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Abstract—Complexity being one of the main limitations of LPV
methods, the need for efficient model reduction techniques is
highly motivated. Yet, so far, there exists no convex formulation
of the general problem of finding a reduced model of any given
complexity. In this paper, we focus on the case when the reduced
model is supposed to have a special structure and we then
derive convex conditions. Thus, for a system modeled by an
LFT on a repeated scalar parameter structure, we prove that
the problem can be formulated as an LMI optimization problem
in the case when the reduced model is supposed to depend only
on some parameters of the original system in the same manner
as the plant whereas the dependence on the other parameters has
been removed. The method is applicable to quadratically stable
systems. A complete construction procedure is provided and a
measure of the associated model reduction error is given. The
method is illustrated in the context of missile control.

I. I NTRODUCTION

A. Context and problem

LPV synthesis methods have emerged as powerful tools in
designing controllers for nonlinear or time-varying systems
[1]. A large amount of research has been devoted to their
refining: while the oldest and simplest methods make use
of a constant Lyapunov matrix to obtain convex conditions
[2], [3], [4], the efforts for reducing the conservatism have
led to consider more complex parameter-dependent Lyapunov
functions [5], [6], [7], [8]. The methods are now considered
to have reached a theoretically mature state. However, despite
promising features, their use in practice remains limited.One
of the main criticisms is the fact that they often result in
controllers of high complexity, thus requiring expensive imple-
mentation. Indeed, LPV methods typically lead to controllers
whose structure mimics the plant structure so that even in
the simplest methods using a constant Lyapunov function, the
controllers have at least the same complexity as the plant,
seee.g., methods to deal with polytopic systems [9], [10] or
rational systems [2], [3], [4]. The need for efficient model
reduction techniques is thus highly motivated. In this paper,
we focus on the model reduction problem and we obtain a
convex formulation in the case when the dependence of the
reduced model on the parameters is chosen in an appropriate
fashion.

B. Previous work

The literature [11], [4], [12], [13]investigates the problem
of finding a reduced model of any given complexity. Most

of these papers provide methods based on a generalization of
balanced truncation model reduction methods. Unfortunately,
they fail to lead to a convex formulation of the problem. The
method in [11] for example consists in solving an optimization
problem expressed by LMI Lyapunov inequalities coupled
with a nonconvex rank constraint.

C. Proposed approach

This paper considers a particular case of a reduced model
structure: it is supposed to depend on some parameters in
the same manner as the plant and no longer at all on
the other parameters. The studied problem is to find such
a reduced model minimizing theL2-gain of the difference
system. Conditions are derived directly by exploiting the
parallel with an LPV synthesis problem [4]. It is then proved
that this particular problem can be expressed as a convex
optimization problem. A practical procedure for constructing
the reduced complexity model is given, based on the resolution
of another LMI optimization problem. The result applies to
quadratically stable systems and can easily be extended to
quadratically stabilizable and detectable systems using the
coprime factorization approach proposed in [14].

D. Interests of the result

The problem considered naturally finds an interest when
dealing with the case of LPV systems depending on both
slowly and fast-varying parameters, seee.g., in the missile
model of Reichert [15], [9], [16]. To reduce the complexity,
such a model would usually be simplified by arbitrarily freez-
ing the slowly-varying parameters. An interesting question is
whether an optimal reduced model can be rather obtained: our
method can lead to a reduced model where the dependence
on some parameters has been optimally removed while the
dependence on the other parameters has been preserved.

The method is also well suited toa posteriori simplify
controllers that vary little although they are of high complexity.
A noticed phenomenon is indeed the fact that LPV methods
may lead to controllers that seem not to vary much. The
method proposed here makes it possible to find a “best” model
reduction of the controller, easier to implement and expected
to give similar performance.

The problem can furthermore be transposed to the non-
linear context. A similar issue is considered in [17] where



the focus is on “mildly” nonlinear systems in the scope of
controlling them linearly: the problem there is to approximate
the nonlinear system by a “best” linear model and to find a
corresponding linear controller which is then ensured to work
also on the original nonlinear system. Our method allows to
deal efficiently with this problem: actually, since nonlinear
systems can be modeled as LPV systems by embedding the
nonlinearities in newly defined parameters, our method applies
directly to nonlinear systems. It is then an alternative to the
procedure of [17], having moreover the advantages that it relies
on a convex formulation of the problem and that it leads to a
reduced system depending only on some of the parameters (or
in the nonlinear context, only on some of the nonlinearities).

E. Structure of the paper

The paper is structured as follows. In Section II the consid-
ered system is introduced and a general statement of the model
reduction problem is proposed. A convex test of existence
of a model reduction for quadratically stable systems and a
construction methodology are provided in Section III. Section
IV illustrates the method in the context of a missile control.

F. Notations and definitions

The identity matrix ofRn×n is denotedIn and the zero
matrix of R

n×m is denoted0n×m. The subscripts are omitted
when obvious from context. For two operatorsA and B,
diag(A,B) denotes the operator

[
A 0
0 B

]
. For a full-rank

matrix U , U⊥ denotes an orthogonal complement ofU , i.e.,
UU⊥ = 0 and

[
UT U⊥

]
is of maximal rank, whileU+

denotes the Moore-Penrose inverse ofU . For X ∈ R
n×m and

k ≤ l ≤ n, r ≤ s ≤ m X[k:l][r:s] denotes the matrix extracted
from X made of its lines fromk to l and columns fromr to s.
For a square matrixM , M > 0 andM ≥ 0 mean respectively
positive and semi-positive definiteness. The symbol

∫
denotes

the integration operation. For a matrixM partitioned as[
M11 M12
M21 M22

]
and an operator∆, the notationFu(M,∆)

stands forM22 + M21∆(I − ∆M11)
−1M12 and Fl(M,∆)

stands forM11 + M12∆(I − ∆M22)
−1M21 whenever they

exist. TheL2 norm of a signalw from R
+ in R

n, if it

exists, is defined as the integral:||w||2 =
√∫ +∞

0
w(t)T w(t)dt

and the set of signals for which theL2 norm is defined
is noted L2. The extended spaceLe

2 is then defined as
Le

2 = {w : R
+ → R

n|∀T > 0, PT (w) ∈ L2} where
for a given signalw and a T > 0, the causal truncation
operatorPT is such that∀t ≤ T, PT (w(t)) = w(t) and
∀t > T, PT (w(t)) = 0. The L2-gain of an operator
H is defined as||H||2 = supw∈L2,u 6=0 ||Hw||2/||w||2. For
matricesZ1, · · · , Zr where for alli ∈ {1 · · · r} Zi ∈ R

ki×ki ,
the following notation is used: for a given integers ≤ r,
Ẑ1,s = diag(Z1, · · · , Zs) andẐs+1,r = diag(Zs+1, · · · , Zr).

II. PRELIMINARIES AND PROBLEM FORMULATION

A. The considered system

General LPV systems can be described as follows:
{

ẋ(t) = A(δ(t))x(t) + B(δ(t))w(t)
z(t) = C(δ(t))x(t) + D(δ(t))w(t),

(1)

wherex(t) ∈ R
n is the state,w(t) ∈ R

nw the input andz(t) ∈

R
nz the output. The vectorδ(t) =

[
δ1(t) · · · δr(t)

]T
∈ R

r

is called the parameter vector, where fori ∈ {1, · · · , r} δi(t)
is a real time-varying scalar parameter measured in real time
and belonging to an interval. With no loss of generality, here it
is considered thatδi(t) ∈ [−1, 1]. This paper is concerned with
LPV systems whose state-space matrices are rational functions
of the parameters. Such systems can be represented by an LFT
on a parameter block structure [4]:




ẋ(t)
q(t)
z(t)


 = M




x(t)
p(t)
w(t)


 , p(t) = ∆(t)q(t), (2)

whereM is a constant matrix and∆(t) is called the parameter
block. The signalsq(t) andp(t) ∈ R

k are called respectively
the input and the output of the parameter block. The system
matrices are defined as:

M =




A B0 B1

C0 D00 D01

C1 D10 D11




and the system (2) is described in LFT notation by:

z(t) = Fu

(
Fu

(
M,

∫
In

)
,∆(t)

)
w(t). (3)

The parameter block∆ is a block diagonal matrix:∆(t) =
diag(∆1(t), · · · ,∆r(t)), where each sub-block is∆i(t) =
δi(t)Iki

. The dimension of∆(t), also referred to as the LPV
system complexity, is thenk =

∑r

i=1 ki. The following
notation is used:S(∆i) = {Si ∈ R

ki×ki |Si = ST
i > 0},

G(∆i) = {Gi ∈ R
ki×ki |Gi = −GT

i }, S(∆) = {S|S =
diag(S1, · · · , Sr)}, G(∆) = {G|G = diag(G1, · · · , Gr)}.

B. The general model reduction problem

In this section, the general definition of a model reduction
for a LPV system is given and the general model reduction
problem is stated. Next, the particular reduced model structure
considered in this paper is introduced and interpreted.

Definition 2.1 (Reduced-complexity model):Let
∆(t) = diag(δ1(t)Ik1

, · · · , δr(t)Ikr
), ∆R(t) =

diag(δ1(t)IkR1
, · · · , δr(t)IkRr

), M ∈ R
(n+k+nz)×(n+k+nw),

MR ∈ R
(nR+kR+nzR

)×(nR+kR+nw) where nR ≤ n and
kR =

∑r

i=1 kRi
. The system:

Fu

(
Fu

(
MR,

∫
InR

)
,∆R(t)

)
(4)

is a reduced-complexity model of the system
Fu

(
Fu

(
M,

∫
In

)
,∆(t)

)
if nzR

= nz and for all
i ∈ {1, · · · , r} NRi

≤ Ni. ⋄
Here, a reduced-complexity model is also referred to as a
“reduced model”. For a given system (3), the model reduction
problem is then to find a reduced model (4) that approximates
(3) “in some sense”. In order to evaluate this approximation,
a measure needs to be introduced: it is called the model
reduction error and it can be defined as a difference system
L2-gain. For this general problem, no convex formulation is
available.
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Here, we consider the case when the reduced model is
enforced to have a special structure. Thus, consider the original
system (3) where∆(t) = diag(δ1(t)Ik1

, · · · , δr(t)Ikr
). For a

given integers ≤ r, the reduced model is enforced to be of
the form (4) where∆R(t) = diag(δ1(t)IkR1

, · · · , δr(t)IkRr
)

is such that for everyi ∈ {1, . . . , r}:

kRi
=

{
ki ∀i ∈ {1, . . . , s}
0 ∀i ∈ {s + 1, . . . , r}.

(5)

In other words, the parameter block of the reduced model is
supposed to be a block diagonal structure formed exclusively
from full copies of some of the plant parameter sub-blocks.
This can be interpreted by saying that the reduced model is
enforced to depend on some of the plant parameters in the
same fashion as the plant (that is, through an LFT of same
complexity) while the dependence on the other parameters has
been removed. With no loss of generality, we assume that the
removed parameters are the last ones.

III. C ONVEX CONDITIONS FOR MODEL REDUCTION OF

QUADRATICALLY STABLE SYSTEMS

In this section, the considered model reduction problem is
formally stated. A convex formulation of the problem is then
derived and a construction method is presented. Let us recall
first the definition of quadratic stability.

Definition 3.1: The LPV system defined by the equations
(1) is said to be quadratically stable if it is well-posed and
there exists a matrixP = PT > 0, called (constant) Lyapunov
matrix such that there existsη > 0 such thatA(δ(t))T P +
PA(δ(t)) < −ηI . ⋄
Recall that the system (1) is said to be well-posed if for any
input w ∈ Le

2, the signalsx, z are inLe
2 and uniquely defined.

A. The considered model reduction problem for quadratically
stable systems

For quadratically stable systems, the model reduction error
is the L2-gain of the difference between the original model
and the reduced model. The problem is then the next one.

Problem 3.1 (Model reduction problem):Let ǫ > 0 and
consider the quadratically stable system defined for any
input w(t) as z(t) = Fu

(
Fu

(
M,

∫
In

)
,∆(t)

)
w(t) (3)

where∆(t) = diag(δ1(t)Ik1
, · · · , δr(t)INr

). Let s ≤ r and
∆R(t) = diag(δ1(t)IkR1

, · · · , δr(t)IkRr
) such that for every

i ∈ {1, . . . , r}:

kRi
=

{
ki ∀i ∈ {1, . . . , s}
0 ∀i ∈ {s + 1, . . . , r}

andkR =
∑s

i=1 ki. FindnR ≤ n and a constant matrixMR ∈
R

(nR+kR+nz)×(nR+kR+nw) such that the system defined for
any inputw(t) aszR(t) = Fu

(
Fu

(
MR,

∫
InR

)
,∆R(t)

)
w(t)

(4) is a reduced model of (3) such that||z − zR||2 < ǫ||w||2.
◦

B. Existence test as an LMI optimization problem for quadrat-
ically stable systems

In this section, an existence test of a solution to the model
reduction problem for quadratically stable systems is proposed

as a convex optimization problem. The main result is given in
Theorem 3.2. Recall that for matricesZ1, · · · , Zr, for a given
s ≤ r we use the notation:̂Z1,s = diag(Z1, · · · , Zs) and
Ẑs+1,r = diag(Zs+1, · · · , Zr).

Theorem 3.2:There exists a solution to the (model reduc-
tion) problem 3.1 if there exists a solution to the following
LMI feasibility problem: find, if they exist, matricesP =
PT , Q̃ = Q̃T ∈ R

n×n, ∀i ∈ {1, · · · , s} Ỹi ∈ R
ki×ki and

∀i ∈ {1, · · · , r} Xi ∈ R
ki×ki such that (6), (7), (8), (9), (10),

(11), where:

Ψ
T
1




0 0 P

0 0 X̂1,s

0 0 X̂s+1,r

0 0 0 ǫ−1I 0 0 0

P 0 0

X̂T
1,s 0 0

X̂T
s+1,r 0 0




Ψ1 < 0,

(6)

Ψ
T
2




0 Q̃ 0

0
ˆ
Ỹ 1,s 0

0 X̂s+1,r 0

Q̃ 0 0

ˆ
Ỹ

T

1,s 0 0

X̂T
s+1,r 0 0

0 0 0 0 0 0 −ǫI




Ψ2 < 0,

(7)

Q̃ > 0, (8)

P − Q̃ > 0, (9)

Xi + XT
i > 0, ∀i ∈ {1, · · · , r}, (10)

Ỹi + Ỹ T
i > 0, ∀i ∈ {1, · · · , s}, (11)

where:

Ψ1 =




A B0
1√
2

C0
1√
2

(I + D00)

C1 D10
I 0

1√
2

C0 − 1√
2

(I − D00)


 ,

Ψ2 =




A B0 B1
− 1√

2
C0 − 1√

2
(I + D00) − 1√

2
D01

I 0 0

− 1√
2

C0
1√
2

(I − D00) − 1√
2

D01

0 0 I


 .

•

C. Proof

Consider the setup of Problem 3.1. The system defined by
zR(t) = Fu

(
Fu

(
MR,

∫
InR

)
,∆R(t)

)
w(t) with ∆R(t) =

diag(∆1(t), · · · ,∆s(t)) is by definition a reduced model of
the system defined byz(t) = Fu

(
Fu

(
M,

∫
In

)
,∆(t)

)
w(t)

with ∆(t) = diag(∆1(t), · · · ,∆r(t)). Let us prove then the
convex conditions of Theorem 3.2 for the existence ofMR

such that for a givenǫ > 0, ||z − zR||2 < ǫ||w||2.
Let ∆Σ(t) = diag(∆1(t),∆1(t), · · · ,∆s(t),∆s(t), · · ·

· · · , ∆s+1(t), · · · ,∆r(t)) and let the matrixΣ be such that
z(t) − zR(t) = Fu

(
Fu

(
Σ,

∫
In+nR

)
,∆Σ(t)

)
w(t). Observ-

ing thatΣ = M + DRz
MRDRw

whereM = DzMDw and:

Dz =

[
D 0
0 Inz

]
, Dw =

[
DT 0
0 Inw

]
, (12)

3



D =




In 0 0
0n×n 0 0

0

IN1
0N1×N1

.
.
.

INs
0Ns×Ns

0

0 0

INs+1

.
.
.

INr




,

DRz
=

[
DR 0
0 Inz

]
, DRw

=

[
DT

R 0
0 −Inw

]
, (13)

with:

DR =




0n×n 0

In 0

0

0N1×N1
IN1

.
.
.

0Ns×Ns
INs

0

0Ns+1×(N1+...+Ns)

.

.

.
0Nr×(N1+...+Ns)




,

Lemma 3.2 in [4] implies thatMR is such that ||z −

zR||2 < ǫ||w||2 if there exist matricesP = P
T

> 0 ∈
R

(n+nR)×(n+nR), S = diag
(
S1, · · · , Ss, Ss, Ss+1, · · · , Sr

)

and G = diag
(
G1, · · · , Gs, Gs+1, · · · , Gr

)
where ∀i ∈

{1, · · · , s} Si ∈ S(∆i,∆i), Gi ∈ G(∆i,∆i) and ∀i ∈
{s + 1, · · · , r} Si ∈ S(∆i) andGi ∈ G(∆i), such that:

[
Σ
I

]T




0 P
S G

ǫ−1Inz
0

P 0

G
T

−S
0 −ǫInw




[
Σ
I

]
< 0.

(14)
Introducing the partition:




X1 Y1

X2 Y2

Y T
1

Z1

Y T
2

Z2


 =




0 P

S G

ǫ−1Inz 0

P 0

G
T −S

0 −ǫInw




,

(15)

the problem can be rewritten [4] so that (14) holds if and only
if:

G + UT MRV + VT MT
RU < 0, (16)

where:

G =

[
MT

1,1
Y1 + Y T

1
M1,1 + Z1 Y T

1
M1,2 MT

2,1

MT
1,2

Y1 Z2 − Y T
2

X
−1
2

Y2 (M2,2 + X
−1
2

Y2)T

M2,1 M2,2 + X
−1
2

Y2 −X
−1
2

]
,

(17)

U =
[

DT
Rz1

Y1 0 DT
Rz2

]
, V =

[
DRw

0
]

(18)

andMi,j andDRzi
are sub-matrices ofM andDRz

whose
dimensions are deductible from context.

The Elimination Lemma [18] implies thatMR exists such
that there existP , S, G such that (16) holds if and only if
there existP , S, G such that:

{
U⊥T

GU⊥ < 0

V⊥T
GV⊥ < 0.

(19)

Exploiting the particular structure ofD andDR and proceed-
ing to some manipulations leads to the conclusion that there
exist matricesP , S, G verifying (19) if and only if there exist
matricesP = PT , Q = QT ∈ R

n×n and ∀i ∈ {1, · · · , r}
matricesSi, Ti ∈ S(∆i) and Gi, Hi ∈ G(∆i) such that
(20), (21), (22), (23) hold, where:

Φ
T
1




0 0 P

Ŝ1,s 0 Ĝ1,s

Ŝs+1,r 0 Ĝs+1,r

0 0 0 ǫ−1Inz 0 0 0

P 0 0

ĜT
1,s

0 −Ŝ1,s

ĜT
s+1,r

0 −Ŝs+1,r


Φ1 < 0,

(20)

Φ
T
2




0 0 Q

T̂1,s 0 Ĥ1,s

T̂s+1,r 0 Ĥs+1,r

0 0 0 ǫ−1Inw 0 0 0

Q 0 0

ĤT
1,s

0 −T̂1,s

ĤT
s+1,r

0 −T̂s+1,r


Φ2 < 0,

(21)[
P I
I Q

]
> 0, (22)

[
Ŝs+1,r Ĝs+1,r

ĜT
s+1,r −Ŝs+1,r

][
T̂s+1,r ĤT

s+1,r

Ĥs+1,r −T̂s+1,r

]
=

[
I 0

0 I

]
,

(23)
where:

Φ1 =




A B0

C0 D00

C1 D10

I 0
0 I




, Φ2 =




A CT
0

BT
0 DT

00

BT
1 DT

01

I 0
0 I




.

This problem is not convex because of (23). Next, let us prove
that it is in fact equivalent to an LMI optimization problem
with respect to some new unknowns. We proceed to a change
of variables:∀i ∈ {1, · · · , r}, by definition ofSi, Ti, Gi and
Hi there exist matricesXi, Yi ∈ R

ki×ki such thatXi+XT
i >

0, Yi +Y T
i > 0 andSi = 1

2

(
Xi + XT

i

)
, Gi = 1

2

(
XT

i − Xi

)
,

Ti = 1
2

(
Yi + Y T

i

)
and Hi = 1

2

(
Y T

i − Yi

)
. Let us rewrite

now the terms of the problem with respect to these new
variables.
• ReplacingSi andGi by their expression in terms ofXi and
rearranging, (20) reads (6).
• Similarly, replacingTi andHi by their expression in terms
of Yi, (21) is rewritten:

Π
T




0 0 Q

0 0 Ŷ1,s

0 0 Ŷs+1,r

0 0 0 ǫ−1Inw 0 0 0

Q 0 0

Ŷ T
1,s

0 0

Ŷ T
s+1,r

0 0


Π < 0, (24)

where:

Π =




AT CT
0

1√
2

BT
0

1√
2
(I + D00)T

BT
1

DT
01

I 0
1√
2

BT
0

− 1√
2
(I − D00)T


 .

On the other hand, note that (23) is equivalent to
Ŷs+1,r = X̂−1

s+1,r. Replacing in (24), post-multiplying by[
I 0

1
2

BT
0

− 1
2
(I − D00)T

]−1

and pre-multiplying by its transpose
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yields (24) if and only if:

M
T
Π




0 0 Q

0 0 Ŷ1,s

0 0 X̂
−1
s+1,r

0 0 0 ǫ−1Inw 0 0 0

P 0 0

Ŷ T
1,s

0 0

X̂
−T

s+1,r
0 0




MΠ < 0,

(25)

where MΠ =
[

MΠ
I

]
and MΠ is defined uniquely by[

MΠ
I

] [
I 0

1
2

BT
0

− 1
2
(I − D00)T

]
= Π. Let Q̃ = Q−1 and

ˆ̃
Y 1,s = Ŷ −1

1,s . DefineMΠ =

[
MT

Π
I 0

0 I

]
. Then, post-multiplying

(25) bydiag
(
Q̃,

ˆ̃
Y 1,s, X̂1,s

)
, pre-multiplying by its transpose

and proceeding to some manipulations yields (25) if and only
if:

M
T

Π




0 Q̃ 0

0
ˆ
Ỹ 1,s 0

0 X̂s+1,r 0

Q̃ 0 0
ˆ
Ỹ

T

1,s 0 0

X̂s+1,r 0 0

0 0 0 0 0 0 −ǫInw




MΠ < 0.

(26)

Post-multiplying by
[

I 0 0

− 1
2

C0
1
2
(I − D00) − 1

2
D01

0 0 I

]−1

and pre-

multiplying by its transpose finally yields (26) holds if and
only (7) holds.
• According to Schur’s Lemma [19], (22) is equivalent to
Q−1 > 0 andP −Q−1 > 0 i.e., by definition ofQ̃, to (8) and
(9). To summarize, there existsMR such that||z − zR||2 <
ǫ||w||2 if the LMI optimization problem of Theorem 3.2 admits
a solution.

D. Construction

In this section, a procedure for constructing a reduced
model is proposed based on the resolution of a second
LMI optimization problem. For the system defined for any
input w(t) as z(t) = Fu

(
Fu

(
M,

∫
In

)
,∆(t)

)
w(t) (3) with

∆(t) = diag(∆1(t), · · · ,∆r(t)), of complexity k, let us
assume that fors ≤ r there exists a reduced model defined for
any inputw(t) aszR(t) = Fu

(
Fu

(
MR,

∫
InR

)
,∆R(t)

)
w(t)

(4) with ∆R(t) = diag(∆1(t), · · · ,∆s(t)), of complexity
kR. Let {P, Q̃, Ỹ1, · · · , Ỹs, X1, · · · , Xr} be a solution of
the LMI existence test of Theorem 3.2. Define∆Σ(t) =
diag(∆1(),∆1(t), · · · ,∆s(t),∆s(t),∆s+1(t), · · · ,∆r(t))
and the matrix Σ such that z(t) − zR(t) =
Fu

(
Fu

(
Σ,

∫
In+nR

)
,∆Σ(t)

)
w(t) and recall that

Σ = M + DRz
MRDT

Rw
where M = DzMDT

w and
the matrices are defined by (12), (13). Next, to construct a
reduced complexity model, proceed as follows.

1) DefineQ = Q̃−1, Ŷ1,s = Ỹ −1
1,s andnR = rank(I−PQ).

2) Find a matrixP ∈ R
(n+nR)×(n+nR) such thatP =[

P RP
RT

P
I

]
, where RP ∈ R

n×nR is such thatP −

Q−1 = RP RT
P .

3) Find matricesS, G ∈ R
(N+NR)×(N+NR) defined by:

S =

[
S1,s 0

0 X̂s+1,r + X̂T
s+1,r

]
,

G =

[
G1,s 0

0 X̂T
s+1,r − X̂s+1,r

]
,

where S1,s = 1
2(X1,s + X

T

1,s), G1,s = 1
2(X

T

1,s −

X1,s) and X1,s ∈ R
2kR×2kR is such thatX1,s =[

X̂1,s V C

U C

]
, where V ∈ R

k×kR , U ∈ R
kR×k

are such thatX̂1,s − Ŷ −1
1,s = V U and C =

2
(
V T Ŝ−1

1,sV
)−1 (

I − 1
2V T Ŝ−1

1,sUT
)

.

4) FromP , S, G, constructX1, Y1, Z1 according to (15)
and thenG, U , V according to (17) and (18).

5) Solve forMR the following LMI feasibility problem:

G + UT MRV + VT MT
RU < 0.

Then the system defined by zR(t) =
Fu

(
Fu

(
MR,

∫
InR

)
,∆R(t)

)
w(t) is a model reduction of

the system defined byz(t) = Fu

(
Fu

(
M,

∫
In

)
,∆(t)

)
w(t)

such that||z − zR||2 < ǫ||w||2 and the model reduction error
is defined byǫ.

IV. A PPLICATION

To illustrate, we consider the well-known missile benchmark
of Reichert [15]. The original model being nonlinear, it is first
necessary to build a corresponding LPV system. We consider
the simple model represented as an LFT on a single parameter:




α̇(t)
q̇(t)
q1(t)

ηc(t) − η(t)
q(t)







A B0 B1

C0 D00 D01

C1 D10 D11







α(t)
q(t)
p1(t)
u(t)


 ,

p1(t) = δ(t)q1(t),

whereα(t) is the angle of attack,q(t) the pitch rate,η(t) the
acceleration,ηc(t) the reference acceleration andu(t) the tail
deflection. The matrices are constant and their exact definition
can be found in reference [20]. The time-varying parameter
δ(t) is defined as a polynomial in the stateα(t). Following
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Fig. 1. Frozen Bode plots of (1) original controller: LPV system with LFT
on one parameter (dashed line) and (2) reduced controller: LTI system (full
line).

the usual LPV methodology, anL2-gain criterion with suitable

5



weighting functions is obtained (see [20] for details) and the
LPV synthesis method with constant Lyapunov matrix of [4]
is applied, yielding an LPV controller ensuring the closed loop
stability and anL2-gain less thanγ = 1.3. This LPV controller
naturally has the same complexity as the planti.e., it admits
an LFT representation of the form:




ẋK(t)
q2(t)
u(t)







AK BK0 BK1

CK0 DK00 DK01

CK1 DK10 DK11







xK(t)
q2(t)

ηc(t) − η(t)
q(t)


 ,

p2(t) = δ(t)q2(t).
(27)

Yet the frozen Bode plots for different values of the parameter
displayed on Figure 1 (dashed lines) suggest that this controller
varies weakly with the parameter. In fact, for this system, it is
even known [21] that there exists an LTI controller achieving
good performance.

The model reduction method described in this paper typ-
ically presents an interest in this case. Here, it allows to
construct an optimal controller of reduced complexity (where
the dependence on the parameter has been removed), that is
to say an LTI controller of the form:

[
ẋKR

(t)
uR(t)

]
=

[
AKR BKR

CKR DKR

]


xKR(t)
ηc(t) − η(t)

q(t)


 . (28)

The original controller (27) being quadratically stable, the
method of Section III is directly applied to obtain the model
reduction. Thus, an LTI controller (28) is obtained such that:

||u − uR||2 < ǫ

∣∣∣∣
∣∣∣∣
[

ηc − η
q

]∣∣∣∣
∣∣∣∣
2

,

with a model reduction error less thanǫ = 0.5. The Bode plot
of this reduced controller is displayed on Figure 1 (full line),
superimposed on the original controller frozen Bode plots
(dashed lines). Performing an analysis with a method based
on a constant Lyapunov matrix [4] proves that the reduced
controller also ensures the closed loop stability and a superior
bound on theL2-gain equal toγR = 1.6, i.e., of the same
order as with the original controller.

V. CONCLUSION

This paper addresses the problem of model reduction for
LPV systems modeled by an LFT on a parameter block
diagonal structure. The case is studied when the reduced
model depends on some paramaters through an LFT of same
complexity as the plant and no longer at all on the other
parameters. Then, in contrast to the general case, it is proved
that the LPV model reduction problem can be written as
an LMI optimization problem. The method proposed in this
paper is an original contribution in several directions. First,
in contrast with existing procedures for model reduction of
LPV systems, our method relies on a convex LMI optimization
problem. Moreover, it is naturally suited for a wide range
of applications when the plant depends “mildly” on some
parameters (e.g., slow-varying parameters) and “strongly” on
some others. It allows to obtain an optimal reduced model

that no longer depends on some of the parameters. Finally, it
applies directly to the nonlinear context using the fact that LPV
systems can model nonlinear systems by defining parameters
as embeddings of nonlinearities.
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