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Abstract: This paper focuses on the execution of conformance testing of PLC with I/O scanning
which executes a control code; it is assumed that the test sequence has been built from a finite
state machine that represents the specified behavior. It is first shown that the conformance
relation which allows to decide whether the implementation conforms to the specification or not
must be defined from a sequence of observations, and not from only one observation, to take
into account the delays introduced by the I/O scanning. Then, a second conformance relation is
proposed to avoid that asynchronous detection of synchronous input changes leads to biased or
non-valid verdicts; this new relation is defined from the analysis of concurrent transitions and
accepted sequences in the specification model.
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1. INTRODUCTION

Model-based conformance testing is a formal analysis
method that aims to check whether an implementation,
seen as a black-box with inputs and outputs, behaves
as specified. Several worthwhile theoretical results have
been already obtained in this field by using specification
models in the form of finite state machines (FSM) (Lee and
Yannakakis (1996), Li and Kumar (2012)), transition sys-
tems (Brinksma and Tretmans (2001), Tretmans (1996))
or Petri nets (Bochmann and Jourdan (2009)). Globally,
these works have shown how errors in a model of the
implementation can be detected by observing its output
sequences in response to input sequences.

The issue of conformance test of real devices, like Pro-
grammable Logic Controllers (PLC 1 ) that execute a con-
trol code, has been addressed more recently (Provost et al.
(2011b)). This approach benefits from the previous results
on testing of FSM (or Mealy machines) and is decomposed
in two phases:

• Construction of a test sequence from the specification
model;

• Execution of this sequence by a test-bench, electronic
device that sends input signals to the PLC and ob-
serves its responses (Fig.1); comparison of these re-
sponses to those expected according to a conformance
relation permits to emit a verdict. It must be under-
lined that this test is non-invasive. No piece of code
or electronic component must be introduced in the
PLC for test reasons; the PLC is tested in its real
operation conditions.

1 The singular spelling will be used for all acronyms.

Fig. 1. Conformance test execution

When critical systems are considered, a usual objective
to build the test sequence is to cross at least once every
transition of the machine. To limit the length of this
sequence, therefore the duration of the test execution, an
optimization criterion is commonly introduced: the test se-
quence must be minimum-length; the algorithm proposed
in Naito and Tsunoyama (1981) can be then selected to
build the sequence from the specification model. However,
the obtained sequence is a MIC (Multiple Input Change)
sequence, i.e. several input values may be changed syn-
chronously by the test-bench from one test step to the
following one. This feature may lead to erroneous test
verdicts as described in Provost et al. (2011a) because syn-
chronous input changes may be detected as asynchronous
by the PLC during test execution.

To solve this issue, a new algorithm to construct the test
sequence has been presented in Provost et al. (2010); the
aim of this algorithm is to build a SIC (Single Input
Change) sequence to avoid asynchronous detections of
synchronous input changes. Unfortunately, a SIC test



sequence does not generally cover at least once every
transition of the machine; some transitions are not testable
with such a sequence. To meet the test objective for critical
systems, MIC test steps must be added at the end of the
SIC sequence and the above-mentioned problem remains
for these steps.

The objective of this paper is to propose a conformance
relation which permits to provide a correct verdict even
in case of asynchronous detection of synchronous input
changes. This relation will be applicable when using a
(fully or partially) MIC sequence. The paper is organized
as follows. The section 2 presents a reminder on test
sequence construction from a Mealy machine. A first con-
formance relation based on sequences of observations is
defined in section 3. As it is shown in section 4 that this
relation leads to an erroneous verdict when synchronous
input changes are seen as asynchronous by the PLC, the
appropriate conformance relation for testing of PLC is
presented at section 5 while section 6 proposes different
solutions to pursue the test after this happened. Conclud-
ing remarks and perspectives for further work are drawn
up in the last section.

2. BACKGROUND

2.1 Programmable Logic Controllers

This work focuses on testing of mono-tasking PLC which
are commonly integrated in automated systems. In this
case, the control code is executed according to a cyclic
I/O scanning that can be periodic or not and comprises 4
phases:

• Inputs reading,
• Internal and output variables computation,
• Outputs updating,
• Waiting time until the end of the period, if the cycle
is periodic. 2

It must be also reminded that a PLC does not receive
(emit) input (output) events but input and output signals.
Events can be built by sampling the signals and consider-
ing either the rising and falling edges of one input (output)
signal or the changes of the whole set of inputs (outputs).

The cyclic I/O scanning may provoke two phenomena that
can hinder the implementation of theoretical results on
PLC:

• synchronisation of asynchronous input changes,
• desynchronization of synchronous input changes.

The first phenomenon occurs when several inputs are mod-
ified asynchronously during the same cycle; these changes
will be detected synchronously at the beginning of the
next cycle. This issue has been already studied by authors
who focused on implementation of the SCT (supervisory
control theory) (Fabian and Hellgren (1998)). The second
phenomenon has been presented and quantified in (Provost
et al. (2011a)). It occurs when synchronous changes of
several inputs happen during the input reading phase;
some changes may be detected during this phase and other
ones only at the next cycle (Fig.2).

2 This waiting time is equal to zero for a cyclic but not periodic I/O
scanning.

Fig. 2. Asynchronous detection of synchronous input
changes

As during the execution of a conformance test, the inputs
are changed synchronously by the test-bench, only the
second phenomenon will be considered in what follows.

2.2 Test sequence construction

This work assumes that the specification is described by a
Mealy machine; this formalism is widespread to represent
the specifications of non-timed systems in conformance
testing. Formally, a Mealy machine is a 6-tuple M = (IM ,
OM , S, sinit, δ, λ) where:

• IM is the input alphabet
• OM is the output alphabet
• S is the set of states s ∈ S
• sinit ∈ S is the initial state
• δ : S × IM → S is the transition function
• λ : S × IM → OM is the output function

Let VI (resp. VO) be the set of Boolean input (resp. output)
variables of the PLC. The input alphabet IM (output
alphabet OM ) of the machine is composed of all the
combinations of input (output) variables. The dimension
of IM (OM ) is |IM | = 2|VI | (|OM | = 2|VO|) and each
element of the input (output) alphabet is represented by a
minterm 3 defined on VI (VO). Hence, every input (output)
event of the model corresponds to a combination of the
input (output) variables of the PLC

The following assumptions are to be made to build a
conformance test sequence from this specification model:

• The transition function is complete and deterministic
(i.e. every transition δ(s × iM ) with s ∈ S and
iM ∈ IM is defined once and only once).

• Each state is distinguishable from the other ones by
observation of the output.

• There is no transient evolution, i.e. no input change
causes successive changes of state or emitted output.
This implies that for any transition leading from an
upstream state to a downstream state and labeled
by a given input event, there is a self-loop on the
downstream state with the same input event.

The basic example presented at Fig.3 will be used to illus-
trate the results of this paper. This model represents the
specified behavior of a PLC with two input variables VI =

3 A minterm defined on a set of n Boolean variables is the conjunc-
tion of all these variables in their positive or complemented form.



{a, b} and one output variable VO = {o}. The input alpha-
bet of the specification is thus IM = {a.b, a.b, a.b, a.b} 4

and the output alphabet OM = {o, o}. This specification
contains 2 states S = {s1, s2} with sinit = s1 and 8
transitions.

Fig. 3. A basic example of specification

The three assumptions introduced are verified on this
Mealy machine:

• The transition function is complete and deterministic.
• When the state s1 (s2) is active, the output of the
PLC is False (True).

• It can be easily checked that there is no transient
evolution. The state s2, for instance, is reached from
s1 when the input event of the machine is a.b (the two
inputs of the PLC are True) and there is a self-loop
on s2 with this input event.

A test sequence can be then built from this specification.
Formally, a test sequence is an ordered list of elementary
test steps et = (su, Iexp, sd, Oexp) where:

• su × sd ∈ S × S
• Iexp ∈ IM , Oexp ∈ OM

• sd = δ(su, Iexp)
• Oexp = λ(su, Iexp)

A test step represents a transition from an upstream state
su to a downstream state sd provoked by an input event
Iexp and during which the output event Oexp is emitted.

It must be noted that, as there is no transient evolution, it
is possible to test two successive transitions of the Mealy
machine with only one input event, i.e. one change of
the inputs of the PLC: the transition (su, Iexp, sd, Oexp)
and the transition (sd, Iexp, sd, Oexp), self-loop on the
downstream state of the previous transition. In the case
of the example of Fig.3, it is possible for instance to test
the transitions (s1, a.b, s2, o) and (s2, a.b, s2, o) by using
the input event a.b from the state s1. This strategy will be
used for every self-loop on a state which is labeled by an
input event that is also the label of an incoming transition
of this state.

The test sequence must be initializable, i.e. the upstream
state of the first test step must be the initial state, and
consistent, i.e. the upstream state of any step, except the
first one, must be identical to the downstream state of
the previous state. An initializable and consistent test

4 (.) represents the operator of conjunction and ( ) represents the
complement.

sequence can be built by using either the algorithm pre-
sented in Naito and Tsunoyama (1981) or that described
in Provost et al. (2010). A minimum-length MIC sequence
which crosses at least once every transition of the specifi-
cation is obtained in the first case (the sequence is termed
complete). A SIC sequence which does not compulsorily
satisfy this objective is produced in the second case and
MIC test steps are to be added to obtain a complete test
sequence.

For the example of Fig.3 and assuming that the two input
variables of the PLC (a and b) are initially False, the
complete minimum-length MIC test sequence is:

T SMIC =((s1, a.b, s1, o), (s1, a.b, s2, o), (s2, a.b, s2, o),

(s2, a.b, s1, o), (s1, a.b, s2, o), (s2, a.b, s1, o))
(1)

This test sequence is complete whereas it contains only six
test steps. This is due to the fact that, even if the same
transition is tested on steps et2 and et5, the previously
defined strategy is applied three times. For the test steps
et2, et4 and et6, two transitions are tested during one test
step.

For the same example, the SIC test sequence is:

T SSIC =((s1, a.b, s1, o), (s1, a.b, s1, o), (s1, a.b, s2, o),

(s2, a.b, s1, o), (s1, a.b, s2, o), (s2, a.b, s1, o))
(2)

In this case, the sequence has the same length but is
not complete. Indeed, using the defined strategy, only 7
transitions are tested and the self loop on state s2 labelled
with a.b is missing. There is indeed no possible test step
etl = (sl, il, s2, o) that can be followed by the one which
tests this transition (s2, a.b, s2, o) without breaking the
Single-Input-Change rule because the only two candidates
(s1, a.b, s2, o) and (s2, a.b, s2, o) require two input value
changes.

Hence, to ensure that all the transitions are tested at least
once, MIC test steps must be added and the final complete
sequence is given below:

T Smixed =((s1, a.b, s1, o), (s1, a.b, s1, o), (s1, a.b, s2, o),

(s2, a.b, s1, o), (s1, a.b, s2, o), (s2, a.b, s1, o),

(s1, a.b, s2, o), (s2, a.b, s2, o))
(3)

This sequence is obviously longer than T SMIC and in-
cludes one test step (the last one) where asynchronous de-
tection of synchronous input changes may happen; there-
fore this issue is not completely solved.

3. A BASIC CONFORMANCE RELATION

Once an initializable, consistent and complete test se-
quence built from the specification, it can be used to
verify whether the implementation under test, a PLC that
executes a control code in this work, behaves as specified.
The aim of this section is to explain how this sequence
is executed by the test-bench then to propose a relation
that permits to emit a verdict about the conformance
of the implementation. This presentation will be illus-
trated by means of the example of Figure 4, a generic



Mealy machine where only some states and transitions
are represented; each transition is labeled with a couple
of input event/output event (Ii/Oi) where Ii ∈ IM and
Oi ∈ OM . More precisely, the following test sequence will
be considered:

T S = ((s0, I
i, s1, O

i), (s1, I
j , s2, O

j), (s2, I
t, s3, O

t)) (4)

and it will be assumed that this sequence is MIC, i.e. that
several inputs of the PLC may be changed when the input
event is changed from Ii to Ij or from Ij to It.

Fig. 4. Part of a generic Mealy machine

3.1 Execution of a test sequence

Each physical input of the PLC must be connected to one
output of the test-bench and each physical output of the
PLC must be connected to one input of the test-bench
before test execution. Once the controller is connected to
the test bench, each elementary test step et = (su, Iexp,
sd, Oexp) is executed as follows:

• The test bench applies the input combination Iexp to
the logic inputs of the PLC under test.

• Then, the test bench observes the output combina-
tions emitted by the PLC. This observation phase
must be long enough to permit all output compu-
tations and updates to be finished. As the maximal
value of the causality delay, delay between the date
of an input combination change and the date of the
corresponding change of the output combination is
two PLC cycles 5 , the duration of this phase must
be at least equal to two PLC periods, for a peri-
odic mode, or two times the maximal value of the
PLC cycle, for a cyclic mode. Moreover, the observed
output combinations are obtained by sampling the
output signals of the PLC; the sampling frequency
must be high enough to guarantee that at least one
combination is observed for every cycle so that every
change of the output combination is observed.

• At the end of the observation phase, the observed
sequence is compared to the expected one according
to a given conformance relation.

It has been pointed out above that the duration of one
experimental test step is at least equal to two PLC
cycles. This minimal bound guarantees that each output
combination update, consequence of an input combination
change, can be observed. Moreover, if this duration is
longer (three PLC cycles for instance), it is possible

5 This maximal value is obtained when the input change occurs just
after the input reading phase of a cycle k. This change is detected
at the beginning of the cycle k + 1 and the outputs are updated at
the end of this cycle.

during one experimental test step that corresponds to a
theoretical test step et = (su, Iexp, sd, Oexp), where su 6=
sd, to test two successive transitions of the Mealy machine:
the transition defined by this step and the transition et =
(sd, Iexp, sd, Oexp), self-loop on the downstream state of
the first transition, as explained at the sub-section 2.2.

The Fig.5 shows, for the second test step of (4) and for
several PLC cycles, the input combinations applied to the
PLC Fig.5a, as well as the input combinations read by
the PLC Fig.5b and the observable output combinations
Fig.5c) by assuming that the PLC behaves as specified,
i.e. the implementation conforms to the specification. It
is reminded that the inputs of a PLC are read at the
beginning of each cycle and the outputs updated at the
end of this cycle. It matters also to underline that the
input combinations read by the PLC are not observable
because the test is non-invasive; they are only represented
in this figure to explain from which input combinations
the observable combinations are computed.

Fig. 5. Expected, read and observable combinations

As the test-bench is not synchronized with the PLC, the
expected input combination is changed at any date during
a PLC cycle. This input combination is read by the PLC at
the beginning of the following cycle and the corresponding
output combination is updated at the end of this cycle. The
expected input combination remains unchanged during a
given number of cycles; the minimal value of this number
is equal to 3 according to the above discussion.

3.2 Conformance relation

A Mealy machine that represents an implementation con-
forms to another machine that represents the specification
if and only if Oobs is equal to Oexp for every test step.
This simple theoretical conformance relation cannot be di-
rectly applied for conformance testing of PLC because the
observable output combination Oobs changes during one
experimental test step as shown at Fig.5. A first solution
would be to consider only the last output combination ob-
served at the end of the observation phase but this solution
does not permit to distinguish a correct evolution from su
to sd through the considered transition to a sequence of
two transitions from su to sd via a third state s′. This is
why a solution which is based on the sequence of observed
output combinations will be proposed; this sequence 6 :

σObs = (Oobs1 , ..., Oobsn) where ∀i ∈ N
∗, Oobsi ∈ OM (5)

is composed of the n (n ∈ N
∗, n ≥ 3) output combinations

observed during this experimental test step.
6 Where N

∗ is the set of strictly positive integers.



A first conformance relation for a PLC can be then defined.

Definition 1.
Let etc = (sb, I

j , sc, O
j) be the current test step

Let etp = (sa, I
i, sb, O

i) be the previous test step
The implementation conforms to the specification if for
every test step:
If sb 6= sc: It exists k ∈ N

∗ such as k < n and:

• If k > 1: ∀l ∈ N
∗ such as l < k, Oobsl = Oi,

• Oobsk = Oj

• ∀m ∈ N
∗ such as k < m ≤ n, Oobsm = Oj

If sb = sc: ∀k ∈ N
∗ such as k ≤ n, Oobsk = Oj

This relation means that, to declare that an implemen-
tation conforms to a specification, the sequence of output
combinations observed during every experimental test step
must be composed of a sequence of identical combinations
that correspond to the expected output combination for
the current test step (Oj in Fig.5) that may be preceded (if
sb 6= sc and k > 1) by a subsequence of identical combina-
tions that correspond to the expected output combination
for the previous test step (Oi in Fig.5). This relation will
be illustrated on the example of Fig.3 by using the test
sequence (1); it will be assumed for this example that every
experimental test step lasts three PLC cycles and that one
output combination is observed for every cycle. Hence, n
will be equal to 3.

• The first test step is et1 = (s1, a.b, s1, o) which
corresponds to a self-loop on the initial state; a
sequence of observations for a correct implementation
is σObset1 = (o, o, o) because the output combination
is unchanged when the corresponding transition is
fired.

• The second test step is et2 = (s1, a.b, s2, o). If the
sequence of observations is σObset2 = (o, o, o), the
implementation conforms to the specification; the
state s2 has been reached.

• The third test step is et3 = (s2, a.b, s2, o). If the fol-
lowing sequence is observed: (o, o, o), the implementa-
tion conforms to the specification. This is not the case
according to Definition 1 when the observed sequence
is (o, o, o). However this unexpected sequence may
come either from a flawed implementation or an asyn-
chronous detection of synchronous input changes. It
must be noted indeed that the values of the two PLC
input variables are modified synchronously from et2
to et3; if the change of b is detected before that of
a, a correct implementation will fire the transition
from s2 to s1 labeled with the input event a.b then
will execute the self-loop on s1 where both variables
a and b are False.

Therefore, Definition 1, which is based only on analysis
of a sequence of observations, is not sufficient to sepa-
rate non-conformance cases from evolutions due to con-
current transitions in case of asynchronous detection of
synchronous input changes; a more complete definition of a
conformance relation that permits to distinguish these two
cases will be given in section 5. It is necessary to study how
a sequence of observations is modified when a transition
which is concurrent to the considered transition is fired,
however; this is the aim of the next section.

4. IMPACT OF AN ASYNCHRONOUS DETECTION
OF SYNCHRONOUS INPUT CHANGES

An example of sequence of output combinations that can
be observed when synchronous changes of the inputs of
the PLC are detected as asynchronous, for the second test
step of (4) and always assuming that the implementation
behaves as specified (the PLC code is correct), is presented
at Fig.6. While the input combination sent to the PLC
is Ij , the combinations read by the PLC are successively
I l (at the beginning of the cycle (k + 1)) then Ij (at
the beginning of the cycle (k + 2)). If several inputs are
changed from Ii to Ij and these changes occur during
the input reading phase, they may be indeed detected
at two successive cycles and a combination I l is used to
compute the output combination during the cycle (k+1).
If p variables are changed from Ii to Ij , this unplanned
input combination is obtained from Ii by changing only a
subset of these variables; changing the remaining ones in
I l provides Ij .

Fig. 6. Sequence of observable combinations when sev-
eral synchronous input changes are detected as asyn-
chronous

From this sequence of read input combinations, a correct
implementation will emit the sequence (Oi, Ol, Om) that
corresponds to the successive firing of the transitions from
s1 to s4 and from s4 to s5. As the expected output sequence
is (Oi,Oj ,Oj) the relation defined at the previous section
will deliver a negative verdict: the implementation does not
conform with the specification. This verdict is biased, i.e. a
correct implementation is declared flawed (false negative).

A non-valid verdict (a flawed implementation is declared
correct (false positive)) is also possible, as illustrated at the
Fig.7. This machine represents a flawed implementation if
the specification is the model depicted at Fig.4; however,
the sequence observed will be (Oi,Oj ,Oj) with the input
sequence of Fig.6 and the verdict will be positive.

Fig. 7. A model of an erroneous implementation

To avoid these erroneous verdicts, the conformance rela-
tion must be modified as explained in the next section.



5. AN APPROPRIATE CONFORMANCE RELATION

The principle of the new conformance relation is not to
limit the comparison of the sequence of observations with
only one sequence, as in Definition 1, but, if this first
comparison is negative, with other sequences which are
possible in case of asynchronous detection of synchronous
PLC input changes. Therefore, this new relation is an
extension of Definition 1 by adding a supplementary com-
parison phase. The aim of this phase is to check whether
the sequence of observations may be obtained from the
current state by firing in the specification a sequence of
two transitions such that:

• the first transition is labeled by an input event which
can be obtained from the expected event of the
previous elementary test step (Ii in the discussion
of the previous section) by changing a subset of
the variables which are changed when this event is
replaced by that of the considered test step (Ij in the
discussion of the previous section);

• the second transition is labeled by the expected input
event of the considered test step.

5.1 Definition

From the non-formal definition above, a formal definition
of the appropriate conformance relation for conformance
test of PLC can be given. It is assumed that there is one
observed output combination per PLC cycle in σObs.

Definition 2.
Let etc = (sb, I

j , sc, O
j) be the current test step.

Let etp = (sa, I
i, sb, O

i) be the previous test step.
The implementation conforms to the specification if for
every test step there is:

Either:
If sb 6= sc: It exists k ∈ N

∗ such as k < n and:

• If k > 1: ∀l ∈ N
∗ such as l < k, Oobsl = Oi,

• Oobsk = Oj

• ∀m ∈ N
∗ such as k < m ≤ n, Oobsm = Oj

If sb = sc: ∀k ∈ N
∗ such as k ≤ n, Oobsk = Oj

Or:
It exists k ∈ N

∗ such as:

• k < n− 1,
• If k > 1, ∀l ∈ N

∗ such as l < k, Oobsl = Oi,
• It exists Ix ∈ IM such as:

·
(

Ix\Ii ∪ Ii\Ix
)

⊂
(

Ii\Ij ∪ Ij\Ii
)

,
· λ(sb, I

x) = Oobsk

• Let s = δ(sb, I
x) be the downstream state of the

transition,
• It exists a transition such as λ(s, Ij) = Oobsk+1

• and ∀m ∈ N
∗ such as k + 1 < m ≤ n, Oobsm =

Oobsk+1

This conformance relation is split into two parts. The first
one is identical to Definition 1. If the verdict is negative
after this first comparison, a second analysis is performed.
The transitions that start from the upstream state of the
considered test step (sb) and which are labeled with input
events that are intermediate combinations (Ix) between Ii

and Ij are first searched. If it is possible by firing one of
these transitions to emit an output event that corresponds
to the kth observation and to reach a state s from which
a transition labeled by the couple of events Ij/Oobsk+1

,

where Oobsk+1 is the (k+1)th observation, is possible and
that leads to a state s′ with a self-loop with this same
label, the verdict is positive.

The intermediate input combinations are defined by the
expression

(

Ix\Ii ∪ Ii\Ix
)

⊂
(

Ii\Ij ∪ Ij\Ii
)

(6)

where I1\I2 is the set of PLC input variables which are
True in I1 and not in I2. Hence, the term Ix\Ii (Ii\Ix)
represents the set of variables which are True in Ix (Ii)
and not in Ii (Ix). The disjunction of these two sets must
be a subset of the set of variables changed from Ii to Ij .

These notations can be illustrated on the example of Fig.3.
If Ii = a.b and Ij = a.b, the intermediate combinations are
a.b and a.b. More generally, if n PLC input variables are
changed from the input event of the previous test step
to the input event of the considered test step, 2n − 2
intermediate input combinations can be defined.

At last, it must be noted that Definition 2 requires a
longer observation phase than Definition 1 because it is
based on a sequence of three firings: the first one caused
by the intermediate input combination, the second one
by the expected input combination and the latter one
that corresponds to a self-loop on the final state of this
sequence, while at most two firings were considered in
Definition 1. As the causality delay is always the same, the
observation phase must last at least four PLC cycles. This
increased duration is the price to pay to avoid erroneous
test verdicts, by distinguishing the unexpected observed
sequences which come from errors in the implementation
from those which are provoked by asynchronous detection
of synchronous changes of the PLC inputs.

5.2 Illustration

This relation may be applied to the third step of the test
sequence (1) already analyzed according to Definition 1
in subsection 3.2. As this was the case in this section, it
is assumed that the observed sequence is (o, o, o, o) while
(o, o, o, o) is expected because the objective of this step is
to test the self-loop on s2 that corresponds to the label
(a.b/o). This observed sequence will be interpreted with
Definition 2 as the successive firings of the transition from
s2 to s1 then of the self-loop on s1 that corresponds to the
input combination a.b; the test verdict will be positive.
This verdict is correct because the synchronous changes
of a and b from the second to the third test step may
be detected as asynchronous and the intermediate input
combination will be a.b or a.b during one PLC cycle; an
implementation that conforms to the specification (Fig.3)
will then fire the transition from s2 to s1 then the self-loop
on s1.

In other words, the new definition provides a positive
verdict if the observed sequence is accepted by the spec-
ification even if it is not the one expected because syn-
chronous input changes have been detected by the PLC as
asynchronous. If the sequence is not accepted, a negative



verdict must be obviously delivered. If for instance, for the
third step of the test sequence (1), the observed sequence
from state s2 is (o, o, o, o), the verdict is negative because
this sequence cannot be obtained in the model of Fig.3.

6. DISCUSSION

The definition proposed in subsection 5.1 permits that
erroneous verdicts are avoided whatever the way that
the PLC input changes are detected. However, when an
accepted sequence of observations, which is not the one
expected, is found, the test sequence built off-line cannot
be pursued because the active state is no more the one
that was planned; in the first example of subsection 5.2,
this state is s1 while s2 is expected as the upstream state
of the next test step.

Three solutions can be then considered:

• a test sequence that covers every transition which has
not been tested is recomputed from the new active
state (this state becomes the initial state for test
sequence construction);

• the initial test sequence that has been built off-line
prior to test execution is kept but the next test step
will start from the new active state;

• a partial sequence that starts from the new active
state and ends at the state where synchronous input
changes have been detected as asynchronous is de-
termined; the initial test sequence is executed again,
once the latter state reached.

In the rest of this section the pros and cons of these solu-
tions will be discussed and illustrated. This discussion will
be presented assuming that a test step etj = (sb, I

j , sc, O
j)

has been executed and that a desynchronization phe-
nomenon lead to snew as active state.

6.1 Recomputation of a new test sequence from snew

In this case, a new sequence starting from snew and
covering at least once every transition which has not been
previously tested is built. This solution is always possible
if the set of transitions which have been already tested
during the test steps et1 to etj−1 has been stored.

On the considered example of the test sequence (1) ex-
ecuted as explained in subsection 5.2, the test steps et1
and et2 have been correctly performed; hence only 6 tran-
sitions remain to be tested. The new test sequence, from
snew = s1, to be executed by the test-bench is:

T Sα =((s1, a.b, s2, o), (s2, a.b, s2, o), (s2, a.b,

s1, o), (s1, a.b, s2, o), (s2, a.b, s1, o))
(7)

6.2 Repositioning in the initial test sequence

This solution does not require any computation of a
test sequence during test execution but relies on the
assumption that it is possible to find, in the initial test
sequence, a previously executed test step that corresponds
to the same situation than the current one (active state
snew and input values Ij ):

∃k < j such as

etk = (sx, I
j , snew, O

x) with (sx ∈ S,Ox ∈ OM )

If this assumption holds, the initial test sequence is ex-
ecuted from this step. If it does not hold, this solution
cannot be selected because some transitions might remain
not tested what is in conflict with the test objective.

Despite this solution induces no recomputation of the test
sequence, it is not always applicable without a violation of
the test objective.

On the example, the assumption holds. Indeed, the current
situation (s1, a.b) corresponds to the situation reached af-
ter the execution of the first test step et1 = (s1, a.b, s1, o).
The initial test sequence is thus restarted since the second
test step.

T Sβ =((s1, a.b, s2, o), (s2, a.b, s2, o), (s2, a.b,

s1, o), (s1, a.b, s2, o), (s2, a.b, s1, o))
(8)

It must be noted that the test sequences (7) and (8)
are identical ; as no recomputation of a test sequence is
necessary to build (8), the second solution is preferable.

6.3 Coming back to the previous test step

This solution may be applied when the preceding assump-
tion does not hold. It consists in recomputing a SIC test
sequence that leads from snew to sb then to re-execute the
initial test sequence from etj . The SIC condition is intro-
duced to avoid erroneous interpretations of synchronous
events during the test steps from snew to sb. However it
is not always possible to build a SIC sequence from two
states (Provost et al. (2010)); hence this solution is not
always possible.

For the considered example, the SIC sequence can be built
and the whole test sequence from snew is :

T Sδ =((s1, a.b, s1, o), (s1, a.b, s2, o), (s2, a.b, s2, o),

(s2, a.b, s1, o), (s1, a.b, s2, o), (s2, a.b, s1, o))
(9)

It may be noted that (9) is longer than (7) and (8) and
requires to compute SIC test steps; the third solution is
not the most efficient.

7. CONCLUSION

This paper has shown that the theoretical results obtained
for conformance testing of Mealy machines cannot be
directly used when testing real PLC. The technological
features of these devices (cyclic I/O scanning and non-
instantaneous reading of the input signals) require to
adapt the conformance relation defined when only models
are considered, to obtain correct verdicts. A first relation
based on a sequence of observations during several PLC
cycles has been introduced. This relation is not sufficient
when synchronous input changes are detected as asyn-
chronous; biased and non-valid verdicts may be delivered.
To solve this issue, a second conformance relation has been
proposed; it is based on analysis of the possible concurrent
transitions which start from the current active state and
the sequences of observations which are accepted by the
specification model.



On-going work is aiming at extending these results to
validation of PLC by using HIL (hardware-in-the-loop)
techniques. In this case, a real (hardware) PLC is con-
nected to a software simulation of the plant to form a
closed-loop system. The HIL approach differs from testing
because the PLC is no more considered in isolation; hence,
the state space to analyze is that of the PLC constrained
by the plant. Up to now, only non-exhaustive simulation
has been considered in this approach. Our objective is to
investigate whether formal analysis techniques which have
been developed for conformance testing of PLC can be
used to automatically check the correctness of the PLC
behavior from sequences of observations of the inputs and
outputs of the simulated plant.
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