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Abstract—Complexity being one of the main limitations of LPV  of these papers provide methods based on a generalization of
methods, the need for efficient model reduction techniques is palanced truncation model reduction methods. Unfortupate
highly motivated. Yet, so far, there exists no convex formulation they fail to lead to a convex formulation of the problem. The

of the general problem of finding a reduced model of any given . L . L
complexity. In this paper, we focus on the case when the reduced M€thod in [11] for example consists in solving an optimiaati

model is supposed to have a special structure and we thenpProblem expressed by LMI Lyapunov inequalities coupled
derive convex conditions. Thus, for a system modeled by an with a nonconvex rank constraint.

LFT on a repeated scalar parameter structure, we prove that

the problem can be formulated as an LMI optimization problem C. Proposed approach

in the case when the reduced model is supposed to depend only This paper considers a particular case of a reduced model
on some parameters of the original system in the same manner pap p

as the plant whereas the dependence on the other parameterssha Structure: it is supposed to depend on some parameters in
been removed. The method is applicable to quadratically stable the same manner as the plant and no longer at all on

systems. A complete construction procedure is provided and a the other parameters. The studied problem is to find such
measure of the associated model reduction error is given. The 5 reduced model minimizing th&,-gain of the difference
method is illustrated in the context of missile control. A, . 2 .
system. Conditions are derived directly by exploiting the
I. INTRODUCTION parallel with an LPV synthesis problem [4]. It is then proved
A. Context and problem that this particular problem can be expressed as a convex

LPV synthesis methods have emerged as powerful tools Htimization problem_. A practi_cal _procedure for constimgt .
designing controllers for nonlinear or time-varying sysse the reduced comple_xn_y m_odel is given, based on the re‘.”"““
[1]. A large amount of research has been devoted to th&f @nother LMI optimization problem. The result applies to
refining: while the oldest and simplest methods make uggadrat!cally stablg systems and can easily be extended 0
of a constant Lyapunov matrix to obtain convex condition%u""d_rat'c""”y s'tab.lllzable and detectable'systems usieg t
[2], [3], [4], the efforts for reducing the conservatism kayCOPTiMe factorization approach proposed in [14].
led to consider more complex parameter-dependent LyapungV |nterests of the result
functions [5], [6], [7], [8]. The methods are now considered . i .
to have reached a theoretically mature state. Howeverjtdesp The pro_blem considered naturally finds an m_terest when
promising features, their use in practice remains limitede dealing with the case of LPV systems depending on hoth

of the main criticisms is the fact that they often result iﬁlov(\jllyl afn% fas;—var;iing %ara;neete_lr_s, szeg, inhthe mislsile_
controllers of high complexity, thus requiring expensinmle- model of Reichert [15], [9], [16]. To reduce the complexity,

mentation. Indeed, LPV methods typically lead to contreIIeSUCh a model would usually be simplified by arbitrarily freez
’ nﬁ the slowly-varying parameters. An interesting quesi®

whose structure mimics the plant structure so that even' h ial reduced model b her obtained:
the simplest methods using a constant Lyapunov functian, gynhether an optimal reduced model can be rather obtained: our
ethod can lead to a reduced model where the dependence

controllers have at least the same complexity as the plam, . .
seee.g, methods to deal with polytopic systems [9], [10] oPN some parameters has been optimally removed while the

rational systems [2], [3], [4]. The need for efficient modegependence on_the other parameters has be.e”.pr_esefved-
reduction techniques is thus highly motivated. In this pape The method is al_so well suited 1a posten_on 5|mpI.|fy

we focus on the model reduction problem and we Obtamcgntrc_)llers that vary little ‘?'though they are of high comyly.
convex formulation in the case when the dependence of tﬁenotlced phenomenon is indeed the fact that LPV methods

reduced model on the parameters is chosen in an appropr@%y lead to controliers that seem _not to vary “muc’r’l. The
fashion. method proposed here makes it possible to find a “best” model

) reduction of the controller, easier to implement and exgubct
B. Previous work to give similar performance.
The literature [11], [4], [12], [13]investigates the prebi The problem can furthermore be transposed to the non-
of finding a reduced model of any given complexity. Moslinear context. A similar issue is considered in [17] where



the focus is on “mildly” nonlinear systems in the scope ofvherex(t) € R™ is the statew(t) € R™» the input and:(¢) €
controlling them linearly: the problem there is to approats R”: the output. The vectaf(t) = [ S1(t) ---0,.(t) }T cR"

the nonlinear system by a “best” linear model and to find ig called the parameter vector, where for {1,-- .7} 6:(t)
corresponding linear controller which is then ensured tokwojs a real time-varying scalar parameter measured in rea tim
also on the original nonlinear system. Our method allows thd belonging to an interval. With no loss of generalityghier
deal efficiently with this problem: actually, since nonkime s considered that;(t) € [—1, 1]. This paper is concerned with
systems can be modeled as LPV systems by embedding [ife/ systems whose state-space matrices are rational unscti

nonlinearities in newly defined parameters, our methodieppl of the parameters. Such systems can be represented by an LFT
directly to nonlinear systems. It is then an alternativehte t on a parameter block structure [4]:

procedure of [17], having moreover the advantages thalidgtsre

on a convex formulation of the problem and that it leads to a #(t) ()
reduced system depending only on some of the parameters (or q(t) | =M | pt) |, p(t)=A0)q), @)
in the nonlinear context, only on some of the nonlineatjties 2(1) w(t)

whereM is a constant matrix and (¢) is called the parameter
block. The signals;(t) andp(t) € R* are called respectively

The paper is structured as follows. In Section Il the consighe input and the output of the parameter block. The system
ered system is introduced and a general statement of thel mgd8trices are defined as:

reduction problem is proposed. A convex test of existence

E. Structure of the paper

of a model reduction for quadratically stable systems and a M= 54 11)90 51
construction methodology are provided in Section II. Rect - C’O DOO DOl
1 10 11

IV illustrates the method in the context of a missile control

E Notations and definitions and the system (2) is described in LFT notation by:
The identity matrix ofR"*" is denotedl,, and the zero 2(t) = Fu <}‘u (M,/In) ,A(t)) w(t). 3)

matrix of R”*"™ is denoted),,«,,. The subscripts are omitted

when obvious from context. For two operators and B, The parameter block\ is a block diagonal matrixA(t) =

diag(4, B) denotes the operato[r‘g 2 ] For a full-rank diag(A;(t), - ,A.(t)), where each sub-block id;(t) =

matrix U, U+ denotes an orthogonal complementéfi.e, 4;(t)I;.. The dimension ofA(t), also referred to as the LPV

UU+ =0and| UT U™t | is of maximal rank, whileU"™ system complexity, is therk = i, ki. The following

denotes the Moore-Penrose inversd/ofFor X € R"*"™ and notation is used:S(A;) = {S; € RF:xki|S;, = ST > 0},

k<l<n,r<s<m Xyys denotes the matrix extractedG(A;) = {G; € RF*F|G; = ~GT}, S(A) = {S|S =

from X made of its lines fronk to [ and columns fromr to s. diag(Sy,---,S,)}, G(A) = {G|G =diag(Gy,---,G,)}.

For a square matrid/, M > 0 andM > 0 mean respectively )

positive and semi-positive definiteness. The sympadlenotes B- The general model reduction problem

the integration operation. For a matrix/ partitioned as In this section, the general definition of a model reduction

[ VAL A2 ] and an operatorA, the notationF,(M,A) for a LPV system is given and the general model reduction

stands forMay + Moy A(I — AM;;)~t M, and F;(M,A) problem is stated. Next, the particular reduced model strac

stands forMy; + Mo A(I — AMas) =t My, whenever they considered in this paper is introduced and interpreted.

exist. The £, norm of a signalw from R* in R", if it Definition 2.1 (Reduced-complexity modelet

exists, is defined as the integréiv||, _hé/foﬂo wt)Twtyar A = diag1(t)1y,, - a6r(t)-[k,~)k! AR((t)k =

and the set of signals for which thés; norm is defined diag(d1 () e, s+ » 0 () kg, )y M € R{vHkana) Xt

is noted £,. The extended spac&s is then defined as Mr € R(ratkrtn.g)x(nrthatne) where ng < n and

L5 = {w : Rt — R*"VT' > 0, Pr(w) € L2} where kr = 3;_y kr,. The system:

for a given signalw and a7 > 0, the causal truncation

operator Py is such thatvt < T, Pp(w(t)) = w(t) and Fu <-7:u <MR7/InR) ,AR(t)) 4)

V¢ > T, Pr(w(t)) = 0. The Ly-gain of an operator

H is defined as||H||z = sup,cz, uzo [[Hw||2/||w]|2. For is a reduced-complexity model of the system

matricesZi, - - - , Z, where for alli € {1---r} Z; € Rkixki  Fu (Fu (M, [ 1) ,A®)) if n., = mn. and for all
the following notation is used: for a given integer< r, € {l,---.r} Ng, <N, o
ZALS =diag(Zy,--- , Zs) andZAsH,r =diag(Zss1,- -, Z,). Here, a reduced-complexity model is also referred to as a
“reduced model”. For a given system (3), the model reduction
Il. PRELIMINARIES AND PROBLEM FORMULATION problem is then to find a reduced model (4) that approximates
A. The considered system (3) “in some sense”. In order to evaluate this approximation

a measure needs to be introduced: it is called the model

reduction error and it can be defined as a difference system

{ z(t) = A(5()x(t) + B(o(t))w(t) 1) Lo-gain. For this general problem, no convex formulation is
z(t) = C(0(t)z(t) + D(6(t))w(t), available.

General LPV systems can be described as follows:



Here, we consider the case when the reduced modelaisa convex optimization problem. The main result is given in

enforced to have a special structure. Thus, consider tgeati Theorem 3.2. Recall that for matricés, - -- , Z,., for a given
system (3) where\(t) = diag(0, (t)Ix,, - ,6.(t)I,). Fora s < r we use the notationZ, , = diag(Z,,--- , Z,) and
given integers < r, the reduced model is enforced to be 01‘25+1,r =diag(Zss1, "+, Z:).
the form (4) whereAr(t) = diag(d1 (t)Ixp, -+ 6r(t) Ikp, ) Theorem 3.2:There exists a solution to the (model reduc-
is such that for every € {1,...,r}: tion) problem 3.1 if there exists a solution to the following
ke Vie{l,...,s} Ll\j/lﬂl fgasibiljtTy protzls:n: find, if they exist, magicxzisp =
kRi:{o Wi {s+1....r} 5) P, Q=Q" e R Vvie{l,--,s}Y; € RFi*% and

Vie {1,---,r} X; € RF*F such that (6), (7), (8), (9), (10),
In other words, the parameter block of the reduced model (1), where:
supposed to be a block diagonal structure formed exclysivel

from full copies of some of the plant parameter sub-blocks. 0 8 F X,
This can be interpreted by saying that the reduced model is 0 0 Koiin
enforced to depend on some of the plant parameters in tge | 75— 0 <710 0 0 | v <o,
same fashion as the plant (that is, through an LFT of same | P 0 0
complexity) while the dependence on the other parametexrs ha X7, 0 0
been removed. With no loss of generality, we assume that the XTIy, 0 0
removed parameters are the last ones. - 5 - (6)
[1l. CONVEX CONDITIONS FOR MODEL REDUCTION OF 0 i}l . 0
QUADRATICALLY STABLE SYSTEMS 0 ' Xein | 0
In this section, the considered model reduction problem is; | Q 0 0 U, <0,
formally stated. A convex formulation of the problem is then ?T 0 0
derived and a construction method is presented. Let uslrecal e T 0 0
first the definition of quadratic stability. 00 T 0 0T =e
Definition 3.1: The LPV system defined by the equations ) @)
(1) is said to be quadratically stable if it is well-posed and ~
there exists a matri® = PT > 0, called (constant) Lyapunov Q f 0, (®)
matrix such that there existg > 0 such thatA(5(¢))T P + P—-Q >0, 9)
PA((t) < —nl . o e Xi+XI >0, Vie{l, - ,r}, (10)
Recall that the system (1) is said to be well-posed if for any ~ =7 ]
inputw € L, the signals:, z are in£$ and uniquely defined. Yi+Y7 >0, Vie{l, -, s} (11)
A. The considered model reduction problem for quadratjcallVNere:
stable systems %400 L 2 pony
For quadratically stable systems, the model reductiorr erro ¥y = <1 D10 )
is the £5-gain of the difference between the original model 5% —J5 (I = Doo)
and the reduced model. The problem is then the next one. Lo _a B | By
Problem 3.1 (Model reduction problem):et ¢ > 0 and U, — 7 " 2 2 °1
consider the quadratically stable system defined for any -~ 5% U -Doo) | —F=Do
input w(t) as 2(t) = F,(Fu. (M, [ L), A®)w®) (3) ’ 0 !
where A(t) = diag(61(t)Ix,, - ,6.(t)Iy.). Let s < r and *
ARg(t) = diag(01(t)kp, -+, 0 (t) Iy, ) Such that for every ¢ proof
R Consider the setup of Problem 3.1. The system defined by
kn — { k, Vie {1, .. .,S} ZR(t) = Fu (.7:“ (MR, fInR) ,AR(t)) w(t) with AR(t) =
B0 Vie{s+1,...,r} diag (A (t),--- ,As(t)) is by definition a reduced model of
andkr = __, k;. Findng < n and a constant matrix/r € the system defined by(t) = 7 (7 (M, [ In) , A1) w(?)

= ) with A(t) = diag (A1 (¢), -, A.(t)). Let us prove then the
nr+kr+mn. nr+kr+nw ) )
R . jxt ! such that the system defined foronvex conditions of Theorem 3.2 for the existence)\df;
any inputw(t) aszg(t) = Fu (Fu (Mg, [ In,), Ar(t)) w(t) such that for a giver > 0, ||z — zz||» < €||w|]a.

(4) is a reduced model of (3) such th#t — zg||2 < €]|w]|2. Let As(f) — diag(Ai(t), Ay(), -, Au(t), Ag(t), -
° -, Ay (t),- -+, An(t)) and let the matrix® be such that
B. Existence test as an LMI optimization problem for quadra(t) — 2r(t) = Fu (Fu (2, [ Intnz) » Ax(t)) w(t). Observ-

ically stable systems ing that¥ = M + Dg_ MrDpg, Wwhere M = D.MD,, and:
In this section, an existence test of a solution to the model D — D| 0 Do_ DT | 0 (12)
reduction problem for quadratically stable systems is psep 0| L | L0 [ I, |



Ourn 0 0 Exploiting the particular structure dd and Dy and proceed-
N, . . . .
ON; XNy ing to some manipulations leads to the conclusion that there
o 0 exist matrices?, S, G verifying (19) if and only if there exist
D= oo ,  matricesP = PT,Q = QT € R™"™ andVi € {1,---,r}
ONgxN — matricesS;, T; € S(A;) and G;, H; € G(4;) such that
. . o (20), (21), (22), (23) hold, where:
L Iy ° s, 0 T
D 0 DT 0 Sst1.r 0 Gst1,r
DRz = |: OR i :| R DRw = |: OR 7 :| s (13) T g 0 3 10171 g 0 0 ®; <O,
n. N Gng o _51
with: G’SFJrLT 0 —Sst1,r
o o - (20)
71}><71 o 0 . 0 Q .
B ONy XN T1.s 0 His .
IlN 1 s1.r 0 Hsyi1,r
1 <I>§ C02 0 g*lnlnw ‘ g 0 0 By <0,
0
. HT,S 0 —Ty s
DR = ONIS];(NS ) ! ﬂz+1,r 0 ~Toi1,r o
ONgt1x(N1+...+Ng) TP T
: . e (22)
L ONp x(Ny+...4+Ns) J . . ) .
Lemma 3.2 in [4] implies thatMp is such that||z — Sstir Gerir } [ Toprr  Heory }_ { é ?}
zplla < €|lwl|z if there exist matricgsf =P >0c¢€ Gorrr =Setinr Heprr —Totrr 23)
R(H+ZR)X(H+HR), 5 = diag (S1,-++, 85,85, 8541, ,5r) where:
and G = diag(Gi, - ,Gs,Gar1,---,Gr) wWhere Vi e .
{1, 5} S; € S(AZ,A) G, € G(ALA;) and Vi € A By 4G
{s+1,---,r} S; € S(A;) andG; € G(A;), such that: Co_ Doo By Dy
_ ®,=| C; Dy |, ®2=| BT D
0 P it e 1 01
_ _ I 0 I 0
. S G 0 I 0 I
)Y eI, 0 )
T P 0 7| < 0- This problem is not convex because of (23). Next, let us prove
a’ S that it is in fact equivalent to an LMI optimization problem
0 el with respect to some new unknowns. We proceed to a change
T (14) of variables¥i € {1,--- ,r}, by definition ofS;, T;, G; and
Introducing the partition: H; there exist matnceXl, Y; € Rk*ki such thatX; + X7 >
o 5 0Y+YT>0andS_ 5 (X +XT)G_2(XT X;),
X1 v s G T, = 5 (Y;+Y7) andH =3 (YT Y;). Let us rewrite
aE i 0 ﬁ f th bl ith t to th
- - - |—= . . now the terms of the problem with respect to these new
) v Z3 &7 _3 variables.
o T e ReplacingS; andG; by their expression in terms of; and

the problem can be rewritten [4] so that (14) holds if and on

if:
GH+UTMrY + VT MEU <0, (16)
where:
M{1Y1+Y1TM1.1+21 YlTMLz M%tl
g = Mo Zy —YIx vy (Maa+ X5 v)T
Mo q Moo+ X5 1 Ys -X5
17)
T T
u: [ DRzlyl O DRzz ]7 V: [ DRw 0 ] (18)

and M, ; and Dg_, are sub-matrices oM and Dr_ whose

dimensions are deductible from context.

The Elimination Lemma [18] implies that/z exists such

that there exist’, S, G such that (16) holds if and only
there existP, S, G such that:
{ ut"gut <o

19
vifgyt <o. (19)

|rearranglng (20) reads (6).
}/S|mllarly, replacingT; and H; by their expression in terms
of Y;, (21) is rewritten:

0 0 Q .
0 0 Yi,s
0 0 Yetl,r
oT 0 0 0 e TIn, | O 0 0 n<o, (24
Q 0 0
)‘/17?5 0 0
B 0 0
where:
AT cl
F585 U+ Dpoo)”
II = BT T
II T 1 ° T
|f ﬁBO *W(I — Dgo)
On the other hand, note that (23) is equivalent to
YHU = ij“ Replacmg in (24), post-multiplying by
[ 45T~ 3 DT " and pre-multiplying by its transpose

4



yields (24) if and only if:

0 0 Q
0 0 Y16
0 0 X;rll .
Mg 0 0 0 e 1In, | O 0 0 M <0,
0 0
?1775 0 0
x- T o 0
s+1,r 5
where My = [*#-] and My is defined uniquely by
M; 1 0 _ - -1
[QI:L] [ 18T 11— )T =1L Let Q = @ and

2 ~ — T
Yis= Ylfsl. Define M = %F;L} Then, post-multiplying

(25) bydiag @,?173,)?175>, pre-multiplying by its transpose
and proceeding to some manipulations yields (25) if and onl

if:
0 Q . 0
0 Yis 0
—7 - 0 Xst1.r o —
My | o o ° My < 0.
=T
Yi,s 0 0
' Xot1,r 0 0
0 0 0 0 0 0 el
w (26)
I 0 0 -1
Post-multiplying by[ -ico 3 -Dop) -4D0: and pre-

multiplying by its transopose fin%lly yieldé (26) holds if an

only (7) holds.

e According to Schur's Lemma [19], (22) is equivalent to

Q'>0andP—-Q! > 0i.e, by definition ofQ, to (8) and
(9). To summarize, there existe/z such that/|z — zg||2 <

€||w||2 if the LMI optimization problem of Theorem 3.2 admits

a solution.

D. Construction

o s ]
0 XsT+1,v-*Xs+1,r ’

where S, = J(X1. + X,.,), Gis = 5(X,, -
X1,) and X;, € R¥*r*2kr is such thatX;, =
[ *4 '], where V. e RF<kr U e Rkrxk

U C
are such thatX;, — Yv; VU and C

. -1 X
2 (VTS;;V) (I - %VTS;;UT).
4) FromP, S, G, constructXy,Y;, Z;, according to (15)

and theng, U, V according to (17) and (18).
5) Solve for My the following LMI feasibility problem:

G +UT" MRV + VT MLU < 0.

hen the system defined by zr(t)
Fu (Fu (Mg, [ I.,),Ar(t)) w(t) is a model reduction of
the system defined by(t) = 7, (F. (M, [ 1) , A(t)) w(t)
such that||z — zr||2 < €||w||2 and the model reduction error
is defined bye.

IV. APPLICATION

To illustrate, we consider the well-known missile benchiknar
of Reichert [15]. The original model being nonlinear, it isfi
ecessary to build a corresponding LPV system. We consider
he simple model represented as an LFT on a single parameter:

a(t)

. a(t)
¢ (t) Co D(?o Doy q(é)) )
ne(t) —n(t) Ci | D1o | D n ;
q(t) u(?)

pi(t) = 0(H)qu (),
wherea(t) is the angle of attacky(t) the pitch ratey(t) the

In this section, a procedure for constructing a reducestcelerations.(t) the reference acceleration an¢) the tail
model is proposed based on the resolution of a secodeflection. The matrices are constant and their exact definit
LMI optimization problem. For the system defined for angan be found in reference [20]. The time-varying parameter

input w(t) asz(t) = F, (F. (M, [ 1,), A(t)) w(t) (3) with
A(t) = diag(Aq(t), -+ ,A.(t)), of complexity k, let us

assume that fog < r there exists a reduced model defined for

any inputw(t) aszr(t) = Fy (Fu (Mg, [ In,) , Ar(t)) w(t)
(4) with Ag(t) = diag(Ai(t),---,As(t)), of complexity
kr. Let {P,Q,Y1,---,Y;,X1,---,X,} be a solution of
the LMI existence test of Theorem 3.2. Defidey(t) =
dlag (Al()v Al(t)v T aAs(t)v As(t)v As—l—l(t)v T aAr(t))

and the matrix ¥ such that z(t) — z2g(t) = < S o
Fu(Fu (S, [ Lngnn) As(t))w(t) and  recall  that B S
Y = M + Dg MpD} where M = D.MDT and S
the matrices are defined by (12), (13). Next, to construct a .

reduced complexity model, proceed as follows.
1) DefineQ = Q ', V;, = }71;1 andng = rank (I—PQ).
2) Find a matrixP e Rtnr)x(n+nr) gych thatP =
R}jg fip } where Rp € R™ "% is such thatP —
-1= RpRg.
3) Find matricesS, G € RIWHNr)x(N+Nr) defined by:

%]

§ _ 1,s R 0 R
0 XerLT + XsT+1,r ’

i(t) is defined as a polynomial in the staigt). Following

Original LPV system (red dotted line) and Reduced-order system (blue full line), 8(t) [ [-15,0], €=0.5

From: In(1) From: In(2)

50

r
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I

40
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-40

-50

-60

Frequency (rad/sec)

Fig. 1. Frozen Bode plots of (1) original controller: LPV &® with LFT
on one parameter (dashed line) and (2) reduced controlldrsydtem (full
line).

the usual LPV methodology, afy-gain criterion with suitable



weighting functions is obtained (see [20] for details) ahd t that no longer depends on some of the parameters. Finally, it
LPV synthesis method with constant Lyapunov matrix of [44pplies directly to the nonlinear context using the fact v

is applied, yielding an LPV controller ensuring the closedd systems can model nonlinear systems by defining parameters
stability and anC,-gain less thary = 1.3. This LPV controller as embeddings of nonlinearities.

naturally has the same complexity as the ple@f it admits
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