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Toward nonlinear tracking and rejection using LPV control

Gérard Scorletti, Vincent Fromion and Safta de Hillerin

Abstract— (Quasi) LPV control methods and more generally
L2 gain control methods, referred to as nonlinearH∞ control
methods, are usually applied in order to ensure reference
tracking and disturbance rejection. In this paper, we exhibit
a counterexample that reveals that these specifications can not
be ensured by these methods. We then propose a new LPV
based approach in order to a priori ensure these specifications
by combining the LPV method with the incremental L2 gain
analysis of nonlinear performance. Its benefit is illustrated on
the counterexample.

I. I NTRODUCTION

The gain-scheduling approach is a very classical and
widespread but heuristic nonlinear control approach. The
underlying idea of the traditional gain-scheduling is to design
at one or more operating points LTI controllers using the
linearised plant models associated to the operating points.
The nonlinear control law is then obtained by interpolating
(or scheduling) these LTI controllers as a function of the
operating point, seee.g. [1] and references therein. Despite
its widespread application, up to recently, there was no
systematic gain scheduling controller design method which
a priori ensures the desired specifications to the closed loop
system.

Two alternative approaches to the traditional gain-
scheduling approach are based on the Linear Parameter-
Varying (LPV) methods. They were initially developed as
an extension of theH∞ control problem to the case of
LPV systems [2]–[4], that is, linear systems whose state
space matrices depend on time-varying parameters. The first
alternative is actually an improvement of the traditional
gain-scheduling approach where the operating points Linear
Time Invariant (LTI) controllers are computed in one shot
as a single LPV controller. As pointed out in [1], “Typi-
cally, stability can be assured only locally and in a “slow-
variation” setting, and typically there are no performance
guarantees.” In order to offer the potential of both stability
and performance guarantees [1], an alternative approach,
referred to as thequasi-LPVapproach, proposes to embed the
nonlinear system in an LPV model. An LPV controller can be
computed using convex optimization involving Linear Matrix
Inequality (LMI) constraints in order to ensure an upper
bound on theL2 gain of the closed loop system, see [3]–
[7] to cite a few. A nonlinear controller is then deduced
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from this LPV controller which ensuresL2 gain stability
and performance for the closed loop nonlinear system.

Since the quasi-LPV approach seems seducing, it was
largely applied for tracking and disturbance rejection,
see e.g. [8], [9]. Nevertheless, beyond theL2 gain per-
formance, it is necessary to question the actual rigorous
guarantees on usual tracking and rejection specifications.In
section III, we reveal thatthere are noneusing an illustrative
example. This example emphasizes that in contrast with the
LTI closed loop systems, it is not possible to ensure tracking
and rejection specifications using theL2 gain stability and
performance concepts, in the case of LPV or nonlinear
closed loop systems. For these usual specifications, the
quasi-LPV approach does not actually introduce performance
guarantees, as in the gain-scheduling one.

The theoretical explanation of this fact can be found
in our longstanding investigations on the nonlinear system
performance, see e.g. [10]–[12]. As the final objective is to
ensure tracking and rejection specifications for a nonlinear
system, the question is how to test these specifications
on a nonlinear system. In [11], [12], it was pointed out
that L2 gain stability and performance fail to ensure these
specifications. It was proved that these properties can be
ensured by incrementalL2 gain stability and performance.
As the two LPV approaches fail to ensure incrementalL2

gain stability and performance, in Section IV, we pave
the way to a third LPV approach whose objective is to
compute a nonlinear controller which ensures incrementalL2

gain stability and performance and which is able to ensure
tracking and rejection specifications. A first solution in a
special but important case is discussed here based on the
results proposed in [13].

Notations The identity matrix ofRn×n is denotedIn and the
zero matrix ofRn×m is denoted0n×m. The subscripts are omitted
when obvious from the context. For two operatorsA and B,
diag(A,B) denotes the operator

[
A 0

0 B

]
. For a full-rank matrix

U , U⊥ denotes an orthogonal complement ofU , i.e., UU⊥ = 0

and
[
UT U⊥

]
is of maximal rank. For a square matrixM ,

M > 0 andM ≥ 0 mean respectively positive and semi-positive
definiteness. The symbol⋆ denotes the Redheffer star product [14].
L2 is the space ofRn square integrable valued functions defined
onR, where the norm is defined by‖f‖2 = (

∫
‖f(t)‖2dt)1/2. The

causal truncationPT f is defined byPT f(t) = f(t) for t ≤ T and
0 otherwise. Theextended spaceLe

2 is the space ofRn valued
functions defined onR whose causal truncations belong toL2.
For a systemG, respectively theH∞ norm, theL2 gain and the
incremental norm, if they exist, are respectively denoted||G||∞,
||G||i,2 and ||G||∆, see e.g. [11], [12].



II. I LLUSTRATIVE CONTROL PROBLEM

Let GNL be the nonlinear plant defined byy = GNL(u)
with





ẋ1(t) = −100ϕ(x1(t))− 70x2(t) + 300u(t)

ẋ2(t) = 70x1(t)− 14x2(t)

y(t) = x1(t)
x(t0) = x0

(1)

where x(t) ∈ R
n is the state vector,u(t) ∈ R

nu the
input, y(t) ∈ R

ny the measured to-be-controlled output. The
functionϕ is defined as follows (see Fig. 1):





for |x| < 2 ϕ(x) = 0.9x3 − 2|x|x+ 1.2x
for x ≥ 2 ϕ(x) = 2x− 2.4
for x ≥ 2 ϕ(x) = 2x+ 2.4

The purpose is to design an output feedback controlleru =
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Fig. 1. Plot of the functionϕ

KNL(r, y) where r denotes the reference signal such that
the closed loop system satisfies the following specifications:

• tracking of step reference with a null static error and a
response time less than 0.1 s;

• rejection of step disturbance at the plant input;
• limited control energy

that is, typical control specifications.

III. N ONLINEAR CONTROL USINGLPV CONTROL

A. LPV control

A Linear Parameter Varying (LPV) system is a linear sys-
tem whose dynamics (e.g.defined by a state space represen-
tation) depend on time-varying exogenous parameters whose
trajectories area priori unknown [2]–[4], [6]. Nevertheless,
some information is available, in particular the intervalsthe
parameters belong to. An LPV systemGLPV is usually
defined by state-space equations of the form:y = GLPV (u)
with





ẋ(t) = A(θ(t))x(t) + B(θ(t))w(t)

y(t) = C(θ(t))x(t) + D(θ(t))w(t)

x(0) = x0

, ∃θ(.) ∈ Θ

(2)

where

• x(t) ∈ R
n is the state vector,w(t) ∈ R

nw the input,
z(t) ∈ R

nz the output;
• Θ is a set of measurable functions fromR+ to R

r such
that for all θ(.) ∈ Θ, for all t ≥ 0, θ(t) belongs to an
hyper rectangleΘt, usually [−1, 1]× · · · × [−1, 1];

• the matrix function
[
A(θ) B(θ)
C(θ) D(θ)

]
(3)

is a continuous matrix of real rational functions defined
from Θt to R

(n+nz)×(n+nw).

The different LPV control problem can be expressed as
follows. Given the (generalized) plantPLPV defined as:

[
z

y

]
= PLPV

([
w

u

])

with




ẋ(t) = A(θ(t))x(t) + Bw(θ(t))w(t) + Bu(θ(t))u(t)
z(t) = Cz(θ(t))x(t) + Dzw(θ(t))w(t) + Dzu(θ(t))u(t)
y(t) = Cy(θ(t))x(t) + Dyw(θ(t))w(t)
x(0) = x0 ∃θ(.) ∈ Θ

,

(4)
where x(t) ∈ R

n is the state vector,u(t) ∈ R
nu the

command input,y(t) ∈ R
ny the measured output,z(t) ∈

R
nz the controlled output,w(t) ∈ R

nw the disturbance input,
with the time-varying exogenous parametersθ(t) measured
on-line, find an controller defined as:u = KLPV (y) with





ẋK(t) = AK(θ(t))xK(t) + BK(θ(t))y(t)

u(t) = CK(θ(t))xK(t) + DK(θ(t))y(t)

xK(0) = 0

(5)

where xK ∈ R
n, such that the closed-loop LPV system

PLPV ⋆KLPV is asymptotically stable (for null input) with
an L2 gain less than a givenγ. In the case when the rate
of variation of θ(t) is possibly unbounded, solutions to the
LPV control problem are based on a (parameter independent)
quadratic Lyapunov functionV (x) = xTPx, seee.g. [3],
[4], [6], [7], [15]. The solutions usually rely on convex
optimization involving Linear Matrix Inequality constraints,
an important class of problems for which there exist efficient
solvers [16], [17].

B. Application of the LPV approach to nonlinear control

Roughly speaking, from a technical point of view, the
LPV L2 gain control problem was developed as an extension
of the LTI H∞ control problem to LPV systems. On the
other hand, a strong motivation for the introduction of LPV
systems was the development of computationally efficient
methods for the control of nonlinear systems. Different
approaches exist. In the most popular approach, referred toas
quasi-LPV, the purpose is to compute a non linear controller
KNL such that the closed loop systemPNL ⋆ KNL has an
L2 gain less than a givenγ where the (augmented) nonlinear

plant

[
z

y

]
= PNL

([
w

u

])
is defined by the state-space



representation:




ẋ(t) = f(x(t), w(t), u(t))

z(t) = g(x(t), w(t), u(t))

y(t) = h(x(t), w(t))

x(0) = x0

(6)

where x(t) ∈ R
n is the state vector,u(t) ∈ R

nu the
command input,y(t) ∈ R

ny the measured output,z(t) ∈
R

nz the controlled output,w(t) ∈ R
nw the disturbance input.

The functionsf andh are assumed uniformly Lipschitz and
C1 and such thatf(x0, 0) = 0 andh(x0, 0) = 0. WhenPNL

andKNL are LTI, this problem reduces to theH∞ control
problem.

To this purpose, an LPV augmented plant is obtained
from the nonlinear plant by including the nonlinear terms in
newly defined time-varying parameters. It is an embedding
approach, that is, the LPV system is selected such that the
trajectories of the nonlinear system are trajectories of the
LPV system, that is, with the following sets defined onL2,
ΩNL =

{(
x z y w u

)
| (6) is satisfied

}
and ΩLPV ={(

x z y w u
)

| (4) is satisfied
}

, we have

ΩNL ⊂ ΩLPV . (7)

In this approach, the components of theθ(t) can usually be
computed from the measurement of components of the state
space vector, seee.g. [18]. As a consequence, the objec-
tive of the quasi-LPV approach is to compute a nonlinear
controller on the LPV model using a quadratic Lyapunov
function, in order to ensure the stability of the closed loop
nonlinear system and performance evaluated by an upper
bound on theL2 gain of the closed loop system.

C. Application to the illustrative control problem

The quasi LPV approach is applied to the illustrative
control problem introduced section II using a quite typical
approach. To this purpose, an augmented plant presented
Fig. 2 which corresponds to the four- blockL2 gain criterion
is proposed. This is the nonlinear counterpart of the usual
four-block H∞ criterion [19], with a small modification in
order to introduce a pure integrator in the controller. It isa
well-known fact that for LTI closed loop systems, integral
control ensures the tracking of step reference signals and the
rejection of step disturbances, with a null static error.

The first step is to derive an LPV modelGLPV associated
to the plantGNL defined by (1) such that the inclusion (7)
holds. A simple LPV model is straightforwardly defined as:
y = GLPV (u) with





ẋ(t) = AG(θ(t))x(t) +

[
300
0

]
u(t)

y(t) =
[
1 0

]
x(t)

, θ(t) ∈ [0, 2]

where

θ(t) =
ϕ(x1(t))

x1(t)
(8)

✲KLPV

∫

W1

✻

✲

✲✲

z1(t)

✲
✻

✲ ✲r(t) y(t)u(t)ǫ(t)
−
+

✻

W2

✲z2(t)

W3

❄
GLPV

✛

Fig. 2. Augmented plant corresponding to a modified four-blockL2 gain
criterion

and

AG(θ(t)) =

[
0 −70
70 −14

]
+ θ(t)

[
−100 0
0 0

]
(9)

Since the measured signaly is equal tox1, the parameter
θ can be computed on-line using (8). The augmented LPV
plantPLPV is then obtained from Fig. 2 where the weighting
functions are defined by

• W1 = 50 in order to ensure a time response of the
reference tracking less than 0.1 s;

• W3 = 0.1 in order to ensure a time response of
the disturbance rejection larger than for the reference
tracking one;

• W2(s) = 0.1
s
10 + 1
s

1000 + 1
in order to limit the controller

bandwith.

The weighting functions are selected following the usualH∞

approach as in [4]. The LPV controller is then computed
using the approach presented in [6] in order to minimize
an upper boundγ on theL2 gain of the augmented closed
loop systemPLPV ⋆KLPV . The obtained value ofγ is 0.89.
In order to evaluate the possible conservatism of this upper
bound, θ(t) is set to a constantθi ∈ [0, 2]: in this case,
the augmented closed loop system is LTI and itsL2 gain
boils down to theH∞ norm which can be easily computed.
By computing the maximum value of theH∞ norm when
θi goes from 0 to 2 by step of 0.01, a lower bound on
the actualL2 gain is obtained: 0.85. The true value of the
L2 gain is between 0.85 and 0.89: in this example, the use
of a quadratic Lyapunov function is not very conservative.
Let us now evaluate the time domain performance with the
following scenario:(i) tracking of square periodic reference
whose mean value is 0.4 with amplitude 0.35 and frequency
0.1 Hz, see Fig. 3;(ii) rejection of a step disturbance of
amplitude 1.75 at time 4s.

The first simulation is performed onPLPV ⋆ KLPV with
θ(t) which is set to a constant, 0 (see Fig. 4) and 2 (see
Fig. 5). In both cases, the closed loop system is LTI. We
observe that the specifications are satisfied.

Now, let us simulate the LPV closed loop system with
θ(t) ∈ [0, 2] defined Fig. 6 (top): the outputy is represented
Fig. 6 (middle and bottom). Note that even if the reference
input is constant, the output is oscillating and the oscillations
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Fig. 3. Square periodic reference signalr
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Fig. 4. Simulation of the LTI closed loop system withθ = 0
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Fig. 5. Simulation of the LTI closed loop system withθ = 2
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Fig. 6. Simulation of the LPV closed loop system with time varying θ(t)
(top), outputy(t) (middle), zoom on the output (bottom)

are not damped. This result seems to be quite surprising
since the closed loop system is (L2 gain) stable. It reveals
that, in contrast with the case of LTI systems, in the case
of Linear Time Varying (LTV) systems, (exponential or
asymptotic) stability does not ensure that for constant inputs,
the internal signals and the output signals of the system
tend to a constant. As a consequence, even if the closed
loop system is (L2 gain) stable, integral control is unable to
ensure the tracking of step reference with a null static error.
Nevertheless, if the control specifications has not satisfied, it
does not mean that the closed loop system behaviour does
not have nice properties. Due to asymptotic stability, with
the same time functionθ, zero inputs but different initial
conditions, the system output converges to the same steady
state, see Fig. 7.

From the LPV controllerKLPV , a nonlinear controller is
obtained by replacingθ(t) by ϕ(y(t))

y(t) in (5), thanks to (8). Let
us simulate the behavior of this controller on the nonlinear
plant GNL defined by (1), see Fig. 8. Note that if the dis-
turbance is rejected, the tracking of step references depends
strongly on the actual value of the step. If the tracking is
satisfying for reference close to 0, it is no longer true for
constant input close to 0.75. This fact is in accordance with
the result proved, in [20], for the zero input, theL2 gain



0 0.05 0.1 0.15 0.2 0.25 0.3
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 7. Simulation of the LPV closed loop system with time varying θ(t),
zero input and different initial conditions

control solution reduces to theH∞ control solution. As in the
LTV case, in the case of nonlinear systems, in contrast with
the case of LTI systems, even if the closed loop system is (L2

gain) stable, integral control is unable to ensure the tracking
of step reference with a null static error. The behaviour is
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Fig. 8. Simulation of the non linear closed loop system, ouputy(t) (top),
zoom on the output (bottom)

actually worse than it seems. Actually, the linearisationsof
the closed-loop system defined by constant inputs could be
not unique with some of them unstable. This is another
drawback of the generalL2 gain approach. ForL2 gain stable
systems, the stability of the linearisations defined by constant
input is not sufficient for ensuring the good behaviour of the
system: resonance due to jumps can occur, see [21].

IV. N ONLINEAR INCREMENTAL CONTROL USINGLPV

In [11], [12], it was revealed that reference tracking and
disturbance rejections can be achieved for a nonlinear closed-
loop system if the nonlinear controller is computed such that
a suitable augmented plant (6) is incrementallyL2 stable
with its incrementalL2 gain less than 1.

In order to compute such a controller, we propose a
new approach, based on the LPV control. One of the key

ingredients of this approach is the generalized version of the
mean value theorem [22] which is now recalled.

Theorem 4.1:Let G̃ be a dynamical system defined from
Le
2 intoLe

2 and let us assume that its Gâteaux derivative (time
varying linearisation),DG̃[u0] exists for anyu0 belonging
to Le

2. Then‖G̃‖∆ ≤ η if and only if ‖DG̃[u0]‖i2 ≤ η for
any u0 belonging toL2.

This theorem is applied as follows. For any inputu0

belonging toLe
2, the Ĝateaux derivative ofPNL at u0 exists

and is defined by

[
z

y

]
= DPNL[w0, u0]

([
w

u

])
with





ẋ(t) = A(t)x(t) + Bw(t)w(t) + Bu(t)u(t)
z(t) = Cz(t)x(t) + Dzw(t)w(t) + Dzu(t)u(t)
y(t) = Cy(t)x(t) + Dyw(t)w(t) + Dyu(t)u(t)
x(0) = 0,

(10)

with A(t) =
∂f

∂x
(x0(t), w0(t), u0(t)), · · · Dyu(t) =

∂h

∂u
(x0(t), w0(t), u0(t)) where x0(t) is the solution of (6)

under inputsw0(t), u0(t) and the initial conditionx(0) = x0.
In order to compute a nonlinear controllerKNL such that

the closed loop systemPNL ⋆ KNL has an incrementalL2

gain less than a givenγ wherePNL is defined by (6), we first
compute the time varying linearisations (Gâteaux derivative)
DKNL[y0] of the nonlinear controllerKNL such that the
closed loop systemDPNL[u0, w0] ⋆ DKNL[y0] has anL2

gain less than a givenγ for anyw0 ∈ Le
2. The second step is

to computeKNL such thatDKNL[y0] are the time varying
linearisation ofKNL at y0.

We propose to realize the first step (computation of
DKNL[y0] for any y0) by application of the LPV control
method. To this purpose, an LPV (augmented) plant (4)
is obtained such that the trajectories of the time vary-
ing linearisations (10) of the nonlinear plant (6) are
trajectories of the LPV system, that is, with the sets
of L2ΩDNL =

{(
x z y w u

)
| (10) is satisfied

}
and

ΩLPV =
{(

x z y w u
)

| (4) is satisfied
}

, we have

ΩDNL ⊂ ΩLPV . (11)

The LPV controller is then computed such that theL2

gain of the closed loop LPV system is less thanγ. Since
the obtained LPV controller has to correspond to the lin-
earisations of the nonlinear controller, the question is how
to enforce this property during the synthesis, that is, how to
compute the LPV controller such that there exists a nonlinear
controller which can be obtained such that the trajectories
of its time-varying linearisations are trajectories of theLPV
controller. To our best knowledge, this problem is still open
in the general case. In the sequel, we nevertheless exhibit
a special class of nonlinear control problems, referred to
as “filtered cancellation control” problems for which this
problem can be solved.

A. Filtered cancellation control problem

Let us consider the particular class of (generalized) non-
linear plants (6) denoted in the sequelP̃NL and defined by



the state-space representation:




ẋ(t) = Ax(t) + B1w(t) + B2u(t) + f̃(x(t))
z(t) = C1x(t) + D11w(t) + D12u(t) + g̃(x(t))

y(t) = C2x(t) + D21w(t) + D22u(t) + h̃(x(t))
x(0) = x0

(12)

with 

f̃(x(t))
g̃(x(t))

h̃(x(t))


 =




B0

D10

D20


 p(t) (13)

where
• x(t) ∈ R

n is the state vector,u(t) ∈ R
nu the command

input, y(t) ∈ R
ny the measured output,z(t) ∈ R

nz the
controlled output,w(t) ∈ R

nw the disturbance input;
• p(t) is either measured on-line or constructed when the

components ofx(t), w(t) and u(t) necessary for the
computation ofp(t) are measured, that is, there exists
a functionβ such thatp(t) = β(x(t), w(t), u(t)).

The nonlinear controller will be defined as follows:u =

K̃p

([
y

p

])
with





ẋK(t) = AKxK(t) +BKy
y(t) +BKp

p(t)
u(t) = CKxK(t) +DKy

y(t) +DKp
p(t)

xK(0) = x0

(14)

In the case whenp(t) is computed from the measure of
components ofx(t), w(t) and u(t) a nonlinear state space

representation is obtained:u = K̃xwu





y

x

w




 with





ẋK(t) = AKxK(t) +BKy
y(t) +BKp

β(x(t), w(t), u(t))
u(t) = CKxK(t) +DKy

y(t) +DKp
β(x(t), w(t), u(t))

x(0) = x0

(15)
The incremental gain control problem Given γ > 0 and
the generalized plant̃PNL defined by (6), find a controller
of the form (14) or (15) such that the closed loop system
has an incremental gain less thanγ.

In the next subsection, a solution to this problem is
proposed.

B. LPV filtered cancellation control

When the matrices of the state space representation of the
(generalized) LPV plant (4) are rational functions ofθ(t), the
latter can be modeled by a Linear Fractional Transformation
(LFT) on a parameter block diagonal structure [6]:






ẋ(t)
z(t)
y(t)


 =




A B0 B1 B2

C1 D10 D11 D12

C2 D20 D21 0







x(t)
p(t)
w(t)
u(t)




p(t) = Θ(t) (I −D00Θ(t))−1 (C0x(t) +D01w(t) +D02u(t))
(16)

where the parameter blockΘ(t) is defined asΘ(t) =
diag(θ1(t)Im1

, · · · , θr(t)Imr
). We now assume that the sig-

nal p(t) is measured on-line, instead of the parametersθ(t).
The problem of the design of a cancellation controller for an
LPV (generalized) system can be defined as the following.

The LPV filtered cancellation control problem Given
γ > 0 and the LPV generalized plant (16), find a filtered
cancellation controlleru = Kcancel(y, p) of the form:




ẋK(t) = AKxk(t) + BKy
y(t) + BKp

p(t)

u(t) = CKxK(t) + DKuy
y(t) + DKup

p(t)

xK(0) = 0

(17)

such that the closed loop system is asymptotically stable (for
null input) with anL2 gain less thanγ.

In the papers [4], [6], convex optimization approaches,
involving LMI constraints, were proposed in order to com-
pute an LPV controller of the form (5) in the case when the
generalized plant is defined by an LFT representation (16).
The LPV controller has also an LFT representation with the
sameΘ(t) than in (16). In [13], we reveal that in the case
when in addition toy(t), some components of the vector
p(t) are measured on-line, the size ofΘ(t) block of the
controller can be reduced. If these results are applied to the
case when all the components ofp(t) are measured then the
state space matrices of the “LPV” controller can be chosen
independent ofθ(t), that is, the controller has a state-space
representation (17). In this case, a similar result can be found
in [23]. This result is very nice since, in the general case (that
is, no component ofp(t) is measured), if a reduced size is
enforced for theΘ(t) block of the controller then a non
convex constraint is introduced in the optimization problem.

Theorem 4.2:The LPV filtered cancellation control prob-
lem has a solution whenΘt = [−1, 1] × · · · × [−1, 1] if
there exist matricesP = PT , Q = QT ∈ R

n×n, T ∈ R
k×k

such that:

N T




ATP + PA PB1

[
CT

0 CT
1

]

BT
1 P −γI

[
DT

01 DT
11

]

[
C0

C1

] [
D01

D11

]
−

[
T 0
0 γI

]



N < 0 (18)

MT




AQ+QAT + · · ·
+B0TB

T
0 + γ−1B1B

T
1

QCT
0 +D00TB

T
0 +

· · ·+ γ−1D01B
T
1

C0Q+B0TD
T
00+

· · ·+ γ−1B1D
T
01

D00TD
T
00+

+γ−1D01D
T
01+

· · · −

[
T 0
0 γI

]



M < 0

(19)
[
P I
I Q

]
> 0 andT > 0. (20)

with N =

[ [
C2 D21

]⊥
0

0 Inz+k

]
andM =

[
BT

2 DT
02

]⊥

Proof: The proof is a direct application of Theorem 3.2
presented in [13].

For a givenγ > 0, find P , Q, T such that (18), (19) and
(20) is a (feasibility) convex optimization problem involving
LMI constraints. If this optimization problem has a solution
then the state space matrices of the cancellation controller
can be computed, see [13] for the details.



V. A PPLICATION TO THE NONLINEAR PERFORMANCE

CONTROL

A. A filtered cancellation control solution to the incremental
gain control problem

The major interest of the cancellation controller is that it
can be readily obtained from its time-varying linearizations.
The time-varying linearizationDP̃NL of (12) are defined by:




˙̄x(t) = Ax̄(t) + B1w̄(t) + B2ū(t) +
∂f̃
∂x

(x0(t))x̄(t)

z̄(t) = C1x̄(t) + D11w̄(t) + D12ū(t) +
∂g̃
∂x

(x0(t))x̄(t)

ȳ(t) = C2x̄(t) + D21w̄(t) + D22ū(t) + ∂h̃
∂x

(x0(t))x̄(t)

x̄(0) = 0
(21)

Let us introduce the vector̄p(t) such as



∂f̃
∂x

(x0(t))

∂g̃
∂x

(x0(t))

∂h̃
∂x

(x0(t))



=




B0

D10

D20


 p̄(t)

The solution is obtained in several steps.
1) Compute an LPV system for the time-varying lin-

earization of the nonlinear generalized plant (21) such
that for anyp̄(t), there exists aθ ∈ Θ, matricesC0,
D00, D01 andD02 such that∀t p̄(t) is defined by

Θ(t) (I −D00Θ(t))−1 (C0x̄(t) +D01w̄(t) +D02ū(t)) .

2) Solve the following (feasibility) convex optimization
problem involving LMI constraints: findP , Q, T such
that (18), (19) and (20).

3) If the problem is feasible, compute the state space
matrices of the linearization of the controller (14)

using [13], that is:̄u = DK̃p

[
y0
p0

]([
ȳ

p̄

])
with





˙̄xK(t) = AK x̄K(t) +BKy
ȳ(t) +BKp

p̄(t)
ū(t) = CK x̄K(t) +DKy

ȳ(t) +DKp
p̄(t)

x̄K(0) = 0

The corresponding nonlinear controller is then given

by: u = K̃p

([
y

p

])
with





ẋK(t) = AKxK(t) +BKy
y(t) +BKp

p(t)
u(t) = CKxK(t) +DKy

y(t) +DKp
p(t)

xK(0) = 0

wherep(t) is such that (13).

B. Application to the illustrative control problem

In order to apply the previous method, we first compute
an LPV system which embeds the time-varying linearization
DGNL[u0]: with AG defined by (9),




˙̄x(t) = AG(θ(t))x̄(t) +

[
300
0

]
ū(t)

ȳ(t) =
[
1 0

]
x̄(t)

, θ(t) ∈ [−0.3, 4] .

KLPV

∫

W1

✻

✲

✲✲

z1(t)

✲
✻

✲ ✲r(t) y(t)u(t)
..

ǫ(t)
−
+

✻

W2

✲z2(t)

W3

✲❄

✛

G

θ

✲

✛

✻
p(t)

Fig. 9. Augmented plant corresponding to a modified four-blockL2 gain
criterion

The time-varying linearization of the nonlinear generalized
plant (21) is then obtained from Fig. 9. The resolution of
the LMI optimization problem allows to obtain a controller
(that is, the matricesAK , BK , CK and DK ) for γ ≈ 1.
The simulation is performed on the nonlinear plant using
the nonlinear controller of the form (15), see Fig. 10. Note
that the tracking and disturbance rejection specificationsare
satisfied. Since for any constant input, the internal signalof
an incrementalL2 gain stable system goes to a constant [10]
whent goes to∞, necessarily the inputǫ(t) of the integrator
Fig. 9 goes to zero whent goes to∞, in order to ensure
that the integrator output goes to a constant. The static error
is then well-defined and equal to 0.

The damping can be improved by computing a controller
which usesy as an extra input, see Fig 11 and Fig 12.
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Fig. 10. Simulation of the non linear closed loop system with incremental
controller 2, ouputy(t) (top), zoom on the output (bottom)

VI. CONCLUSION

In this paper, we exhibit a counterexample which reveals
that a control approach whose purpose is to ensure for a
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✲
✻
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+

✻
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Fig. 11. Augmented plant corresponding to a modified four-block L2 gain
criterion
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Fig. 12. Simulation of the non linear closed loop system with incremental
controller, ouputy(t) (top), zoom on the outputy(t) (bottom)

nonlinear closed loop system itsL2 gain stability with the
L2 gain less than a givenγ fails to ensure usual tracking
and rejection specifications and that the quasi LPV approach
does not ensure such specifications, even if they are largely
applied for such specifications. We emphasize that in order
to ensure tracking and rejection specifications when applying
LPV control, it is necessary to associate to the LPV approach
a nonlinear framework in order to test such specifications
on a nonlinear system. This framework is the incremental
gain approach introduced in [12]. We propose a new LPV
approach in order to compute nonlinear controllers with a
priori guarantees on the tracking and rejection specifications
for a class of nonlinear systems. We point out that for
the generalization of this approach, it is necessary to solve
the “integrability problem”, that is, the computation of a
nonlinear controller from its time-varying linearisations. To
our best knowledge, such a problem is still an open problem.
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