohomology
and Poincaré duality. Our primary source is [Fu, Appendix B]; also, [Hu] is a
very readable account about the geometric interpretation of the cup product in
cohomology.

Any topological space X has singular homology groups HiX and cohomology
groups HiX (here taken always with integer coefficients). With the cup product
HiX ˆHjX Ñ Hi`jX, the cohomology H˚X “ À

HiX has a ring structure.
If X is a real compact oriented manifold of dimension d then the homology group

HdX is canonically isomorphic to Z, with a generator rXs called the fundamental
class of X. In addition, there is Poincaré duality isomorphism HiX Ñ Hd´iX,
which is given by α ÞÑ α a rXs (taking the cap product with the fundamental
class). Let us denote by ω ÞÑ ω˚ the inverse isomorphism.

Next suppose Y and Z are compact oriented submanifolds of X, of codimensions
i and j respectively. Also suppose that Y and Z have transverse intersection Y XZ,
which therefore is either empty or a compact submanifold of codimension i`j, which
is oriented in a canonical way. The images of the fundamental classes of Y , Z, and
Y X Z under the inclusions into X define homology classes that we denote (with
a slight abuse of notation) by rY s P Hd´iX, rZs P Hd´jX, rY X Zs P Hd´i´jX.
Then their Poincaré duals rY s˚ P HiX, rZs˚ P HjX, and rY X Zs˚ P Hi`jX are
related by:

rY s˚
` rZs˚ “ rY X Zs˚ .

That is, cup product is Poincaré dual to intersection.
Now consider the case where X is a projective nonsingular (i.e., smooth) complex

variety, and Y and Z are irreducible subvarieties of X. Obviously, the fundamental
class rXs makes sense, becauseX is a compact manifold with a canonical orientation
induced from the complex structure. A deeper fact (see [Fu, Appendix B]) is that
fundamental classes rY s and rZs can also be canonically associated to the (possibly
singular) subvarieties Y and Z, and the Poincaré duality between cup product and
intersection works in this situation. More precisely, suppose that Y and Z are
transverse in the algebraic sense: Y X Z is a union of subvarieties W1, . . . , Wℓ

whose codimensions are the sum of the codimensions of Y and Z, and for each
i “ 1, . . . , ℓ, the tangent spaces TwY and TwZ are transverse for all w in a Zariski-
open subset of Wi. Then each Wi has its canonical fundamental class, and the
following duality formula holds:

rY s˚
` rZs˚ “ rW1s˚ ` ¨ ¨ ¨ ` rWℓs˚ .

In our application of this machinery, X will be the grassmannian GkpCnq. In
this case:



52 BOCHI AND GOURMELON

‚ The fundamental classes of the Schubert varieties rΩ̄pλ, F‚qs do not depend
on the flag F‚.

‚ Let σλ denote the Poincaré dual of rΩ̄pλ, F‚qs. Then H2rGkpCnq is a free
abelian group and the elements σλ with |λ| “ r form a set of generators.
(The cohomology groups of odd codimension are zero.)

‚ The cup product on cohomology agrees with the “cup” product of Young
diagrams explained in the previous section.

D.6. End of the proof. We are now able to give to prove Theorem D.2.20

Proof of Theorem D.2. Let 1 ď e ď k ă n. Let E Ă Cn be a subspace of dimension
e, and consider the set SkpEq defined by (D.4). Recall from Example D.5 that this
is the Schubert variety for the Young diagram λ given by (D.5).

Now consider a (nonempty) subvariety Y Ă GkpCnq that is disjoint from SkpEq.
We want to give a lower bound for the codimension c of Y . We can of course assume
that Y is irreducible.

Let rY s˚ be the dual of fundamental class of Y . This is a nonzero element of
H2cGkpCnq. It can be expressed as

ř

niσµi
, where µi are Young diagrams with

area |µi| “ c, and ni are nonzero integers. In fact we have ni ą 0, because of the
canonical orientations induced by complex structure.

Since the intersection between SkpEq and Y is empty (and in particular trans-
verse), Poincaré duality gives rSkpEqs˚

` rY s˚ “ 0. Therefore we have σλ ` σµi
“

0 for each i.
By Lemma D.8, if we draw the Young diagram of µi rotated by 180˝ and put

in the southeast corner of the k ˆ pn ´ kq rectangle, then it overlaps the Young
diagram λ pictured in (D.5). This is only possible if c ě k ´ e ` 1; indeed the
Young diagram µ with least area such that λ ` µ ‰ 0 is

µ “
`

1, . . . , 1
loomoon

k´e`1 times

, 0, . . . , 0
loomoon

e´1 times

˘

,

for which the overlapping picture becomes:

This concludes the proof of Theorem D.2. �

As explained in § D.3.2, Theorem D.1 follows.
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Pontif́ıcia Universidade Católica do Rio de Janeiro (PUC–Rio)
URL: www.mat.puc-rio.br/„jairo

E-mail address: jairo@mat.puc-rio.br
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