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Toward nonlinear tracking and rejection using LPV control

Gerard Scorletti, Vincent Fromion and Safta de Hillerin

Abstract— (Quasi) LPV control methods and more generally from this LPV controller which ensureg, gain stability

L gain control methods, referred to as nonlinearH.. control  and performance for the closed loop nonlinear system.
methods, are usually applied in order to ensure reference

tracking and disturbance rejection. In this paper, we exhibit Since the quasi-LPV approach seems seducing, it was
a counterexample that reveals that these specifications can not largely applied for tracking and disturbance rejection,
be ensured by these methods. We then propose a new LPV see e.g. [8], [9]. Nevertheless, beyond thig gain per-
gasfgmiﬁﬁiﬁ’a‘iﬂei”Lgeer:‘;?h%dpm&etgzuirﬁcﬁzaseenf;eﬂdﬁCagi?lns formance, it is necessary to question the actual rigorous
aﬁalysis of r?onlinear performance. Its benefit is iIIustrQate% on guar-antees on usual tracking and reject_lon sp(_acmcatlpns.
the counterexample. section Ill, we reveal thahere are noneising an illustrative
example. This example emphasizes that in contrast with the
. INTRODUCTION LTI closed loop systems, it is not possible to ensure tragkin
The gain-scheduling approach is a very classical arghd rejection specifications using tifg gain stability and
widespread but heuristic nonlinear control approach. Theerformance concepts, in the case of LPV or nonlinear
underlying idea of the traditional gain-scheduling is tgida closed loop systems. For these usual specifications, the
at one or more operating points LTI controllers using theuasi-LPV approach does not actually introduce performanc
linearised plant models associated to the operating pointguarantees, as in the gain-scheduling one.
The nonlinear control law is then obtained by interpolating The theoretical explanation of this fact can be found
(or scheduling) these LTI controllers as a function of thg, our longstanding investigations on the nonlinear system
operating point, see.g.[1] and references therein. Despiteperformance, see e.g. [10]-[12]. As the final objective is to
its widespread application, up to recently, there was N@nsyre tracking and rejection specifications for a nonfinea
systematic gain scheduling controller design method whi stem, the question is how to test these specifications
a priori ensures the desired specifications to the closedl 10§, 3 nonlinear system. In [11], [12], it was pointed out
system. . - _that £, gain stability and performance fail to ensure these
Two alternative approaches to the ftraditional gaingpecifications. It was proved that these properties can be
scheduling approach are based on the Linear Parametgfsyred by incremental, gain stability and performance.
Varying (LPV) methods. They were initially developed aspg the two LPV approaches fail to ensure incremental
an extension of thef,, control problem to the case of gain stability and performance, in Section IV, we pave
LPV systems [2]-[4], that is, linear systems whose stalge \way to a third LPV approach whose objective is to
space matrices depend on time-varying parameters. The figgypute a nonlinear controller which ensures incremetial
alternative is actually an improvement of the traditionalain stability and performance and which is able to ensure
gain-scheduling approach where the operating points Linegacking and rejection specifications. A first solution in a

Time Invariant (LTI) controllers are computed in one shogpecial but important case is discussed here based on the
as a single LPV controller. As pointed out in [1], “Typi- reguits proposed in [13].

cally, stability can be assured only locally and in a “slow- : o _ em

variation” setting, and typically there are no performance '\°tatons Thgxlie_ntlty matrix ofR™™" is denotedl,, and the
guarantees.” In order to offer the potential of both stapili 26"© Matrix ofR”“™ is denoted), .. The subscripts are omitted
and performance guarantees [1], an alternative approa 1en obvious from  the context.AFUor two operatofls and 13 K
referred to as thquasi-LPVapproach, proposes to embed thé129(<4 B) denotes the Operato[ro B]' For a full-rank matrix
nonlinear system in an LPV model. An LPV controller can b/, U denotes an orthogonal complement(6f i.e, UU* = 0
computed using convex optimization involving Linear Matri @nd [U" U* ] is of maximal rank. For a square matrix/,
Inequality (LMI) constraints in order to ensure an uppef > 0 and M > 0 mean respectively positive and semi-positive
bound on thel, gain of the closed loop system, see [3]_definiteness. The symbeldenotes the Redheffer star product [14].

[7] to cite a few. A nonlinear controller is then deduced<2 is the space oR™ square integrable valued functions defined
on R, where the norm is defined lyf||> = ([ || £(t)||*dt)*/?. The

G. Scorletti is with Lab. Ampre UMR CNRS 5005, Dpt caysal truncatiorPr f is defined byPr f(t) = f(t) for t < T and
EEA, Ecole Centrale de Lyon, Universitde Lyon, Ecully, France h . h ded < is th & valued
gerard. scorletti @c-1yon.fr 0 otherwise. Theextended spac&£s is the space o value

V. Fromion is with Uni€ Matrematiques, Informatique et @&ome, functions defined orfR whose causal truncations belong .

Institut National de la Recherche Agronomique, Jouy-emslo§rance, For g system’, respectively theH.. norm, thel» gain and the
vincent.from on@ouy.inra.fr . . . .
Part of this work was done when S. de Hillerin was with Lab. &mgp incremental norm, if they exist, are respectively dengfed|o,

UMR CNRS 5005, Ecole Centrale de Lyon, Univegsite Lyon [|G]]i,2 and||G]|a, see e.g. [11], [12].



Il. LLUSTRATIVE CONTROL PROBLEM where
Let Gy, be the nonlinear plant defined y= G (u) » z(t) € R” is the state vectory(t) € R™ the input,

with z(t) € R"= the output;
#1(t) = —100p(x1(t)) — T0z2(t) + 300u(t) « O is a set of measurable functions frdt to R” such
b (8) = 02 (£) — 1das (£ that for all6(.) € ©, for all t > 0, 6(¢t) belongs to an
B2(t) = T0z1(¢) — 14z, (?) (@h) hyper rectangle®,, usually[—1, 1] x --- x [-1, 1];
y(t) = x1(t) « the matrix function
#lbo) = o (40 2] ©
where z(t) € R" is the state vectoru(t) € R™ the C(0) D(0)

input, y(¢) € R~ the measured to-be-controlled output. The 5 5 continuous matrix of real rational functions defined

function ¢ is defined as follows (see Fig. 1): from ©, to R(m+n=)x(n+nuw).
for |z < 2 ¢(x) = 0.92° — 2Jz|z + 1.22 The different LPV control problem can be expressed as
forz>2 ¢(x)=2r-24 follows. Given the (generalized) plaft, »y defined as:
fore>2 ¢(z)=2x+24
The purpose is to design an output feedback contraller {Z] = Prpy ({Z)D
i(t) = A(0(1)x(t) + Buw(0(t))w(t) + Bu(0(t))u(t)
2(t) = C=(0(t))x(t) + Dzw(0(t))w(t) + Dzu(6(t))u(t)
y(t) = Cy(0(1)x(t) + Dyw(6(t))w(t) ’
z(0) = zo 36(.) € ©
4)

where z(t) € R" is the state vectoru(t) € R™ the
command inputy(t) € R" the measured output(t) €
R™= the controlled outputy(t) € R™ the disturbance input,
with the time-varying exogenous parameté(s) measured
on-line, find an controller defined as:= K py (y) with

A N Ex(t) = Ar(O(0)axc(t) + Bic(0(t)y(t)
ult) = Cx(B@)ex(t) + DBOW®) ()
.’EK(O) =0

Fig. 1. Plot of the functionp

where xx € R™, such that the closed-loop LPV system

Ky1(r,y) wherer denotes the reference signal such thaf’Lpv x Kppy is asymptotically stable (for null input) with
the closed loop system satisfies the following specificationan L2 gain less than a given. In the case when the rate
. tracking of step reference with a null static error and &f variation of(¢) is possibly unbounded, solutions to the

response time less than 0.1 s; LPV control problem are based on a (parameter independent)
« rejection of step disturbance at the plant input; quadratic Lyapunov functio (z) = z* Pz, seee.g. [3],
« limited control energy [4], [6], [7], [15]. The solutions usually rely on convex

optimization involving Linear Matrix Inequality constrds,

an important class of problems for which there exist efficien
[1I. NONLINEAR CONTROL USINGLPV CONTROL solvers [16], [17].

A. LPV control o )
A Linear Parameter Varying (LPV) system is a linear sysB' Application of the LPV approach to nonlinear control

tem whose dynamice(g.defined by a state space represen- Roughly speaking, from a technical point of view, the
tation) depend on time-varying exogenous parameters whasBV L- gain control problem was developed as an extension
trajectories are priori unknown [2]-[4], [6]. Nevertheless, of the LTI H., control problem to LPV systems. On the
some information is available, in particular the intervdde  other hand, a strong motivation for the introduction of LPV
parameters belong to. An LPV syste@i;py is usually systems was the development of computationally efficient
defined by state-space equations of the fogra: G pyv(u) methods for the control of nonlinear systems. Different

that is, typical control specifications.

with approaches exist. In the most popular approach, referrasl to
i(t) = AO()z(t) + B(O(t))w(t) quasi-LPV the purpose is to compute a non linear controller
K h that the closed | t Knz h
y(t) = COM)) + DOD)wE), () €O NI SucC at the closed loop systeRy . « K1 has an

L- gain less than a give where the (augmented) nonlinear
5 is defined by the state-space

plant |:;:| = Pyp



representation:

(t) = flz(t),w(t),u(t))

2(t) = g(z(t), w(t), u(t)) 6)
y(t) = h(z(t),w(t))

x(0) = w0

where z(t) € R" is the state vectoru(t) € R" the
command inputy(t) € R" the measured output(t) €
R™= the controlled outputy(t) € R™« the disturbance input.
The functionsf andh are assumed uniformly Lipschitz and
C'! and such thaf (zg,0) = 0 andh(zo,0) = 0. WhenPy;  Fig. 2. Augmented plant corresponding to a modified four-blégkgain
and K, are LTI, this problem reduces to thié., control criterion
problem.

To this purpose, an LPV augmented plant is obtaineg
from the nonlinear plant by including the nonlinear terms in 0 —70 ~100 0
newly defined time-varying parameters. It is an embedding Ag(0(t)) = {70 _14} +6(t) [ 0 0} ©)
approach, that is, the LPV system is selected such that the

trajectories of the nonlinear system are trajectories ef thoce the measured signalis equal toz,, the parameter
LPV system, that is, with the following sets defined 65, ¢ €an be computed on-line using (8). The augmented LPV

Qnp = {(x sy w u) | (6) is satisfiec} and Qppy — plant P py is then obtained from Fig. 2 where the weighting

{(:c zZyw u) | (4) is satisfiec}, we have functions are defined by
o« Wy = 50 in order to ensure a time response of the

Qnr C Qrpy. @) reference tracking less than 0.1 s;
) e W3 = 0.1 in order to ensure a time response of
In this approach, the components of #) can usually be the disturbance rejection larger than for the reference

computed from the measurement of components of the state tracking one;

space vector, see.g. [18]. As a consequence, the objec- _ g +1 . -

tive of the quasi-LPV approach is to compute a nonlinear *® Wa(s) = 01% 1" order to limit the controller
controller on the LPV model using a quadratic Lyapunov ~ bandwith.

function, in order to ensure the stability of the closed loofThe weighting functions are selected following the ustal
nonlinear system and performance evaluated by an upp®gproach as in [4]. The LPV controller is then computed

bound on thel, gain of the closed loop system. using the approach presented in [6] in order to minimize
o _ _ an upper boundy on the £, gain of the augmented closed
C. Application to the illustrative control problem loop systemP,, py x K1 py. The obtained value of is 0.89.

The quasi LPV approach is applied to the illustrativdn order to evaluate the possible conservatism of this upper
control problem introduced section 1l using a quite typicaPound,6(t) is set to a constant; € [0, 2J: in this case,
approach. To this purpose, an augmented plant presenié§ augmented closed loop system is LTI and/ts gain
Fig. 2 which corresponds to the four- blogk gain criterion  Poils down to the?{., norm which can be easily computed.
is proposed. This is the nonlinear counterpart of the usuly computing the maximum value of td., norm when
four-block H.. criterion [19], with a small modification in ¢ goes from 0 to 2 by step of 0.01, a lower bound on
order to introduce a pure integrator in the controller. lais the actualC, gain is obtained: 0.85. The true value of the
well-known fact that for LTI closed loop systems, integralC2 gain is between 0.85 and 0.89: in this example, the use
control ensures the tracking of step reference signalstand t0f @ quadratic Lyapunov function is not very conservative.
rejection of step disturbances, with a null static error. L€t us now evaluate the time domain performance with the

The first step is to derive an LPV mod6l, py associated following scenario:(i_) tracking of square periodic reference
to the plantG v, defined by (1) such that the inclusion (7)Whose mean value is 0.4 with amplitude 0.35 and frequency

holds. A simple LPV model is straightforwardly defined as0-1 Hz, see Fig. 3{ii) rejection of a step disturbance of
y = Grpv(u) with amplitude 1.75 at time 4s.

The first simulation is performed oRy,py * K py with

o 300 6(t) which is set to a constant, 0 (see Fig. 4) and 2 (see
#(t) = Ac(0(t)(t) + { 0 } u(t) 0(t) € [0, 2] Fig. 5). In both cases, the closed loop system is LTI. We
’ ’ observe that the specifications are satisfied.
y(t) = [10]=() Now, let us simulate the LPV closed loop system with
where 6(t) € [0, 2] defined Fig. 6 (top): the outpytis represented
ot) p(z1(t)) (®) Fig. 6 (middle and bottom). Note that even if the reference

input is constant, the output is oscillating and the ostiiltzs
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Fig. 6. Simulation of the LPV closed loop system with time vagyb(t)
(top), outputy(t) (middle), zoom on the output (bottom)

are not damped. This result seems to be quite surprising
since the closed loop system i§5( gain) stable. It reveals
that, in contrast with the case of LTI systems, in the case
of Linear Time Varying (LTV) systems, (exponential or
asymptotic) stability does not ensure that for constanttisp

the internal signals and the output signals of the system
tend to a constant. As a consequence, even if the closed
loop system is £, gain) stable, integral control is unable to
ensure the tracking of step reference with a null staticrerro
Nevertheless, if the control specifications has not sadisfie
does not mean that the closed loop system behaviour does
not have nice properties. Due to asymptotic stability, with
the same time functiod, zero inputs but different initial
conditions, the system output converges to the same steady
state, see Fig. 7.

From the LPV controlled<;, py-, @ nonlinear controller is
obtained by replacing(t) by % in (5), thanks to (8). Let
us simulate the behavior of this controller on the nonlinear
plant Gy defined by (1), see Fig. 8. Note that if the dis-
turbance is rejected, the tracking of step references dispen
strongly on the actual value of the step. If the tracking is
satisfying for reference close to 0, it is no longer true for
constant input close to 0.75. This fact is in accordance with
the result proved, in [20], for the zero input, th gain



ingredients of this approach is the generalized versiomef t
] mean value theorem [22] which is now recalled.

o ‘ ] Theorem 4.1:Let G be a dynamical system defined from
o LS into £5 and let us assume that ita@aux derivative (time

| varying linearisation),DG/uo] exists for anyu, belonging

] to £5. Then||G||a < n if and only if || DG[uo]|li2 < n for

-2 1 any ug belonging toLs.

] This theorem is applied as follows. For any inpug
belonging toLs, the Giteaux derivative 0Py, atu, exists

Fig. 7. Simulation of the LPV closed loop system with time vag(t),

and is defined b } = DPy[wo, uo] (HD with
zero input and different initial conditions v

#(t) = AWE(t) + Bu(t)w(t) + Bu(t)u(t)
| o =(1) = CL(F(1) + Dow(T() + Deull)ilt) 0
control solution reduces to th#., control solution. As in the g(t) = Cy()T(t) + Dyw(t)w(t) + Dyu(t)u(t)
LTV case, in the case of nonlinear systems, in contrast with | z(0) = 0,

the case of LTI systems, even if the closed loop systerids (
gain) stable, integral control is unable to ensure the track ,,:ih Alt) = g(%(t%wo(t)’u[)(t)), -+ Dyu(t)
of step reference with a null static error. The behaviour i%h )

— (o (t), wo(t), ug(t)) wherexy(t) is the solution of (6)
25— — T under inputsu,(t), uo(t) and the initial conditionz(0) = .
T 7 In order to compute a nonlinear controll&ry;, such that

1 the closed loop systen’y, x K1 has an incremental,
Ol ’ gain less than a givepwherePy 1, is defined by (6), we first
. ' 1 compute the time varying linearisationsgt@aux derivative)

DK nrlyo] of the nonlinear controlledy;, such that the
i closed loop systenD Py [ug, wo] * DK nr[yo] has anls
PP N S U R S gain less than a givef for anywy € £5. The second step is
to computeK 1, such thatD K 1 [yo] are the time varying
linearisation of K, at yo.

18 1 We propose to realize the first step (computation of
1t DK nrlyo) for any yo) by application of the LPV control
o method. To this purpose, an LPV (augmented) plant (4)
o " ' 1 is obtained such that the trajectories of the time vary-
oy 1 ing linearisations (10) of the nonlinear plant (6) are
ki ‘ | trajectories of the LPV system, that is, with the sets
™ | | | | | ] of LoQpne = {(Zzywu) |(10) is satisfied and
s a5 4 45 5 55 E Qrpy ={(# z y wu) | (4) is satisfied, we have

Fig. 8. Simulation of the non linear closed loop system, ougt} (top), QpNnL C Qrpv. (12)

zoom on the output (bottom)
The LPV controller is then computed such that the

actually worse than it seems. Actually, the linearisatiohs gain of the closed loop LPV system is less thanSince
the closed-loop system defined by constant inputs could Iiee obtained LPV controller has to correspond to the lin-
not unique with some of them unstable. This is anothegarisations of the nonlinear controller, the question i& ho
drawback of the generdl, gain approach. Fof, gain stable to enforce this property during the synthesis, that is, how t
systems, the stability of the linearisations defined by tamis compute the LPV controller such that there exists a nontinea
input is not sufficient for ensuring the good behaviour of theontroller which can be obtained such that the trajectories
system: resonance due to jumps can occur, see [21]. of its time-varying linearisations are trajectories of tHeV
controller. To our best knowledge, this problem is still ope
in the general case. In the sequel, we nevertheless exhibit

In [11], [12], it was revealed that reference tracking ané special class of nonlinear control problems, referred to
disturbance rejections can be achieved for a nonlineaedlos as “filtered cancellation control” problems for which this
loop system if the nonlinear controller is computed such thgroblem can be solved.
a suitable augmented plant (6) is incrementafly stable
with its incrementalls gain less than 1. A. Filtered cancellation control problem

In order to compute such a controller, we propose a Let us consider the particular class of (generalized) non-
new approach, based on the LPV control. One of the kdinear plants (6) denoted in the sequel,;, and defined by

IV. NONLINEAR INCREMENTAL CONTROL USINGLPV



the state-space representation: The LPV filtered cancellation control problem Given

. = 0 and the LPV generalized plant (16), find a filtered

B(t) = Azx(t) + Biw(t) + Bou(t) + f(a(t)) v >0 ar :

2(t) = Cra(t) + Duw(t) + Disu(t) + G0 4y cancellation controller = K qncei(y, p) of the form:

25?) _ gjx(t) * Parwlt) 4 Daaelt) = 1el0) i (t) = Agar(t) + Br,y(t) + Br,p(t)

with B ut) = Cgzk(t) + Dk,,y(t) + Dk, p(t) (17)

fa(t)) By 2x(0) =0
g(a(t =|D t 13
%E Q:Et;; D;g p(t) (13) such that the closed loop system is asymptotically stable (f

null input) with an£- gain less thany.

where
« z(t) € R" is the state vector(t) € R™ the command [0 the papers [4], [6], convex optimization approaches,

input, y(t) € R the measured output(t) € R™: the involving LMI constraints, were proposed in order to com-
controlled outputa(t) € R the disturbance input; pute an LPV controller of the form (5) in the case when the

« p(t) is either measured on-line or constructed when thgeneralized plant is defined by an LFT representation (16).

p

The nonlinear controller will be defined as follows: =
& ()
p

components of:(¢), w(t) and u(t) necessary for the The LPV controller has also an LFT representation with the

computation ofp(¢) are measured, that is, there existS2meO(?) than in (16). In [13], we reveal that in the case
a function 8 such thatp(t) = B(z(t), w(t), u(t)). when in addition toy(t), some components of the vector
p(t) are measured on-line, the size 6ft) block of the
controller can be reduced. If these results are applieddo th
case when all the componentsgf) are measured then the
state space matrices of the “LPV” controller can be chosen
independent of)(¢), that is, the controller has a state-space
representation (17). In this case, a similar result can bedo

in [23]. This result is very nice since, in the general cakat(t

Y1) with

ix(t) = Axak(t) + Bk,y(t) + Bk,p(t)

u(t) = Ckrk(t)+ Dk, y(t) + Dr,p(t)  (14)
CEK(O) = X

In the case whem(t) is computed from the measure ofis, no component op(t) is measured), if a reduced size is
components ofz(t), w(t) andu(t) a nonlinear state space enforced for the©(t) block of the controller then a non

B Y convex constraint is introduced in the optimization praotle
representation is obtained:= K., x with Theorem 4.2:The LPV filtered cancellation control prob-
w lem has a solution whe®; = [-1, 1] x --- x [-1, 1] if

there exist matrice® = P, Q = QT € R™*", T € RFxk

LbK(t) = AKZ'K(t) + BKyy(lf) + BKpﬂ({L‘(t), U)(t), u(t)) such that:
u(((t))) = C’KmK(t)—l—DKyy(t)—I—DKpﬂ(x(t),w(tLu(t)) ATP 4+ PA PB [CDT C1T]
X = X
(15) T B{P =1 [DOT1 D?l}
The incremental gain control problem Given » > 0 and N N<0 (18
the generalized planPy defined by (6), find a controller Co Do || |T O
of the form (14) or (15) such that the closed loop system Cy D1y 0 ~I
has an incremental gain less than
In the next subsection, a solution to this problem is AQ + QAT + ... QCT + DooTBT +
proposed. +BoTBY +~'BiBY | .-+~ 'DnBY
B. LPV filtered cancellation control M - Dj’fTDOTO;' M<0
. . CoQ + BoT Dyo+ +v~ Do1 Do+
When the matrices of the state space representation of the 4 A4IB DT T 0
(generalized) LPV plant (4) are rational functions¢f), the T 0 AT
latter can be modeled by a Linear Fractional Transformation (19)
(LFT) on a parameter block diagonal structure [6]:
P I
2(t) { I ] >0andT > 0. (20)
i(t) A By Bi|Bs 0 Q
z(t) | = | C1 Dio D11|D12 5)(15) n
y(t) C2 D20 D[ 0 u(?) with N = {[CQ 521] I 0 ] and M = [ B} Dg;]L
| tnetk L
p(t) = O(t) (I — DooO(t)) ™" (Cox(t) + Dorw(t) + Dosu(t)) Proof: 'The proof is a direct application of Theorem 3.2
(16) presented in [13]. [ ]
where the parameter bloc®(t) is defined as©(t) = For a giveny > 0, find P, @, T such that (18), (19) and
diag(61(¢t)Ln,, -+ ,0.(t)I,,,.). We now assume that the sig- (20) is a (feasibility) convex optimization problem invoig

nal

p(t) is measured on-line, instead of the paramet¢ts.  LMI constraints. If this optimization problem has a solutio

The problem of the design of a cancellation controller for athen the state space matrices of the cancellation controlle
LPV (generalized) system can be defined as the followingcan be computed, see [13] for the details.



V. APPLICATION TO THE NONLINEAR PERFORMANCE
CONTROL

A. A filtered cancellation control solution to the incremednt
gain control problem
The major interest of the cancellation controller is that it r(t)

can be readily obtained from its time-varying linearizato
The time-varying linearizatio® Py, of (12) are defined by:

i(t) = Az(t) + Biw(t) + Bou(t) + %(xo(t))zi(t)
zZ(t) = C1Z(t) + D1yyw(t) + Disu(t) + %(xo(t))j:(t)
gj(t) _ C’gi(t) n D21’U)(t) n D22a(t) n %(xo(t))f(t) E:%er?on Augmented plant corresponding to a modified four-bldgkgain
Z(0) = 0
(21)

The time-varying linearization of the nonlinear genereadiz

Let us introduce the vectgi(t) such as ; ; , )
plant (21) is then obtained from Fig. 9. The resolution of

of (20 (1)) the LMI optimization problem allows to obtain a controller
Jz By (that is, the matricesAx, Bi, Cx and Dg) for v =~ 1.
gl(x()(t)) = | Dio | () The S|m_ulat|on is performed on the nonllnear_plant using
x Do the nonlinear controller of the form (15), see Fig. 10. Note
oh that the tracking and disturbance rejection specificatanes
%(”"O(t)) satisfied. Since for any constant input, the internal sigrial

The solution is obtained in several steps.

an incremental’; gain stable system goes to a constant [10]

1) Compute an LPV system for the time-varying lin-whent goes toco, necessarily the inpuf() of the integrator
earization of the nonlinear generalized plant (21) suckig. 9 goes to zero wheh goes tooo, in order to ensure

that for anyp(t), there exists @ € ©, matricesCy,
Dyo, Dy1 and Dy, such thatvt p(t) is defined by

@(t) (I — Doo@(t))_l (Co:f(t) + D011D(t) + Dozﬁ(t)) .

that the integrator output goes to a constant. The statiz err
is then well-defined and equal to O.
The damping can be improved by computing a controller

which usesy as an extra input, see Fig 11 and Fig 12.
2) Solve the following (feasibility) convex optimization ¥ P g g

problem involving LMI constraints: find®, @, T such
that (18), (19) and (20).

3) If the problem is feasible, compute the state space
matrices of the linearization of the controller (14)

using [13], that isw = DK, [}yf’] (LyaD with o ‘
0 0]
Ig(t) = AxTk(t) + Brk,y(t) + B, p(t) hal
u(t) = Cx@k(t) + Dk, y(t) + Dr,p(t) B
,’EK(O) =0 % 2 s 6 § 10 12 14 15 18 2

The corresponding nonlinear controller is then given

. = ) :
by U= Kp <|:p:|) with 1:: 7
tr(t) = Axrk(t) + Bk, y(t) + Br,p(t) q [ ]
u(t) = Cxrk(t) + Dk, y(t) + Dk,p(t) T ]
k() = 0
wherep(t) is such that (13). g
B. Application to the illustrative control problem E 35 z 45 5 55 E

In order to apply the previous m.ethOd’ W.e flr.St Co_rnpl.Jt%ig. 10. Simulation of the non linear closed loop system wittrémental
DG rugl: with A defined by (9),

300]u(t)

z(t) = Aq(0(1)z(t) + { 0 VI. CONCLUSION

In this paper, we exhibit a counterexample which reveals
that a control approach whose purpose is to ensure for a

, O(t) € [-0.3, 4].
y(t) = [10]z()



(1]
(2]

(3]
(4]

(5]

6
Fig. 11. Augmented plant corresponding to a modified fourdbl6g gain [6]

criterion

(7]
(8]

1.4 q

(9]

1.2 .

0.8 4

[10]

0.6 .
0.4 . B ; 4

0.2 .

[11]

[12]

[13]

[14]

[15]

[16]

35 4

Fig. 12. Simulation of the non linear closed loop system wittrémental
controller, ouputy(t) (top), zoom on the outpuj(t) (bottom)

[17]

[18]

nonlinear closed loop system ii%, gain stability with the [19]
Lo gain less than a given fails to ensure usual tracking [20]
and rejection specifications and that the quasi LPV approach
does not ensure such specifications, even if they arelargqﬁi
applied for such specifications. We emphasize that in order
to ensure tracking and rejection specifications when apglyi
LPV control, it is necessary to associate to the LPV approaé%zl
a nonlinear framework in order to test such specifications
on a nonlinear system. This framework is the increment&t3!
gain approach introduced in [12]. We propose a new LPV
approach in order to compute nonlinear controllers with a
priori guarantees on the tracking and rejection specifioati

for a class of nonlinear systems. We point out that for
the generalization of this approach, it is necessary toesolv
the “integrability problem”, that is, the computation of a
nonlinear controller from its time-varying linearisatgnTo

our best knowledge, such a problem is still an open problem.
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