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The classical Minkowski problem in Minkowski space asks, for a positive function φ on H d , for a convex set K in Minkowski space with C 2 space-like boundary S, such that φ(η) -1 is the Gauss-Kronecker curvature at the point with normal η. Analogously to the Euclidean case, it is possible to formulate a weak version of this problem: given a Radon measure µ on H d the generalized Minkowski problem in Minkowski space asks for a convex subset K such that the area measure of K is µ.

In the present paper we look at an equivariant version of the problem: given a uniform lattice Γ of isometries of H d , given a Γ invariant Radon measure µ, given a isometry group Γτ of Minkowski space, with Γ as linear part, there exists a unique convex set with area measure µ, invariant under the action of Γτ . The proof uses a functional which is the covolume associated to every invariant convex set.

This result translates as a solution of the Minkowski problem in flat space times with compact hyperbolic Cauchy surface. The uniqueness part, as well as regularity results, follow from properties of the Monge-Ampère equation. The existence part can be translated as an existence result for Monge-Ampère equation.

The regular version was proved by T. Barbot, F. Béguin and A. Zeghib for d = 2 and by V. Oliker and U. Simon for Γτ = Γ. Our method is totally different. Moreover, we show that those cases are very specific: in general, there is no smooth Γτ -invariant surface of constant Gauss-Kronecker curvature equal to 1.

Introduction

In this paper we study an adapted version of classical Minkowski problem in Minkowski space and more generally in globally hyperbolic flat Lorentzian manifolds.

Let us recall that Minkowski space R d,1 is the manifold R d+1 equipped with the flat Lorentzian structure given by Minkowski product:

X, Y -= d i=1 X i Y i -X d+1 Y d+1 .
The pseudo-sphere is the subset of R d,1 of unit future oriented time-like vectors

H d = {X ∈ R d+1 | X, X -= -1, X d+1 > 0} .
It is well-known that it is a space-like (i.e., the restriction of •, • -to T H d is positive) convex hypersurface in R d+1 isometric to the hyperbolic space.

Let S be the boundary of a strictly convex set K of R d,1 . Suppose that S is C 2 , and space-like. This assumption forces K to be unbounded: in fact either K coincides with the future of S or with its past. We will always assume that K is the future of S.

The normal vectors of S are time-like, so a natural Gauss map is defined G : S → H d sending p to the unique future-oriented unit time-like vector orthogonal to T p S. The map G is injective but in general is not surjective. We say that K is an F-convex set if G is surjective.

The classical Minkowski problem in Minkowski space asks, for a positive function φ on H d , for an F-convex set K in Minkowski space with C 2 space-like boundary S, such that 1 φ(η) is the Gaussian curvature at G -1 (η). It turns out that φ(x) corresponds to the density of the direct image of the intrinsic volume measure of S through the map G with respect to the volume measure of H d .

Analogously to the Euclidean case, it is possible to formulate a weak version of this problem. Indeed if K is any convex set whose support planes are not time-like, it is always possible to define a set-valued function G from ∂K = S to H d . Namely G sends a point p to the set of unit time-like vectors orthogonal to support planes at p. As in the previous case, the condition that support planes are not time-like implies that K coincides either with the future or the past of S. We will always assume that K is the future of S. We say that K is an F-convex set if moreover G is surjective in the sense that x∈S G(x) = H d .

In [START_REF] Fillastre | The general Christoffel problem in Minkowski spacetime[END_REF] a Radon measure is defined on H d as the first-order variation of the volume of an ǫ-neighborhood of S. If S is C 1 and space-like, it coincides with the direct image of the intrinsic volume measure on S through the map G. We denote by A(K) this measure, called the area measure.

So given a Radon measure µ on H d the generalized Minkowski problem in Minkowski space asks for a convex subset K such that A(K) = µ.

As H d is not compact, a boundary condition must be added for the well-possessedness of this problem. Geometrically this boundary condition means that we need to prescribe the domain of dependence of the surface S, or equivalently the light-like support planes of K.

Results on this direction are for instance pointed out in [START_REF] Li | Spacelike hypersurfaces with constant Gauss-Kronecker curvature in the Minkowski space[END_REF], where an assumption on the regularity of the boundary condition has been considered.

In a different direction one could look at an equivariant version of the problem. Isometries of Minkowski space are affine transformations of R d+1 whose linear part preserves the Minkowski product. We will restrict to isometries in the connected component of the identity of the isometry group, that is σ ∈ Isom(R d,1 ) whose linear part γ ∈ SO + (d, 1) preserves the orientation and left the future cone from 0 invariant. There is a natural isometric action of SO + (d, 1) on H d which identifies SO + (d, 1) with the group of orientation preserving isometries of H d .

Let us fix a group Γ τ of isometries of Minkowski space. If K is an F-convex set invariant under the action of Γ τ , the area measure A(K) is a measure on H d invariant by the group Γ < SO + (d, 1) obtained by taking the linear parts of elements of Γ τ .

So if a Γ-invariant measure µ in H d is fixed, the equivariant version of Minkowski problem asks for a Γ τ -invariant F-convex set K such that A(K) = µ. The geometric interest of this equivariant version relies on the fact that Minkowski problem can be intrinsically formulated in any flat globally hyperbolic space-time (see Section 1.1.2 of the Introduction). By using the theory developed by Mess in [START_REF] Mess | Lorentz spacetimes of constant curvature[END_REF] and generalized in [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF], this intrinsic Minkowski problem on a flat Lorentzian manifold turns out to be equivalent to an equivariant Minkowski problem in Minkowski space in many geometrically interesting cases.

From [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF] it is known that if Γ is a uniform lattice in SO + (d, 1) (that means that Γ is discrete and H d /Γ is compact), then there is a maximal Γ τ -invariant F-convex set, say Ω τ , which contains all the Γ τ -invariant F-convex sets. Moreover if K is any Γ τ -invariant F-convex set then the domain of dependence of its boundary coincides with Ω τ . So requiring the invariance under Γ τ of K automatically fixes the boundary conditions.

On the other hand, the boundary conditions arising in this setting do not satisfy the regularity conditions required in [START_REF] Li | Spacelike hypersurfaces with constant Gauss-Kronecker curvature in the Minkowski space[END_REF], so the existence result of that paper is not helpful in this context.

In the present paper we solve the equivariant generalized Minkowski problem in any dimension, with the only assumption that the group Γ is a uniform lattice of SO + (d, 1).

The study of the Minkowski problem in Minkowski space, and its relations with Monge-Ampère equation is not new. But note that, as far as the authors know, all the results concern the regular Minkowski problem (excepted a polyhedral Minkowski problem in the Fuchsian case Γ τ = Γ in [START_REF] Fillastre | Fuchsian convex bodies: basics of Brunn-Minkowski theory[END_REF]). Two previously known results are particular cases of Theorem 1.1.

The first one is a theorem of V. Oliker and U. Simon [START_REF] Oliker | Codazzi tensors and equations of Monge-Ampère type on compact manifolds of constant sectional curvature[END_REF], solving the Minkowski problem in the C ∞ setting and in the Fuchsian case, in all dimensions. Actually they consider the underlying PDE problem intrinsically on the compact hyperbolic manifold H d /Γ.

The second one is a theorem of T. Barbot, F. Béguin and A. Zeghib [START_REF] Barbot | Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes: application to the Minkowski problem in the Minkowski space[END_REF], solving the equivariant Minkowski problem in the C ∞ setting in the d = 2 case. It is interesting to note that their proof is totally different from the one presented here, and use a geometric specificity of the dimension 2. They show that a sequence of Cauchy surface with constant curvature < -∞ and bounded diameter cannot have small systole by a simple consequence of Margulis Lemma. In higher dimensions hypersurfaces with constant Gauss-Kronecker curvature does not have any bound on the sectional curvature.

We also discuss the equivariant regular Minkowski problem. Opposite to the d = 2 case, we will show that in general there is no smooth Γ τ -invariant surface of constant Gauss-Kronecker curvature equal to 1. On the other hand, we prove that there is a constant c depending on the group Γ τ such that if φ is a smooth Γ-invariant function with φ ≥ c, then the Γ τ -invariant F-convex set K such that A(K) = φdH d is smooth and strictly convex.

We prove that the constant c can be taken equal to 0 if the dual stratification in the sense of [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF] does not contain strata of dimension k < d/2, that roughly means that the dimension of the initial singularity of Ω τ is ≤ d/2. If d = 2, then this condition is always true so this gives a new proof of the result in [START_REF] Barbot | Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes: application to the Minkowski problem in the Minkowski space[END_REF]. At least for d = 3 this condition seems optimal in the sense that the construction of the example in Section 3.7 works every time the singularity of Γ τ is simplicial (in the sense of [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF]) with at least a stratum of dimension bigger than 1. In fact that construction works in any dimension under the weaker assumption that the initial singularity of Ω τ contains a (d -1)-dimensional polyhedron.

Finally, let us mention related results in [START_REF] Guan | Entire spacelike hypersurfaces of prescribed Gauss curvature in Minkowski space[END_REF], and also a "dual" problem to the Minkowski problem, known as the Alexandrov problem. Here one prescribes a "curvature measure" rather than an area measure. Curvature measures are defined using a radial function, and the Alexandrov problem was solved in the Fuchsian case in [START_REF] Bertrand | Prescription of Gauss curvature on compact hyperbolic orbifolds[END_REF]. It is not clear if this problem have an analog in the general non-Fuchsian case.

The trivial d = 1 case was considered in [START_REF] Fillastre | The general Christoffel problem in Minkowski spacetime[END_REF], so in all the paper, d ≥ 2.

Main results

Let us formulate in a more precise way the results of the paper. Let Γ be a uniform lattice in SO + (d, 1). An affine deformation of Γ is a subgroup of Isom(R d,1 ) obtained by adding translations to elements of Γ:

Γ τ = {γ + τ γ |γ ∈ Γ} .
Notice that Γ τ is determined by the function τ : Γ → R d+1 which assigns to each γ ∈ Γ the translation part of the corresponding element of Γ τ . The condition that Γ τ is a subgroup forces τ to verify a cocylce relation:

τ αβ = τ α + ατ β .
A τ -convex set is a proper convex set (globally) invariant under the action of Γ τ . Here we also require the τ -convex sets to be future: they are intersections of half-spaces bounded by space-like planes, and we suppose that the half-spaces are the future sides of the hyperplanes. When τ = 0, the term Fuchsian is sometimes used.

Theorem 1.1. Let µ be a Γ-invariant Radon measure on H d . Then for any cocycle τ there exists a unique τ -convex set with area measure µ.

The proof of the existence part Theorem 1.1 is variational. It is similar to the proofs of the Minkowski problem for convex bodies, where the functional involves the volume of the convex bodies [START_REF] Alexandrov | On the theory of mixed volumes II[END_REF][START_REF] Carlier | On a theorem of Alexandrov[END_REF]. Here the group action allows to define a covolume for any τconvex set. The set of τ -convex sets is convex (for linear combinations given by homotheties and Minkowski addition of convex sets), and the main ingredient in the variational approach is the following.

Theorem 1.2. The covolume is convex on the set of τ -convex sets.

Monge-Ampère equation and regular Minkowski problem

An important point widely used in the paper is that the Minkowski problem can be formulated in terms of a Monge-Ampère equation on the ball B in R d . Indeed the boundary of any F-convex set K is the graph of a 1-Lipschitz function ũ. The Legendre-Fenchel transform of ũ is a function h defined on B (since ũ is 1-Lipschitz). This correspondence is in fact bijective, as any convex function h on B defines dually a 1-Lipschitz convex function over the "horizontal" plane R d .

Recall that for a convex function h there is a well-defined Monge-Ampère measure MA(h) on B such that MA(h)(ω) is the Lebesgue measure of the set of sub-differentials at points in ω. If h is C 2 , then MA(h) = det (Hessh)L where L is the Lebesgue measure on B.

There is a very direct relation between the area measure A(K) and the Monge-Ampère measure MA(h) of the corresponding function h on B. Regarding R d as an affine chart in RP d , B is identified to the set of time-like directions. This gives an identification v : B → H d and we simply have

v -1 * (A(K)) = (1 -x 2 ) 1/2 MA(h).
The correspondence between F-convex sets and convex functions on B allows to define an action of Isom(R d,1 ) on the space of convex functions on B. Namely, if σ ∈ Isom(R d,1 ) and h is a convex function on B corresponding to the F-convex set K, then σ • h is the convex function on B corresponding to the F-convex set σ(K).

This action is explicitly written down in Lemma 3.4. It turns out that if σ is a pure translation then σ • h differs by h by an affine function, whereas if σ is linear, then σ • h is explicitly related (although not equal) to the pull-back of h by the projective transformation induced by σ on B.

Using those correspondences, Theorem 1.1 can be also stated in terms of Monge-Ampère equation:

Theorem 1.3. Let B be the open unit ball of R d , and • be the usual norm. Let Γ be a uniform lattice in SO + (d, 1).

Let µ be a Radon measure on B such that 1 -x 2 µ is invariant for the projective action of Γ on B.

Then, for any convex function h 0 on B such that, for any γ ∈ Γ, γ • h 0 -h 0 is the restriction to ∂B of an affine map, there exists a unique convex function h on B such that

• MA(h) = µ, where MA is the Monge-Ampère measure, • h = h 0 on ∂B.
The uniqueness part of Theorem 1.1 follows from classical uniqueness result for the Monge-Ampère equation. Conversely, the existence part of Theorem 1.1 can be regarded as a new result about Monge-Ampère equation.

The main result about Monge-Ampère equation, close to the ones considered here, is the existence of a convex function h on a strictly convex open bounded set Ω, with prescribed continuous values on the boundary, satisfying MA(h) = µ, but for µ with finite total mass, [START_REF] Rauch | The Dirichlet problem for the multidimensional Monge-Ampère equation[END_REF], [START_REF] Gutiérrez | The Monge-Ampère equation[END_REF]1.4.6]. Also result in [START_REF] Li | Spacelike hypersurfaces with constant Gauss-Kronecker curvature in the Minkowski space[END_REF] is formulated in terms of existence of a solution of Monge-Ampère equation.

Under this correspondence, in the Fuchsian case the covolume can be written as the functional introduced by I. Bakelman for the Monge-Ampère equation, see Remark 3.40.

Using again classical result of Monge-Ampère measure theory, we can get a "regular" version of Theorem 1.1. There are two main points that will allow to use those regularity results. The first one is a result contained in [START_REF] Li | Spacelike hypersurfaces with constant Gauss-Kronecker curvature in the Minkowski space[END_REF] which will imply that convex functions h on B corresponding to τ -convex sets have a continuous extension g on the boundary of the ball. The continuity of this extension is not obvious at all, at a first sight. It turns out that the convex envelope of g corresponds to the maximal τ -convex set Ω τ . So g only depends on τ .

The second ingredient we need is a positive interior upper bound of the difference between the convex envelope of g in B and the support function h of a τ -convex set with positive area measure. The example in Section 3.7 shows that some assumption must be added to get this bound. In particular we find a bound if the prescribed measure has sufficiently large total mass. This assumption can be weakened if the dual stratification of the initial singularity of Ω τ contains only strata of dimension ≥ d/2. In this cas Ω τ is called simple. This condition comes out as we notice here that the strata of the dual stratification pointed out in [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF] corresponds to the maximal regions of B where the convex envelope of g is affine. This is stated in details in Corollary 2.33. See also Theorem 3.41.

Minkowski problem in flat space times with compact hyperbolic Cauchy surfaces

A Cauchy surface in a Lorentzian manifold S is an embedded hypersurface such that any inextensible time-like path meets S exactly at one point. A space-time is said globally hyperbolic (GH) if it contains a Cauchy surface. Topologically a GH space-time M is simply S × R, where S any Cauchy surface in M . If S is any space-like surface in a flat space-time N , then it is a Cauchy surface of some neighborhood in N . An extension of S is a GH flat space-time M where a neighborhood of S in N can be isometrically embedded so that the image of S is a Cauchy surface in M . By a very general result in general relativity [START_REF] Choquet-Bruhat | Global aspects of the Cauchy problem in general relativity[END_REF], there exists a unique maximal extension M , where here maximal means that all the other extensions isometrically embeds into M .

A maximal globally hyperbolic compact flat space-time (we will use the acronym MGHCF) is a maximal flat space-time containing a compact Cauchy surface. In [START_REF] Mess | Lorentz spacetimes of constant curvature[END_REF] Mess studied MGHCF space-times in dimension 2 + 1, and a generalization of Mess theory was done in any dimension in [Bar05,[START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF].

By [Bar05] it is known that if S is the Cauchy surface of some MGHCF space-time then up to a finite covering S can be equipped by a metric locally isometric to H k × R d-k for some 0 ≤ k ≤ d. We will be mainly interested in the case where S is of hyperbolic case (that is k = d), as the Minkowski problem is not meaningful in the other cases (see Remark 1.5).

In this hyperbolic case it turns out that any MGHCF space-time (up to reversing the time orientation) is obtained as the quotient under an affine deformation Γ τ of a uniform lattice Γ in SO + (d, 1) of the interior of the maximal Γ τ -invariant F-convex set Ω τ .

Let us recall that a subset K in M is convex if whenever the end-points of a geodesic segment in M lies in K, then the whole segment is in K. Any τ -convex set is contained in Ω τ and projects to a convex subset of M . The boundary of K projects to a Cauchy surface in M , provided that K does not meet the boundary of Ω τ . Conversely if K is a convex subset of M , its pre-image in Ω τ is a τ -convex set.

By the flatness of the manifold M , the tangent bundle T M is a R d+1 flat bundle with holonomy Γ. This implies that if S is any C 1 -space-like surface, its normal field define a Gauss map

G S : S → H d /Γ
which lifts to the usual Gauss map G : S → H d . If S is a C 1 -strictly convex Cauchy surface whose future is convex, then G S is a homeomorphism. We say that a Cauchy surface in M is convex, if its future is convex. For any convex Cauchy surface it is possible to define a Gauss map as the set-valued function that sends a point p ∈ S to the set of unit time-like direction orthogonal to local support planes of S at p. It turns out that G S is always surjective.

The area measure can be defined for every convex Cauchy surface in the same way as in the local model. If S is C 1 , the corresponding area measure is a measure on H d /Γ that coincides with the intrinsic volume form via the Gauss map. So the Minkowski problem in M asks, for a fixed measure µ of H d /Γ, for a convex Cauchy surface in M whose area measure is µ.

If S is smooth with positive Gauss-Kronecker curvature, then µ = f -1 dV , where dV is the volume measure on H d /Γ and f (x) is the Gauss-Kronecker curvature of S at G -1 (x).

Lifting the problem to the universal covering, it can be rephrased as a τ -equivariant Minkowski problem, with the additional requirement that the solution of the equivariant problem must be contained in the interior of Ω τ . Even assuming that µ is a strictly positive measure (in the sense that it is bigger than cdV , where dV is the intrinsic measure on H d /Γ τ ), Theorem 1.1 does not ensure that the equivariant solution does not meet the boundary of Ω τ . To this aim we need to require that µ has sufficiently big mass.

Theorem 1.4. For any MGHCF space-time M , there is a constant c 0 such that if µ is a measure on H d /Γ such that µ > c 0 dV , then there is a unique Cauchy surface S in M with area measure equal to µ. In the Fuchsian case we may assume c 0 = 0.

The last statement follows by the fact that 0 is contained in the Γ-orbit of any point of ∂ I + (0). So if a Γ-invariant F-convex set meets the boundary of I + (0), then it coincides with the closure of I + (0). Remark 1.5. One could wonder why we consider only the case where S is of hyperbolic type. By [Bar05] if M is a MGHCF space-time whose Cauchy surfaces are not of hyperbolictype, then for any convex Cauchy surface S in M the Gauss map on the universal covering G : S → H d is never a proper map, as its image has dimension k < d and the fibers are n -k affine subspaces. Notice that in this case the Gauss-Kronecker curvature of S is zero, so the Minkowski problem is not meaningful in this case.

The results about the regular equivariant Minkowski problem allows to state the following theorem.

Theorem 1.6. Let M be a flat MGHCF spacetime, let f be a positive function on

H d /Γ of class C k+1 , k ≥ 2.
There exists c(M ) ≥ 0, such that if f < c(M ), then there exists a unique smooth strictly convex Cauchy surface S of class

C k+2 in M such that f (x) is the Gauss-Kronecker curva- ture of S at G -1 S (x). If Ω τ is simple, then c(M ) = +∞.

Outline of the paper

In Section 2 we state some basic facts we need on F-convex sets in Minkowski space. In particular, we describe the connection between Minkowski problem in Minkowski space and the Monge-Ampère equation on the disc. As already mentioned this is achieved by considering the Legendre transform h of the function ũ : R d → R whose graph is identified to the boundary of K. More intrinsically we study the support function of K, as defined in [START_REF] Fillastre | The general Christoffel problem in Minkowski spacetime[END_REF]. This is a 1-homogenous function on I + (0). The area measure of K can be directly computed by the restriction of the support function on H d , whereas its restriction on the ball coincides with h.

Although the material of this section is already known, we preferred to give a detailed exposition of the theory as we widely use this correspondence. Most of the results are only stated and some references are given for the proof. One of the results we prove in details is the multidimensional version of the Alexandrov-Heinz Theorem, Theorem 2.30. Although the proof follows closely the proof of the standard Alexandrov-Heinz Theorem given in [START_REF] Trudinger | The Monge-Ampère equation and its geometric applications[END_REF], we were not able to find a reference so details are given for the convenience of the reader.

In Section 3 we fix an affine deformation Γ τ of a uniform lattice Γ and study τ -convex sets, i.e. F-convex sets invariant by Γ τ .

After stating some simple properties on the action of the isometry group of Minkowski space on F-convex sets and dually on the space of support functions, we point out a structure of affine cone on the space of τ -convex sets. By using a result of [START_REF] Li | Spacelike hypersurfaces with constant Gauss-Kronecker curvature in the Minkowski space[END_REF] we show that the support function of a τ -convex set extends to the boundary of I + (0) and the value of the support function on the boundary g τ only depends on the cocycle. Observing that the convex envelope of g τ is the support function of the maximal τ -convex set Ω τ , we will recover the strata of H d studied in [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF] as maximal regions of H d where g τ is an affine function.

We put a distance on the space of τ -convex sets that basically corresponds to the L ∞distance on the corresponding support functions. A compactness property of this distance is proved, Lemma 3.16, that can be regarded as the analog of Blaschke Selection theorem for convex bodies. We then study area measures of τ -convex sets. They are Γ-invariant so can be regarded as measures on H d /Γ, in particular for any τ -convex set K, its total area is the total mass of the induced measure on H d /Γ. We prove a monotonicity result for the total area Lemma 3.23, which implies that a τ -convex set with sufficiently big area does not meet the boundary of the maximal τ -convex set.

After this preliminary part we introduce the covolume and study its main properties. Covolume of K is defined as the volume of the complement of K/Γ τ in Ω τ /Γ τ . In particular we prove that it is a convex functional on the set of τ -convex set. The proof of this result relies in a concavity result for the volume of particular convex bodies Lemma 3.28 and its Lorentzian version Corollary 3.29. A technical point in the proof is that we need to use a convex fundamental domain for the action of Γ τ on a τ -convex set K. Actually we are able to construct this fundamental domain only if K lies in the interior of Ω τ , but this is in fact sufficient for our aims. Using this convex fundamental domain we prove that the covolume is strictly convex on the convex subspace of τ -convex sets lying in the interior of Ω τ . Then by approximation the convexity is proved in general.

Let us explain how convexity of the covolume is related to the Minkowski problem. In the Fuchsian case (τ = 0), similarly to the Euclidean case for convex bodies [START_REF] Carlier | On a theorem of Alexandrov[END_REF], one can see that the derivative of the covolume along a family of support functions

th 1 + (1 -t)h 0 at h 0 is just -(h 1 -h 0 )dA(h 0 ).
So if µ is a Γ-invariant measure and h 0 is a Fuchsian solution of the Minkowski problem A(h 0 ) = µ, h 0 turns to be a critical point of the functional L µ (h) = covol(h) -hdµ, and by convexity of L µ it must be the minimum of h 0 . So to find out the solution one looks at minima of the functional L µ .

In the affine case some difficulties arises. First notice that in the Fuchsian case one has a simple representation formula for the covolume

covol(h) = - 1 d + 1 hdA(h)
where h is the support function [START_REF] Fillastre | Fuchsian convex bodies: basics of Brunn-Minkowski theory[END_REF]. In the affine case, the representation formula cannot be stated as in the Fuchsian case, as h is not Γ-invariant. One could wonder if covol(h) = -1 d+1 (h -h τ )dA(h), but this is false as it an be seen taking h -h τ constant for some simple examples of Ω τ .

Actually this is not a major problem, as the main point is a formula for the first order variation of the covolume, and not for the covolume itself. In fact by using the convexity of the covolume its derivative can be computed along a family of support functions th 1 +(1-t)h 0 with h 1 ≤ h 0 and this turns out to be sufficient to show that the minimum point of L µ is a solution of the Minkowski problem.

Another difference with respect to the Euclidean case is that the strategy to find the solution is slightly different. In fact first it was proved that the minimum h of the covolume on some level set {h| hdµ = 1} satisfies the equation A(h) = cµ where c is a some positive. Then by scaling h by c -1/d one finds the solution. A similar strategy could be also followed in the case we consider in the present paper, but, due to the fact that the set of τ -convex sets is not stable under homotheties, the argument would become more intricated and the strategy we propose seems in this case more direct and simple.

Indeed, using the convexity of the covolume one sees that the difference between the covolume of two τ -convex sets K 0 ⊂ K 1 can be estimated in terms of the integrals of the difference of the corresponding support functions with respect to respective area measures, see formula (36). Then refining the expected arguments in the Fuchsian case one sees that Γ τ -equivariant solutions of the equations A(h 0 ) = µ corresponds to minima of the functional L µ (h) = covol(h) -(h -h τ )dµ. The existence of the minimum is then simply achieved using the compactness property of the support functions.

Once the general Minkowski problem is proved, using the correspondence with Monge-Ampère equation we see that if the measure µ is regular with respect to the volume form of H d with smooth and strictly positive density, the corresponding solution is smooth provided that the τ -convex set lies in the interior of Ω τ . A counterexample is then given to show that in general even if µ coincides with the Lebesgue measure up to a constant factor the corresponding domain can meet the boundary of Ω τ .

Finally in the appendix we prove that the space of C 2 + τ -convex sets is dense in the space of τ -convex sets (where C 2 can be replaced by smooth). This basically implies that any convex surface in a maximal globally hyperbolic flat space-time can be approximated by smooth convex surfaces. Although the fact is not surprising, there was no proof at our knowledge, so we preferred to give some details.
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Area measure of F-convex sets

In this section, we recall some facts about particular convex sets in Minkowski space and the Monge-Ampère equation.

Background on convex sets

We refer to [START_REF] Fillastre | The general Christoffel problem in Minkowski spacetime[END_REF] for details. Let us introduce the following notations on R d,1 .

• For a time-like vector X, -X, X -= X -.

• For a set S, I + (S) is the set of the final points of curves directed by a future time-like vector and starting from S. In particular I + (0) is the future cone of the origin.

F-convex sets. Let K be a closed convex set which is defined as an intersection of the future side of space-like hyperplanes of R d,1 . Note that it may have light-like support planes but no time-like support plane. We will denote by ∂ s K the part of the boundary ∂K of K which meets space-like support planes. The Gauss map of K is a set-valued map from ∂ s K to H d , which associates to a point of ∂ s K all the unit future time-like support vectors of K at x. K is an F-convex set if its Gauss map is surjective. In other terms, any unit future time-like vector is a support vector of K. An F-convex set K is called C 2 + if its boundary is a C 2 hypersurface and its Gauss map is a C 1 diffeomorphism. We will say that K is C ∞ + if its boundary is smooth and its Gauss map is a diffeomorphism. Support functions. The (extended) support function H of K is the map from I + (0) onto R given by H(X) = sup{ p, X -|∀p ∈ K} .

The support function H determines K: indeed for any X ∈ I + (0) the affine plane

P X = {p ∈ R d,1 | p, X -= H(X)} is the support plane for K orthogonal to X so K = X∈I + (0) I + (P X ) .
By definition the support function is sublinear: it is positively homogeneous of degree 1 and subadditive (notice that being sublinear is equivalent to be convex and 1-homogeneous). Conversely any sublinear function on I + (0) is the support function of a unique F-convex set [START_REF] Fillastre | The general Christoffel problem in Minkowski spacetime[END_REF]. By homogeneity, H is determined by its restriction h on H d . We call h the hyperbolic support function of K.

If H is C 1 , by convexity we have

H(Y ) ≥ H(X) + grad - X H, Y -X -, where grad -(H) = (∂ 1 H, . . . , ∂ d H, -∂ d+1 H) is the Minkowski gradient. Moreover, since H is 1-homogeneous we have H(X) = grad - X H, X -, so we deduce that grad - X H, Y -≤ H(Y )
, that implies that grad - X H lies on I + (P Y ). Indeed, grad - X H is the only point in K with support plane orthogonal to X, that is grad - X H = G -1 (X). In fact the following lemma holds: [START_REF] Fillastre | The general Christoffel problem in Minkowski spacetime[END_REF]). If the support function H of a F -convex set K is C 1 , then ∂ s K is the range of the map χ : I + (0) → R d+1 sending X to grad - X H. Moreover, ∂ s K is strictly convex, in the sense that each space-like support plane meets K at one point.

Lemma 2.1 ([
Conversely if ∂ s K is strictly convex, the support function H is C 1 .

Since H is 1-homogeneous, its gradient is 0-homogeneous, that is constant along the radial rays. So ∂ s K is the image of the map χ : H d → R d+1 sending η to grad - η H. This map can be easily expressed in terms of the hyperbolic support function: Lemma 2.2. Let H be a convex 1-homogeneous function on I + (0). Let us denote by h its restriction to

H d . Let H be C 1 . Then χ(η) = grad H η h -h(η)η (1)
where grad H is the hyperbolic gradient regarded as a vector in R d+1 by the natural inclusion

T η H d ⊂ R d,1 . Proof. It is clear that the tangential component of grad - η H is the intrinsic gradient of h. The normal component is obtained by imposing that D η H(η) = H(η) = h(η).
By Lemma 2.1 it turns out that the injectivity of the Gauss map of K is related to the regularity of H. In particular the support function of a C 2 + F-convex set must be C 1 . This condition is clearly not sufficient. Notice indeed that it implies that χ = G -1 is a well-defined map, but still G could be set valued: e.g. ,take K = I + (0), its support function is H = 0 and G maps 0 to the whole H d .

The following characterization of C 2 + F-convex sets in terms of the hyperbolic support functions is proved in [START_REF] Fillastre | The general Christoffel problem in Minkowski spacetime[END_REF].

Lemma 2.3. A function h on H d is the support function of a C 2 + F -convex set iff it is C 2 and satisfies ∇ 2 h -hg H > 0
(2) with g H the hyperbolic metric and ∇ 2 the hyperbolic Hessian.

We denote by C 2 + (H d ) the set of hyperbolic support functions that satisfy (2). Since χ| T H d is the inverse of the Gauss map, it turns out that if K is C 2 + then Dχ| T H d is the inverse of the shape operator. Now by Equation (1) we have that if

v ∈ T η H d then Dχ(v) = D(grad H ( h))(v) -Dh(v)η -hv .
By Gauss-Weingarten formulas we deduce

D(grad H ( h)) = ∇ v (grad H (h)) + II(grad H (h), v)η
where ∇ is the Levi-Civita connection on H d and II is the second fundamental form of the immersion H d ⊂ R d,1 . Since the second fundamental form is the identity, putting together these formulas we have

Dχ| T H d = ∇(grad H (h)) -h Id .
It follows that the radii of curvature r i of K at some point p are the eigenvalues of ∇ 2h -hg H (computed with respect to the hyperbolic metric) at G(p). The curvature function of K is

φ = Π d i=1 r i = det(∇ 2 h -hg H ) . (3) 
The curvature function is defined on

H d . If G is the Gauss map of K, 1 φ • G is the Gauss-Kronecker curvature of ∂ s K. Area measures. Let ω ⊂ H d be a Borel set. V ǫ (K)(ω)
is the volume of the the set of points of K which are at Lorentzian distance at most ǫ from ∂ s K and such that the direction of their orthogonal projection onto ∂ s K is colinear to an element of ω. The (Lorentzian) area measure of K is a Radon measure on H d defined by

A(K)(ω) = lim ǫ↓0 V ǫ (K)(ω) -V 0 (K)(ω) ǫ = lim ǫ↓0 V ǫ (K)(ω) ǫ .
Remark 2.4. In the convex body case, the area measure was introduced under the name area function by A.D. Alexandrov. A difference with respect to the Euclidean case is that the Lorentzian projection on ∂ s K is well-defined in the interior of K (see [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF] for a discussion on this point). For this reason is convenient to define V ǫ (K)(ω) as the volume of points on K at distance ǫ from the boundary instead of considering the exterior of K.

If K has support function h on H d , we will denote A(K) by A( h). If h ∈ C 2 + (H d ), then A( h) = det (∇ 2 h -hg H )dH d = φdH d , (4) 
where dH d is the volume form on H d given by the hyperbolic metric and φ the curvature function. Notice that in this case A( h) coincides with the direct image of the intrinsic volume form on ∂ s K through the Gauss map. We need a result of weak convergence of the area measure. For completeness we will consider all kinds of area measures. It is proved in [START_REF] Fillastre | The general Christoffel problem in Minkowski spacetime[END_REF] that there exist Radon measures S 0 (K), . . . , S d (K) on H d such that, for any Borel set ω of H d and any ǫ > 0,

V ǫ (K)(ω) = 1 d + 1 d i=0 ǫ d+1-i d + 1 i S i (K)(ω) . ( 5 
) S i (K) is called the area measure of order i of K. Note that V ǫ (K) is itself a Radon measure.
We have that S 0 (K) is given by the volume form of H d . The area measure A(K) introduced above coincides with the area measure of order d, that is S d (K).

Lemma 2.5. Let ( hn ) n be support functions on H d of F-convex sets converging uniformly on a compact set ω to a support function h. Then, for any continuous function f :

H d → R
with compact support contained in the interior of ω, for any ǫ > 0,

ω f dV ǫ (K n ) → ω f dV ǫ (K) as n → ∞ ,
and, for 0

≤ i ≤ s, ω f dS i (K) → ω f dS i (K) as n → ∞ .
Proof. The convergence for the measures S i (K) follows from the convergence for V ǫ (K) and the linearity of the integral, using a polynomial interpolation from (5). We have to prove the convergence result for V ǫ (K). This follows directly from the following facts, which are explicitly proved in [START_REF] Fillastre | The general Christoffel problem in Minkowski spacetime[END_REF]:

• the result is true if the F-convex sets are invariant under the action of a same uniform lattice Γ, provided that ω is contained in a fundamental domain for the action of Γ.

• There exist a uniform lattice Γ and Γ-invariant convex sets Kn and K such that the set of points on K n (resp. K) with support normals in ω is, up to a translation, the set of points on Kn (resp. K) with support normals in ω. As for any subset b, V ǫ (K)(b) depends only on the subset of ∂K of points with support normals in b, and not on the whole K, it follows that

V ǫ ( Kn ) (resp. V ǫ ( K)) coincide with V ǫ (K n ) (resp. V ǫ (K)) on ω.
• As (h n ) uniformly converges to h on ω, the same is true for the support functions of Kn and K.

Support functions restricted to the ball

At a point η of H d ⊂ R d,1
, consider the radial projection from H d to the affine plane

P = η + T η H 2 .
Let us denote by v the inverse mapping v : P ∩ I + (0) → H d . We fix the point η = (0, . . . , 0, 1) and identify the affine horizontal plane P passing through η with R d through the map x → (x, 1) Let us introduce the following notations

• B is the open unit ball centered at the origin of R d , • x = (x, 1) for any x ∈ R d , • •, • the usual scalar product on R d , • • the associated norm, • λ(x) = 1 -x 2 = x -, x ∈ B, • L is the Lebesgue measure on R d .
Notice that B corresponds exactly to the intersection

P ∩ I + (0). The radial map v from B to H d is v(x) = 1 λ x, while v -1 maps (x, x d+1 ) ∈ H d to x/x d+1 = x/ 1 + x 2 ∈ B.
It can be useful to consider on B the pull-back of the hyperbolic metric (we then get the Klein model of the hyperbolic space). If dH d is the volume element for the hyperbolic metric on B, an explicit computation gives

dH d = λ -d-1 L . (6) 
Now let H be a convex 1-homogeneous function on I + (0), and consider its restriction to B × {1}. By an abuse of terminology, we will call the restriction of H to B the following map h defined on B:

h(x) = H(x) . If h is the restriction of H to H d , we then get h(x) = λ(x)h(v(x)) .
Of course a function h obtained in this way is convex on B. The following lemma says that all convex functions on B are obtained in this way.

Lemma 2.6. A convex function h on B is the restriction (in the sense above) of the following sublinear 1-homogeneous function on I + (0):

H ((x, z)) = zh(x/z) , x ∈ B, z ∈ R.
Proof. The function H is 1-homogeneous by definition. So we only need to prove that it is sub-additive. Take X = (x, x d+1 ), Y = (y, y d+1 ) ∈ I + (0). By definition,

H(X + Y ) = (x d+1 + y d+1 )h x + y x d+1 + y d+1 .
Notice that the point x+y x d+1 +y d+1 can be expressed as the following convex combination of x/x d+1 and y/y d+1 :

x

+ y x d+1 + y d+1 = x d+1 x d+1 + y d+1 x x d+1 + y d+1 x d+1 + y d+1 y y d+1 .
Since h is convex we get that

H(X + Y ) ≤ (x d+1 + y d+1 ) x d+1 x d+1 + y d+1 h x x d+1 + y d+1 x d+1 + y d+1 h y y d+1 = H(X) + H(Y ) . Corollary 2.7. Any convex function on B is the support function of a unique F-convex set of R d,1 . By Lemma 2.1, if H is C 1 , then ∂ s K is the range of the function χ : I + (0) → R d+1 sending X to grad - X H.
We express both χ and curvature function in terms of the ball support function h.

Lemma 2.8. Let H be a convex 1-homogeneous function on I + (0). Let us denote by h its restriction to B, and by h its restriction to

H d . If H is C 1 , then χ(x) = grad x h + ( x, grad x h -h(x))e d+1 ( 7 
)
If H is C 2 , then Hess x h(v, w) = λ(x) ∇ 2 h -hg (D x v(v), D x v(w)) (8) det Hess x h = λ -d-2 (x)φ(v(x)) (9) ϕ(v(x)) = λ(x) d (trHess x h -Hess x h(x, x))
with φ the curvature function and ϕ the mean radius of curvature (the mean value of the radii of curvature).

Proof. It is clear that the projection of the gradient of H to R d is equal to the gradient of h. To compute the normal component,

D xH (e d+1 ) = D xH (x) -D xH (x -e d+1 ) = H(x) -D x h(x)
where x ∈ R d is identified with (x, 0) ∈ R d+1 . Formula (7) follows. By 0-homogeneity of χ and because λv is the identity

h(x) = χ(v(x)), (λv)(x) -.
We compute

D x h(v) = D x (χ • v)(v), (λv)(x) -+ χ(v(x)), D x (λv)(v) -= χ(v(x)), D x (λv)(v) - because v(x)
is orthogonal to the tangent plane at the point χ(v(x)). For the same reason, and also because Hess x (λv) = 0 (because λv is the identity) we compute that Hess

x h(v, w) = λ(x) D v(x) χ(D x v(v)), D x v(w) - that together with Hess η H(v, w) = ∇ 2 h(v, w) -hg H (v, w) = D η χ(v), w - gives (8).
We know det ∇ 2 h -hg H = φ so det Hess h = λ d det (Dv) 2 φ and we already know det (Dv), see (6).

Let be the wave operator on R d+1 : xH = trHess x h -Hess xH (e d+1 , e d+1 ). Writing e d+1 = e d+1 -x + x, as by homogeneity Hess X H(X, •) = 0 ∀X, we have Hess xH (e d+1 , e d+1 ) = Hess x h(x, x). (10) follows because ϕ(v(x)) = 1 d x/λ H and x/λ H = λ xH by (-1)-homogeneity. Example 2.9. The support function of the convex side of the upper-sheet of the hyperboloid with radius t is H(X) = -t X -, and its restriction to H d is the constant function equal to -t. Its restriction to B is h(x) = H(x) = -tλ(x). Note that Hess h = -tHess λ, so the convexity of h implies that Hess λ is semi-negative definite.

We will denote by K(H) the convex side of the upper-sheet of the hyperboloid with radius 1.

Example 2.10. The restriction to I + (0) of the linear functionals of R d+1 are the support functions on I + (0) of the future cone of points. Their restriction to B are exactly the restriction to B of the affine maps of R d .

From (8), support functions of C 2 + F-convex sets are exactly the C 2 maps on B with positive definite Hessian.

F-convex sets as graphs

Let K be an F-convex set. Since K has no time-like support plane, each time-like line must meet K. Moreover since K is future complete (K = I + (K)) the intersection must be a future-complete half-line. So each time-like line meets ∂K exactly at one point. This shows that ∂K is a graph of a function ũ defined on the horizontal plane R d ⊂ R d+1 . Convexity of K implies that ũ is a convex function.

Let h be the support function of K on B. In this section we investigate the relation between h and ũ. To this aim it is convenient to consider the extension of h to R d defined as h :

R d → R := R ∪ {∞} , h(x) = sup k, x -|k ∈ K .
It Notice that since the dual of ũ (which is h) takes finite values on B, it turns out that ũ is 1-Lipschitz. Indeed a general fact is that proper future convex sets are exactly the graphs of 1-Lipschitz convex functions [Bon05, Lemma 3.11]. As ũ is convex and 1-Lipschitz, by Rademacher theorem, gradũ exists and is continuous almost everywhere, and its norm is less than 1.

Suppose now that h is C 1 . Putting y = grad x h ∈ R d , (7) precisely says that ∂ s K is the graph over gradh(B) ⊂ R d of the function u(y) = x, y -h(x). So (u, gradh(B)) is the Legendre transform of (h, B). Actually u is nothing but the the restriction of ũ on gradh(B) [START_REF] Rockafellar | Convex analysis[END_REF]26.4]. Note that gradh(B) -the definition domain of u -is not necessarily the whole R d . It can be for example reduced to a point (e.g. taking h = 0).

A criterion to have gradh(B) = R d is that ∂ s K is C 1 and the induced Riemannian metric is complete [Bon05, Lemma 3.1]. Space-like hypersurfaces which are graph over R d are usually called entire. Entire surfaces are not necessarily graphs of F-convex sets. A condition for a C 2 entire space-like hypersurface to bound an F-convex set can be found in [START_REF] Li | Spacelike hypersurfaces with constant Gauss-Kronecker curvature in the Minkowski space[END_REF].

If h is C 1 , strictly convex, and gradh(B) = R d , then h is of Legendre type, and the gradient of u is the inverse of the gradient of h at the corresponding points [START_REF] Rockafellar | Convex analysis[END_REF]26.5].

In particular, if moreover the Hessian of h is positive definite, then, looking the Hessian as the Jacobian of the gradient, the Hessian matrix of h is the inverse of the Hessian matrix of u at the corresponding points. So from (9) we recover the well-known formula for the Gauss-Kronecker curvature of ∂ s K:

φ -1 = 1 -gradu 2 -1-d/2
det Hess u .

Lemma 2.12. Let H be a support function of an F-convex K set on I + (0). Then there exists a sequence of C ∞ + support functions converging to H, uniformly on any compact set.

Proof. Let u : R d → R be the convex function whose graph is ∂K. Let φ n be smooth functions on R d , with compact support in a ball of radius 1/n, and with R d φ n dx = 1. By the convolution properties,

u n (x) = (u * φ n )(x) = R d u(x -y)φ n (y)dy ,
are smooth functions converging uniformly to u. More precisely since

u is 1-Lipschitz, it is straightforward to check that |u(x) -u n (x)| < 1/n.
Fact 1: The graph of u n bounds an F-convex set. Let y ∈ B. As the graph of u is an F-convex set, there exists α ∈ R such that for any

x ∈ R d , x u(x) , y 1 -= x, y -u(x) ≤ α. Since |u(x) -u n (x)| < 1/n we deduce x un(x) , y 1 -≤ α + 1/n, i.e.
there is a support plane orthogonal to (y, 1).

Notice that u n is smooth but its Hessian is not strictly positive, so in principle the inverse of the Gauss map of the corresponding graph is not differentiable. To fix this problem we consider the functions

v n = 1 - 1 n u n + 1 n f (x)
with f (x) = 1 + x 2 the graph function of the upper hyperboloid. Clearly the Hessian of v n is strictly positive. On the other hand v n converges to u uniformly only on compact sets, so we cannot use the simple argument above to show that the graph of v n bounds an F-convex set. This problem is balanced by the following observation. Fact 2: (u n -f ) is uniformly bounded from above. The F-convex set bounded by the graph of u n contains the future cone of any of its points, so there exists a constant M with u n (x) < M + x , and f (x) > x , and the result follows.

Fact 3: v n is the graph of the boundary of an F-convex set. We want to prove that, given y ∈ B, there exists α such that for any

x ∈ R d , x v n (x) , y 1 - ≤ α .
The left-hand side of the above equation is

x, y -u n (x) + 1 n (u n -f )(x) .
As u n bounds an F-convex set by Fact 1, there exists α ′ such that x, y -u n (x) < α ′ . The result follows by Fact 2. Fact 4: The support functions h n of the graph of u n converge pointwise to the support function h of the graph of u. Let y ∈ B, and let x u(x) be a point on the intersection of K and its support plane orthogonal to (y, 1). Let ǫ > 0. First we show that for n sufficiently large, h n (y) ≥ h(y) -ǫ. Notice that

h n (y) ≥ x v n (x) , y 1 - = x u(x) , y 1 - + (u(x) -v n (x)) .
As

h(y) = x u(x) , y 1 - we need v n (x) -u(x) < ǫ .
This is true for n big as v n converges to u.

Let us prove that for ǫ > 0 and

∀x ∈ R d , x v n (x) , y 1 - < h(y) + ǫ .
We have

x u(x) , y 1 - < h(y) + ǫ ,
that gives, adding v n (x) -v n (x) on the left-hand side and reordering the terms

x, y --v n (x) < h(y) + u(x) -v n (x) . But u(x)-v n (x) = u(x)-u n (x)+ 1 n (u n -f )(x)
, and the result follows by Fact 2 and because u n uniformly converge to u.

By homogeneity, we obtain the convergence on the support functions on I + (0). A classical property of convex functions says that the convergence is actually uniform on each compact set [START_REF] Hiriart-Urruty | Convex analysis and minimization algorithms. I[END_REF][START_REF] Rockafellar | Convex analysis[END_REF].

Area measure and Monge-Ampère measure

Let h be a convex function on B. For x ∈ B, the normal mapping, or subdifferential of h at x, denoted by ∂h(x), is a subset of R d defined as follow: it is the horizontal projection onto R d of the set of inward (Lorentzian) normals with last coordinate equal to one of the support hyperplanes of the graph of h at the point (x, h(x)). In other terms, p ∈ ∂h(x) if and only if, for all y ∈ B, p 1 ,

y-x h(y)-h(x) -≤ 0, i.e. h(y) ≥ h(x) + p, y -x . If ω is a Borel set of B, let us denote ∂h(ω) := ∪ x∈ω ∂h(x).
Lemma 2.13. Let G be the Gauss map of the F-convex set supported by h. Let P be the orthogonal projection from R d+1 onto the horizontal plane. Then

∂h(v -1 (ω)) = P (G -1 (ω)) . (11) 
Proof. Let h be the extension of 

h to R d . The definition of ∂ h is clear. Note that for x ∈ B, ∂ h(x) = ∂h(x). If ũ is the conjugate of h, we have [RW98, 11.3] ∂ ũ = ∂ h -1 ( 
∈ P (G -1 (v(x))).
The Monge-Ampère measure MA(h) of h is defined by MA(h)(ω) = L(∂h(ω)) . The Monge-Ampère measure of h is a Borel measure on B, finite on compact sets [Gut01, 1.1.13]. As B is σ-compact (i.e., a countable union of compact sets), the Monge-Ampère measure is a Radon measure on B.

Let us list some immediate properties. Let h be a convex function on B and K be the corresponding F-convex set. There is a precise relation between the Monge-Ampère measure of h and the area measure A(K). To this aim it is convenient to push forward the area measure A(K) to B by the radial map v -1 : H d → B. We denote by A(h) the corresponding area measure on B:

• For c > 0, ∂(ch)(x) = c∂h(x), so MA(ch) = c d MA(h) . ( 13 
)
• If A is an affine function, then ∂(h + A)(ω) is a translate of ∂(h)(ω), so MA(h + A) = MA(h) . ( 14 
) • Let h = max{h 1 , h 2 } with h i a convex
A(h)(ω) = A(K)(v(ω)) .
Proposition 2.14. Let h be a convex function on B. Then A(h) and MA(h) are equivalent. More precisely,

A(h) = λMA(h) , MA(h) = 1 λ A(h) .
Proof. The second relation will follow from the first one, because λ is positive on B. Let h ∈ C 2 (B) with positive definite Hessian. From (4), ( 9) and ( 6) we obtain

A(h) = λdet (Hess h)L
and the result follows from (16). Now let h be convex on B. From Lemma 2.12, we can find a sequence (h n ) of elements of C 2 (B) with positive definite Hessian, converging uniformly to h on compact sets. From [Gut01, 1.2.3], MA(h n ) weakly converges to MA(h). From Lemma 2.5, A(h n ) also weakly converge to A(h). The result follows because A(h n ) = λMA(h n ) and by the uniqueness part of the Riesz representation theorem. Conversely if MA(h) ≥ cL then on any ball of radius r < 1, A(h

) ≥ c(1 -r 2 ) (d+2)/2 dH d .
Let us denote by ∂ reg K the regular part of the space-like boundary of K, that is the set of points such that the Gauss map G of K is well defined. Equivalently ∂ reg K is the differentiable part of ∂ s K, i.e. the set of points contained in a unique space-like support plane. Notice that in general ∂ reg K is smaller than the the region of differentiable points in the boundary of K. For instance if K = I + (0) then ∂ reg K is empty.

Proposition 2.16. Let K be an F-convex set. The Gauss image of ∂ s K \ ∂ reg K has zero area measure.

Proof. Let Ŝ be the Gauss image in H d of the non-regular points of ∂ s K, and denote by S its radial projection to B. By Proposition 2.14 and the definition of the Monge-Ampère measure, it suffices to show that the Lebesgue measure of ∂h(S) is zero. From (11), ∂h(S) is the projection onto R d of the non-differentiable points of ∂ s K. As ∂K is the graph of a convex function, the set of non-differentiable points has zero measure.

Notice that Proposition 2.16 implies that if ∂ reg (K) is empty, the area measure is 0. In Section 2.5 we will give a precise characterization of F-convex sets with empty regular boundary.

Another simple remark implied by Proposition 2.16 is the following:

Corollary 2.17. Let K be an F-convex set, with Gauss map G and ∂K the graph of a function ũ. Then

A(K)(ω) = P (G -1 (ω))
1 -gradũ 2 dx .

Proof. Suppose that ũ is C 1 and h is the support function of

K on B. Let b = v -1 (ω). Then MA(h)(b) = L(∂h(b)) = L(∂ h(b)) (12) = L((gradũ) -1 (b)) = (gradũ) * L(b) so A(K)(ω) = b λd(gradũ) * L = ∂h(b) (λ • gradũ)dx = P (G -1 (ω))
1 -gradũ 2 dx . Now for any convex h, ũ is convex and by Rademacher theorem, gradũ is continuous except on a zero measure set N . Let us define the following measure on H d :

µ(ω) = P (G -1 (ω)) 1 -gradũ 2 dx .
By Proposition 2.16 A(K)(N ) = 0, so A(K) and µ coincide on N . Out of N they also coincide by the argument above.

Corollary 2.18. Let K be an F-convex set with ∂ s K a C 1 hypersurface. Then for ω a Borel set of H d , A(K)(ω) is the measure of the inverse image of ω by the Gauss map, for the measure given by the induced Riemannian metric on ∂ s K.

Proof. Let ∂ s K be the graph of u. For two tangent vectors U, V in R d , the first fundamental form of ∂ s K is given by

I(U, V ) = U grad x u, U , V grad x u, V - = U, V -grad x u, U grad x u, V so I = Id d -du ⊗ du. So the area element is √ det IL = 1 -gradu 2
L and the result follows from Corollary 2.17.

Remark 2.19 (Euclidean area). To define the Monge-Ampère measure, we used the Lorentzian normal vectors. Classically the definition is given by taking the Euclidean outward unit normal vectors with last coordinate equal to -1. Actually, if x = x 1 is a Lorentzian inward normal vector of some space-like surface S in R d+1 , then x -1 is a Euclidean outward normal vector. So the definition of the Monge-Ampère measure is independent of this choice.

Considering a convex function h on B, it can be seen as the restriction to B × {1} of the Lorentzian extended support function of an F-convex set K, or the restriction to B × {-1} of the Euclidean extended support function (defined on the past cone) of an unbounded convex set

K ′ . Actually K = {p ∈ R d+1 | p, x 1 -≤ h(x), ∀x ∈ B} and K ′ = {p ∈ R d+1 | p, x -1 d+1 ≤ h(x), ∀x ∈ B}, with •, • d+1 the usual scalar product of R d+1 , so K = K ′ .
If we denote by A e (h) the Euclidean area measure of K, we have in the same manner as above (or see e.g. [START_REF] Cheng | On the regularity of the Monge-Ampère equation det(∂ 2 u/∂x i ∂sx j ) = F (x, u)[END_REF])

A e (h) = λ e MA(h) ,
where λ e (x) = 1 + x 2 . In particular the Euclidean area measure and the Lorentzian area measure are equivalent. Heuristically, this is not surprising: if ω is a Borel set of B, the pre-image by the Lorentzian or the Euclidean Gauss map of ω gives the same set on ∂K. This because the hyperplane defined by the equation p, x -= h(x) coincides with the hyperplane defined by the equation p,

x d+1 = h(x).
The area measure is null on ω means that for any small parallel displacement of the support planes defined by ω, the first order variation of the volume is zero. Parallel displacement and volume determined on R d+1 by the Euclidean metric and by the Minkowski metric coincide (although the parallel displacement used in the definition of the area measure is not in the same direction in each case). It also follows that the Lorentzian area measure and the Hausdorff measure are equivalent [Sch93, Theorem 4.2.5].

Support functions with continuous extension on the sphere

Let g ∈ C 0 (∂B). A g-convex set is an F-convex set K with support function h on R d such that h|∂B = g. Not all F-convex sets are g-convex sets as h = λ -1 shows. The following result gives a sufficient condition.

Proposition 2.20 ([Li95]

). Let K be a C 2 + F-convex set with mean radius of curvature bounded from above. Then h|∂B is continuous.

For any g ∈ C 0 (∂B), there is a distinguished g-convex set, that can be introduced in many equivalent ways. They are listed in the following proposition.

Proposition 2.21. Let K be an F-convex set with support function h ∈ C 0 (B), Gauss map G, and set g = h| ∂B . The following are equivalent:

1. h is the convex envelope of g, i.e. h(x) = sup{l(x)|l affine and l ≤ g on ∂B};

2. A(K) = 0; 3. ∂ reg K is empty; 4. ∀p ∈ ∂ s K, v -1 (G(p))
is the convex hull of points of ∂B; 5. K = ℓ∈∂B I + (P g (ℓ)), with P g (ℓ) are the null hyperplane defined by •, l -= g(ℓ); 6. any g-convex set is contained in K; 7. the interior of K union ∂ s K is the domain of dependence (or Cauchy development) of the boundary S of any g-convex set: it is the set of points p of R d,1 such that all inextensible causal curve through p meet S.

Proof. (1⇔2) By Proposition 2.14, A(K) = 0 is equivalent to MA(h) = 0, which happens exactly when h is the convex envelope of h|

∂B (see [Gut01, 1.5.2]). (1⇒4) Let x ∈ v -1 (G(p)) =: C(p).
Up to compose h g by an affine function we may suppose that h g = 0 on C(p) and g ≥ 0 (it suffices to translate p to the origin). Suppose that g ≥ c > 0. Then by definition of h, h > 0, that contradicts the assumption. So g -1 (0) =: Λ is not empty. As C(p) is convex, its closure contains the convex hull C(Λ) of Λ. We want to prove that the closure of C(p) is contained in C(Λ). Let us suppose that this is false: let x ∈ C(p) and x / ∈ C(Λ). As the support function of C(Λ) at v ∈ R d is the max of the v, η for all η ∈ Λ, x / ∈ C(Λ) means that there exists a vector v such that v, η < a and v, x > a. Take the affine function l(y) = v, y -a. Note that l(x) > 0, and that g is strictly positive on l -1 [0, +∞) ∩ ∂B so there is k > 0 such that g ≥ k whenever l > 0. It follows that there is ǫ > 0 such that ǫl < g, so h g ≥ ǫl on B, but evaluating the inequality at p we get a contradiction.

(4⇒3) is clear. (3⇒2) We already know by Proposition 2.16 that if ∂ reg K is empty then A(K) = 0. Here have that (1⇔2⇔3⇔4).

(7⇔5) It is proved in [START_REF] Barbot | Domaines globalement hyperboliques de l'espace de Minkowski et de l'espace anti-de Sitter[END_REF]. (5⇒6) If H is a g-convex set then H is contained in I + (P g (ℓ)) for every ℓ ∈ ∂B so H is contained in K.

(6⇒1) Let h ′ be the convex envelope of g. Then h ≤ h ′ so K ⊂ K(h ′ ). On the other hand by hypothesis

K(h ′ ) ⊂ K so K = K(h ′ ), that is h = h ′ . (1⇒5) Let K 0 = ℓ∈∂B I + (P g (ℓ)
). Notice that if p ∈ K 0 then the affine function on B, l p (x) = x, p -satisfies l p ≤ g on ∂B. Conversely if l(x) = x, y + c is an affine function on B with f ≤ g then the point p l = y -c lies on K 0 . That is there is a 1-to-1 correspondence between points of K 0 and affine functions l with l ≤ g. Now, as the support function of K 0 is defined as h 0 (x) = sup p∈K0 x, p , the correspondence above shows that h 0 is the convex envelope of g.

The unique g-convex set satisfying the properties above will be denoted by Ω g . Its support function on B will be denoted by h g .

Remark 2.22. If g is the restriction to ∂B of an affine map (in particular if g is constant), then Ω g is the future cone of a point.

Actually, any g ∈ C 0 (∂B) has a maximal value m. Then Ω g is in the future side of light-like hyperplanes •, l -= m ∀ℓ ∈ ∂B. They meet at the point (0, . . . , 0, -m): Ω g is always contained in the future cone of a point.

Remark 2.23. With the terminology of [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF], from property 5, Ω g is a regular domain. Moreover, the space-like boundary ∂ s Ω g corresponds to the initial singularity. Given an element p ∈ ∂ s Ω g then G(p) is a ideal convex subset of H d . Since on G(p) the support function coincides with the scalar product by p, the restriction of the support function to the radial projection of G(p) to B is an affine function. So the dual stratification pointed out in [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF] gives a decomposition of H d into ideal convex regions where the support function is affine.

For x ∈ B, we will denote by F g (x) the maximal convex set of B containing x on which h g is affine. In other words,

F g (x) = v -1 (G(G -1 (v(x))).
Definition 2.24. We say that Ω g is simple if for any

x ∈ ∂ s Ω g , F g (x) has codimension k, with k ≤ d/2, k ∈ N.
Sometimes for brevity we will say that the support function h g is simple to mean that Ω g is simple.

Note that when d = 2, Ω g is always simple. In higher dimensions d > 2, Ω g is not necessarily simple. However those simple domains are of some interest in the study of MGHCF space-times (see Section 3.7).

Lemma 2.25. If K is a g-convex set contained in the interior of Ω g , then ∂ s K = ∂K. In particular, ∂ s K is an entire space-like surface.

Proof. Suppose that the statement is false. Then there would be a point p ∈ ∂K such that p, x -< h(x) for every x ∈ B. Since p is in the boundary of K and

K = {q ∈ R d+1 | q, x -≤ h(x) ∀x ∈ B} ,
there is ℓ ∈ ∂B such that p, l -= h(ℓ).

On the other hand, on ∂B the function h coincides with h g , so if the point p satisfies p, l -= h(ℓ) = h g (ℓ), it cannot lie in the interior of Ω g , contradicting the assumption on K.

We will also need the following definition, adapted from a base concept of general relativity.

Definition 2.26. A Cauchy g-convex set is a g-convex set with support function satisfying h < h g .

Clearly, a g-convex set contained in the interior of Ω g is Cauchy. The converse does not hold, as the convex set with support function h(x) = 1 2 x 2 shows. In this case g = h| ∂B is constant equal to 1/2 so h g = 1/2 and h < 1/2 on B. On the other hand gradh(B) = B = R d . Note that h is the only convex function equal to its conjugate [START_REF] Rockafellar | Convex analysis[END_REF]p. 106]. This example also shows that for a g-convex set K, ∂ s K can be a non-complete C 1 hypersurface.

The g-convex sets that we will consider in the next section will have the property that Cauchy implies contained in the interior of Ω g .

Some classical results of Monge-Ampère equations theory

We quote some results for the Monge-Ampère equation with prescribed continuous data on the boundary of the ball that will be used in the next section. The first one is about uniqueness. 

E ⊂ O, MA(u)(E) ≤ MA(v)(E), then min{u(x) -v(x)|x ∈ O} = min{u(x) -v(x)|x ∈ ∂O} .
Corollary 2.28. A g-convex set is uniquely determined by its area measure among g-convex sets.

Now we will quote some regularity results. We will need the following assumption: An extremal point of a convex set C is a point of ∂C which is not a convex combination of other points of the closure C of C. A classical result of convex geometry states that if C is compact then C is the convex hull of the extremal points of C.

Theorem 2.30 (Multidimensional Alexandrov-Heinz Theorem). Let h be a convex function on the d dimensional unit ball B d in R d such that the Monge-Ampère measure of h satisfies MA(h) ≥ c 0 L for a positive c 0 .

Suppose that h ≡ 0 on the boundary of a (d -k) ball, k ≤ d/2. Then there is a positive constant c such that h(0) < -c .

The theorem says that, if the Monge-Ampère measure of h is bounded from below by a positive constant (times the Lebesgue measure), then h cannot be affine on a (d -k)-plane. In particular, h cannot be affine on an hyperplane. If d = 2, this says that if the Monge-Ampère measure of h is bounded from below by a positive constant, then h is strictly convex. This is the usual formulation of Alexandrov-Heinz Theorem, see [TW08, Remark 3.2]. For completeness, we give a proof of Theorem 2.30 at the end of this section.The proof closely follows the proof in the 2-d case given in [START_REF] Trudinger | The Monge-Ampère equation and its geometric applications[END_REF].

Remark 2.31. The assumption on the dimension on k in the Theorem is optimal. In fact a famous example due to Pogorelov [Pog78, shows that for d ≥ 3 there exists a convex function f on B d with strictly positive Monge-Ampère measure (in the sense above) which is constant on a segment.

Actually the example can be easily generalized: let k > d/2 and for any vector

x ∈ R d let r(x) = x 2 d-k+1 + • • • + x 2 d and t(x) = x 2 1 + • • • + x 2 d-k . Consider the function f (x) = βr(x) α (1 + βt(x) 2 )
with α = 2k/d and β > 1. This function is 0 on the ball B d-k of dimension d -k defined by the equation

x d-k+1 = • • • = x d = 0. Moreover f is smooth on B d \ B d-k and C 1 on B d (
here the assumption on k is needed). A direct computation shows that for a suitable choice of β the function f satisfies det Hessf ≥ c 0 on B d \ B d-k and some positive constant c 0 . From this one simply argues that the Monge-Ampère measure of f is bigger than c 0 L.

As we will not use this result in the paper we omit the computation leaving it to the reader (basically it can be done following the same line as in [Pog78, pp. 81-86]).

Theorem 2.32 ([TW08, Theorem 3.1]). Let h be a strictly convex solution of

MA(h) = ϕL on a ball O. Suppose ϕ > 0 and ϕ ∈ C 1,1 (O). Then h ∈ C 3,α (O) for any α ∈ (0, 1). If furthermore ϕ ∈ C k,α ( 
O) for some k ≥ 2 and α ∈ (0, 1), then h ∈ C k+2,α (O).

Corollary 2.33. Let K be a g-convex set with support function h and such that

A(K) = f dH d with f ∈ C k+1 (H d ), k ≥ 2 and c 2 ≥ f ≥ c 1 > 0. If moreover 1. h g is simple, or 2. h < h g on B, then ∂ s K is a strictly convex C k+2 hypersurface.
Proof. First notice that 1. implies 2.

Indeed suppose that h = h g at some point x. By Proposition 2.21, F g (x) =: F is a convex set with vertices on the boundary and h g is affine on F . Thus since h coincides with h g on ∂B ∩ F and at some interior point we get that those functions coincide on the whole F . Up to compose by an affine transformation we may assume that h = h g is zero on F .

If the dimension of F is d, since A(K) is zero on F and the interior of F is non empty, this contradicts the assumption on A(K). Otherwise, as h g is simple Theorem 2.30 implies that h is strictly negative on F , giving a contradiction, So we suppose that 2. is fulfilled.

Let us first check that h is strictly convex. Suppose that h is not strictly convex. There exists a set C on which h = l, with l an affine map. Let us write

C = {x ∈ B|h ′ (x) = 0}
where h ′ = h -l is a convex function on B. Note that MA(h) = MA(h ′ ) by ( 14). Let B ǫ be the open ball centered at the origin of radius 0 < ǫ < 1, and let C ǫ = C ∩ B ǫ . Choose ǫ so that C ǫ is not empty. On B ǫ , λ is bounded from below by a positive constant depending on ǫ, hence by the previous paragraph, MA(h ′ ) satisfies (17). So Theorem 2.29 applies, and the extremal points of C ǫ are on the boundary of B ǫ . This is true for any ǫ ′ > ǫ, so the extremal points of C are on ∂B. Clearly, C has at least two extremal points x 0 , x 1 in ∂B, and h = l on the segment joining x 0 to x 1 . As h = h g on ∂B, by definition of h g , h = h g on the segment, that contradicts the hypothesis h < h g on B. Hence h is strictly convex.

For any 0 < ǫ < 1, f λ -d-2 has the same regularity than f on the ball of radius ǫ, so from Theorem 2.32, h ∈ C k+2 on this ball, hence h ∈ C k+2 (B). The determinant of the Hessian of h is equal to f λ -d-2 > 0, so the principal radii or curvature of K are positive. K is then a C 2 + F-convex set, and in this case ∂ s K has the same regularity than h [FV13].

Remark 2.34. Another result of Caffarelli says that if h is the support function of a gconvex set, (17) is satisfied, and h(x

) < h g (x) at x ∈ B, then h is C 1,α at x, for 0 < α < 1, see [Gut01, 5.4.6].
For the particularities of the d = 2 case, see also [START_REF] Nikolaev | Convex surfaces with positive bounded specific curvature, and a priori estimates for Monge-Ampère equations[END_REF], [START_REF] Pogorelov | Extrinsic geometry of convex surfaces[END_REF] for different viewpoints. The g affine case has also particularities, see [START_REF] Gutiérrez | The Monge-Ampère equation[END_REF][START_REF] Trudinger | The Monge-Ampère equation and its geometric applications[END_REF] or [CY77, Theorem 7].

Finally we give a proof of Theorem 2.30.

Proof of Theorem 2.30. The theorem will follow from the following result.

Fact: Let h be a C 2 function on B d such that there is c 0 > 0 with Hessh ≥ c 0 Id. Then there is a constant c > 0 depending on c 0 , on the Lipschitz constant of h on 3 4 B d , on k, and on d, such that, sup

∂B d-k h -h(0) > c .
Without loss of generality, we set

B d-k = {x ∈ B d |x d-k+1 = • • • = x d = 0}
. For x ∈ B d , let us denote x = (x 1 , . . . , x d-k , 0, . . . , 0) and x = (0, . . . , 0, x d-k+1 , . . . , x d ), so that if x ∈ B d-k , then x = x.

Up to a translation, let us assume that sup ∂B d-k h = 0. Then by convexity, h ≤ 0 on B d-k . Using this and again convexity, we have actually on

B d-k : 0 ≥ h (x) ≥ -2|h(0)| . ( 18 
) Let D = 1 4 B d-k × 1 4 B k = x | x < 1 4 , x < 1 4 .
First we will prove that at every x ∈ D the derivatives of h along the first d -k directions are estimated as follows:

|∂ i h(x)| < 8 (|h(0)| + C x ) for i ≤ d -k , ( 19 
)
where C is the Lipschitz constant of the restriction of h to 3 4 B d . For sake of simplicity we prove the formula for i = 1.

As

h is C-Lipschitz on 3 4 B d , using (18), if x ∈ 1 2 B d we have h(x) ≥ h(x) -C x ≥ -2|h(0)| -C x , h(x) ≤ h(x) + C x ≤ C x .
As for a differentiable convex function f : R → R we have f ′ (x)(y -x) ≤ f (y) -f (x), for x ∈ D ⊂ 1 2 B d , we have that for some c independent of j. So sup

∂B d-k (1-1 j ) h -h(0) + 2 j > c .
Now h is convex and is 0 on ∂B d-k , so it is non-positive on B d-k , so

-h(0) + 2 j > c .
Letting j go to ∞ we get -h(0) ≥ c.

3 Equivariant convex sets

Definition

We fix a uniform lattice Γ in SO + (d, 1). Recall that an affine deformation of Γ is a subgroup Γ τ of Isom(R d,1 ) obtained by adding a translation part to elements of Γ. Thus an affine deformation is defined by the translation function τ : Γ → R d+1 . Given γ ∈ Γ we denote by γ τ the corresponding element in Γ τ , i.e. the affine transformation γ τ (x) = γ(x) + τ γ . The condition that Γ τ is a subgroup forces τ to verify the cocycle relation

τ αβ = τ α + ατ β .
The set of cocycles is a vector space of finite dimension denote here by Z 1 (Γ, R d+1 ).

The subgroup of Isom(R d,1 ) obtained by conjugating Γ by a translation in R d+1 of a vector t 0 is an affine deformation Γ τ of Γ. We say that such deformation is trivial. The corresponding cocycle is τ α = α(t 0 ) -t 0 . A cocycle obtained in this way is called a coboundary. The set of coboundary is a subspace of

Z 1 (Γ, R d+1 ) of dimension d + 1. The quotient H 1 (Γ, R d+1 ) = Z 1 (Γ, R d+1 )/B 1 (Γ, R d+1 ) is a geometrically meaningful object under different points of view.
If Γ is torsion free, it parameterizes the MGHCF structures on the manifold R × (H d /Γ), but, if d > 2, it is also the Zarinski tangent space at the identity of the character variety of representations of Γ into SO(d + 1, 1) (see [START_REF] Scannell | Infinitesimal deformations of some SO(3, 1) lattices[END_REF]).

Recall from the introduction that a τ -convex set is a closed future convex set invariant under the action of Γ τ .

If Γ is not torsion-free, then by Selberg Lemma it contains a torsion free normal subgroup Γ ′ of finite index. By [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF]Bar05], there exists a unique maximal convex subset invariant under Γ ′ τ . By uniqueness it is also Γ τ -invariant. That is, τ -convex sets always exist.

Remark 3.1. The argument to show the existence of τ -convex set for general uniform lattices is quite general. It turns out that if Theorems 1.1 and 1.3 hold for Γ ′ , then they also hold for Γ. So there is no loss of generality to assume that Γ is torsion-free.

In the sequel we will always make such assumption, leaving to the reader the details in the general case.

First we want to show that the Gauss map of a τ -convex set is surjective.

Lemma 3.2. A τ -convex set is an F-convex set.
Proof. By the invariance of K, if η is a support vector for K at p, then γ(η) is a support vector for K at γ τ (p). Thus the image of the Gauss map is Γ-invariant.

On the other hand, it is easy to see that if η 1 , η 2 ∈ H d are support vectors of K, then all the points on the geodesic segment of H d between η 1 and η 2 are support vectors. That is, the image of the Gauss map is convex.

Since Γ is a uniform lattice, the only Γ-invariant non-empty convex subset is H d , so the Gauss map is surjective.

As stated in the introduction, there is a natural action of Isom(R d,1 ) on the set of the support functions of F-convex sets. Basically σ • H is by definition the support function of σ(K). It turns out that K is a τ -convex set if and only if its support function H is fixed by the action of Γ τ .

Another simple remark is that the action of Isom(R d,1 ) on the set of support functions preserves the natural partial order. Indeed since we have H ≤ H ′ if and only if the corresponding F-convex set satisfy K ⊂ K ′ , it turns out that

H ≤ H ′ ⇒ σ • H ≤ σ • H ′ .
(21) The function σ • H can be explicitly described in terms of σ and H. Lemma 3.3. If H is a support function of an F-convex set, and σ ∈ Isom(R d,1 ) has linear part γ and translational part τ , then

(σ • H)(X) = H(γ -1 X) + τ, X -. ( 22 
)
Proof. Let K be the F-convex set corresponding to H. We have

(σ•H)(X) = sup p∈σK X, p -= sup q∈K X, σq -= sup q∈K X, γq -+ X, τ γ -= H(γ -1 (X))+ X, τ γ -.
In other words the linear part of σ acts on H by pull-back, instead the translation τ adds a linear factor to H.

Notice that if H is a τ -support function, then γ τ • H = H so we have

H(X) = H(γ -1 X) + τ γ , X - that is, putting Y = γ -1 X H(γY ) = H(Y ) + γ -1 τ γ , Y -= H(Y ) -τ γ -1 , Y -.
(23) Notice that equations ( 23) are linear but, if τ = 0, not homogeneous. So the set of functions satisfying ( 23) is an affine space whose tangent space is the space of Γ-invariant functions.

It follows that a convex combination of τ -support function is still a τ -support function. If K 1 and K 2 are τ -convex set then for any 0

≤ λ ≤ 1, λK 1 + (1 -λ)K 2 is a τ -convex set.
In other words, for those operations, the set of τ -convex sets is convex.

Moreover if K 1 is a τ -convex set and K 2 is a Γ-invariant set, then K 1 + K 2 is again a τ -convex set.

As explained in Section 2.1, a support function H is determined by its restriction on H d , denoted here by h and by its restriction on the ball B, say h, where more precisely we embed B into I + (0) by the affine map x → x = x 1 and put h(x) = H(x). Notice that since H d is left invariant by the action of linear isometries of R d,1 , the action of Isom(R d,1 ) on the space of hyperbolic support functions can be easily deduced by (22). In fact for η ∈ H d we have (σ

• h)(η) = h(γ -1 η) + τ, η -, so if h is the hyperbolic support function of a τ -convex set we deduce h(γζ) = h(ζ) -τ γ -1 , ζ -, for ζ ∈ H d .
The action of Isom(R d,1 ) on the ball support functions (that are the convex functions on B) is more complicated, due to the fact that the immersion of B into I + (0) is not invariant by the action of Isom(R d,1 ). The translation part contributes by adding an affine function, whereas the linear part of σ does not act simply by pull-back. More precisely, notice that B is naturally identified to the projective set of the lines contained in I + (0), that is a subset of RP d+1 . As SO + (d, 1) preserves I + (0) there is a natural projective action of SO + (d, 1) on B. Given γ ∈ SO + (d, 1) let us denote by γ the corresponding projective transformation of

B γ(x) 1 = 1 (γ(x)) d+1 γ(x) .
Using ( 22) and the 1-homogeneity of H we deduce how Isom(R d,1 ) acts on the ball support functions.

Lemma 3.4. For σ ∈ Isom(R d,1 ) and h a convex function on B,

(σ • h)(x) = (γ -1 (x)) d+1 h(γ -1 (x)) + x, τ γ - = λ(x) λ(γ -1 x) h(γ -1 (x)) + x, τ γ -.
Proof. We have (σ

• h)(x) = (σ • H)(x) = H(γ -1 x) + x, τ γ -.
On the other hand,

H(γ -1 x) = (γ -1 (x)) d+1 H γ-1 x 1 = (γ -1 (x)) d+1 h(γ -1 x) .
So the first part of the formula is proved. Remark now that

λ(x) = x -= γ -1 x -= (γ -1 (x)) d+1 γ-1 x -= (γ -1 (x)) d+1 λ(γ -1
x) and so also the second part of the formula holds.

Since isometries of Minkowski space preserve the volume, the area measure associated to any F-convex set is preserved by the action: A(σK) = γ * A(K). In particular if K is a τ -convex set, then A(K) is a Γ-invariant measure.

Using the correspondence between A(K) and the Monge-Ampère measure associated to the ball support function stated in Proposition 2.14, we deduce that the action of Isom(R d,1 ) on the set of convex functions of B effects in a very controlled way the Monge-Ampère measure.

Lemma 3.5. If h is a convex function of B and σ ∈ Isom(R d,1 ) then

MA(σ • h) = 1 -γ-1 (x) 2 1 -x 2 γ * MA(h) . Proof. If v : B → H d is the radial map, we have MA(σ • h) = λ -1 (v -1 ) * (A(σK)) = λ -1 (v -1 ) * (γ * A(K)). Since v -1 γ = γv -1 we conclude that MA(σ • h) = λ -1 (γ * )(λMA(h)). Corollary 3.6. For any σ ∈ Isom(R d,1 ), c 0 ∈ R and C compact subset of B, there is a constant c = c(σ, c 0 , C) such that if MA(h) ≥ c 0 L on B then MA(σ • h) ≥ cL.
Moreover c is uniformly bounded if the linear part of σ lies in a compact subset of SO + (d, 1).

Extension of τ -support functions to the boundary

Proposition 3.7. Let τ ∈ Z 1 (Γ, R d+1 ). Then there exists g τ ∈ C 0 (∂B) such that τ -convex sets are g τ -convex sets.

Proof. As there exists a C 2 + τ -convex set with constant mean radii of curvature [START_REF] Fillastre | The general Christoffel problem in Minkowski spacetime[END_REF], from Proposition 2.20, the corresponding support function on the ball, say h 0 , extends to the sphere ∂B. Denote by g τ the extension of h 0 to ∂B.

Let us take any other τ -convex set K. We want to prove that its support function on the ball, say h, extends g τ . By (23) we have that the difference H -H 0 is a Γ-invariant function on I + (0). So, its restriction to H d reaches a minimum a and a maximum b. Using that on the ball

h(x) = H(x, 1) = λ(x)H(v(x)), we deduce that aλ(x) < h(x) -h 0 (x) < bλ(x)
As λ(x) = 1 -x 2 goes uniformly to 0 as x → 1 we get the result.

So the value of the extension on the sphere depends only on τ .

Remark 3.8. The argument of the proof of Proposition 3.7 shows that if f is any bounded function on H d , then the restriction of its 1-homogeneous extension to the ball, say f , is continuous on B and in fact f | ∂B is zero. This remark can be applied for instance if f is a Γ-invariant function and we will often use it in the sequel.

We will denote Ω gτ by Ω τ . If τ is a coboundary, then Ω τ is the closure of the future cone of a point, and g τ is the restriction of an affine map. The support function of Ω τ (that is the convex envelope of g τ ) will be denoted by h τ .

Despite the fact that in the literature Ω τ is often considered as an open subset, it is more convenient to consider its closure in the present paper.

Notice that any τ -convex set is contained in Ω τ . Recall from Definition 2.26 that a τ -convex set is Cauchy if h < h τ . Lemma 3.9. Cauchy τ -convex sets are exactly the τ -convex sets contained in the interior of Ω τ . For such a K, ∂K = ∂ s K.

Proof. If K is in the interior of Ω τ , it is clearly Cauchy. Now suppose that K is Cauchy and τ -convex. Then K is in the future of the level set of the cosmological time Σ t (see after Remark 3.14), for t > 0 the minimum of h τ -h. But Σ t has not light-like support plane. This is easy to see as it is a surface at constant distance from ∂ s Ω τ and with the same light-like support planes at infinity.

The last assertion comes from Lemma 2.25.

Remark 3.10. The existence of a maximal τ -convex subset was already proved in [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF] and in [Bar05] by different arguments. We remark here some consequences of the theory developed in [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF] that we will use here.

A first important property is that the action of Γ τ on the interior of Ω τ is proper. The quotient int Ω τ /Γ τ is foliated by space-like convex compact surfaces. Moreover if K is any Cauchy τ -convex set then ∂K/Γ τ is compact.

Since any point in the interior of Ω τ is contained in some space-like convex surface we get that the action of Γ τ in int Ω τ is space-like in the sense that the segment joining two points on the same orbit is always space-like.

Remark 3.11. Proposition 3.7 implies that for any light-like vector ℓ ∈ ∂B, the plane P ℓ of equation x, ℓ -= g τ (ℓ) does not meet the interior of Ω τ .

Notice however that this does not mean that any light-like direction is orthogonal to a light-like support plane of Ω τ . Actually if d = 2 and if τ is not a coboundary, then the set of directions of light-like support plane has zero measure in ∂H 2 , [BMS13, Proposition 4.15]. For most of the light-like directions P ℓ does not meet Ω τ but for any ǫ the plane of equation x, ℓ -= g τ (ℓ) -ǫ meets the interior of Ω τ (this is possible due to the unboundedness of Ω τ ).

We say that a continuous function h : H d → R is τ -equivariant if it satisfies the equivariance relation (23). Notice that τ -equivariant functions are precisely those functions h that can be written as h = h τ + f , with f = h -h τ a continuous Γ-invariant function.

For any Γ-invariant function f , we define the following convex set:

K τ (f ) = {p ∈ R d+1 | p, η -≤ h τ (η) + f (η), ∀η ∈ H d } . It is immediate to see that if p ∈ Ω τ and a > sup H d f , then p + aη ∈ K τ (f ) for any η ∈ H d .
So this set is not empty. Moreover, a simple computation shows that it is a τ -convex set.

If f denotes the restriction of the 1-homogeneous extension of f to the ball B, the support function h of K τ (f ) is the convex envelope of f + h τ (because the convex envelope corresponds to the pointwise supremum of all affine functions majored by f + h τ [Roc97, 12.1.1], that is exactly the definition of the support function). Notice that the restriction of

f to ∂B is 0 (see Remark 3.8), so if f is non negative, then h equals h τ , that is K τ (f ) = Ω τ .
Many of the functionals we will introduce below on the set of τ -support functions can be then extended to the space of τ -equivariant continuous functions, but we will only need the following.

Lemma 3.12. Let f be any Γ-invariant function on H d , and h be the support function of K = K τ (f ), and G be the Gauss map of K. Then on ∂ reg K,

(h τ + f ) • G = h • G .
In particular, the set of points such that h < h τ + f (i.e. such that h τ + f = h) has zero area measure.

Proof. Denotes by f the restriction of the 1-homogeneous extension of f to B. Clearly h < h τ + f at x ∈ B if and only if h < h τ + f at v(x). Now let p ∈ ∂ s K and x, x ∈ B, be a support vector at p, so that x, p -= h(x). Suppose that h(x) < (h τ + f )(x).

Let us suppose that we are in the former case. Let C be any fundamental region of Σ t and let P the union of the time-like rays in Ω τ orthogonal to C. By [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF] it turns out that P is a fundamental region of the action of Γ τ on Ω τ , and the intersection of P with the boundary of any τ -convex set is compact. It turns out that there is a point in the orbit of x n , say y n , that lies in I -(P ∩ ∂K) ∩ Ω τ that is a compact region.

Notice that y n lies in K n + ǫK(H), so y n = z n + ǫη n for some η n ∈ H d and z n ∈ K n . Since z n ∈ I -(y n ) ∩ Ω τ ⊂ I -(P ∩ ∂K) ∩ Ω τ , we can also suppose that z n converges to z. By the convergence of ũn to ũ we deduce that z ∈ K. Moreover notice that y -z, y -z -= -ǫ 2 so y lies in the future of K contradicting the assumption that it is a limit of a sequence of points in the past of K.

The latter case is analogous.

We can deduce the analogue of the Blaschke Selection theorem for convex bodies.

Corollary 3.17. From each sequence of τ -convex sets uniformly bounded in the future, one can extract a sequence converging to a τ -convex set.

Another simple consequence of Lemma 3.16 is that the cosmological time is uniformly bounded for any τ -invariant surface that meets a fixed level of the cosmological time.

Corollary 3.18. Let ǫ > 0. There exists T = T (ǫ, τ ) such that if K is any τ -convex set whose boundary S meets the level set of the cosmological time Σ ǫ then T max (S) ≤ T , where T max (S) is the maximum of the cosmological time of S.

Proof. By contradiction suppose that there is a sequence (K n ) of τ -convex sets such that the boundary of K n , say S n , meets Σ ǫ and T max (S n ) ≥ n. By Lemma 3.16, up to passing to a subsequence, (K n ) converges to a surface K in the τ -Hausforff sense. This implies that the corresponding hyperbolic support functions h τ -h are uniformly bounded, but this contradicts Lemma 3.15.

Lemma 3.19. There is a constant δ = δ(τ ) > 0 such that if T min (S) ≥ 1 then T max (S)/T min (S) < δ .

Proof. Suppose that there is a sequence of τ -convex sets K n with boundaries S n such that T min (S n ) ≥ 1 and T max (S n )/T min (S n ) > n. From Corollary 3.18, T min (S n ) → +∞. Let us set t n = T min (S n ) and consider the sequence of rescaled surfaces F n = (1/t n )S n . Notice that F n is the boundary of the (1/t n )τ -convex set (1/t n )K n and satisfies T min (F n ) = 1. So for any n, F n has a common point with the level set 1 for the cosmological time T n of 1

tn Ω τ = Ω 1 tn τ . By [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF]6], the graph functions of those level sets of T n converge in the compact open topology to the graph function of the cosmological time T 0 of Ω 0 = I + (0). Moreover for every c there is a compact region U c of R d+1 (independent of n) that contains a fundamental region of the level surface T -1 n (c) for the action of Γ 1 tn τ for every n. As for each n, the intersection point of F n with T -1 n (1) can be chosen in U 1 , we deduce that F n meets U 1 for every n. As F n are graphs of 1-Lipschitz functions ṽn , we deduce that -up to extracting a subsequence -ṽn converges to a convex 1-Lipschitz function ṽ uniformly on compact subsets as a consequence of Arzelà-Ascoli theorem. The graph of ṽ, is the boundary of a convex subset K which is invariant by the action of Γ by construction.

Since

F n is contained in the closure of the future of T -1 n (1) then ∂K is contained in I + (H d ) = K(H) in R d+1 .
In particular, it is a Cauchy surface in I + (0).

In particular ∂K is contained in the past of the level surface T -1 (c) for some fixed c. Since the graph functions of F n converge to the graph function of ∂K uniformly on compact subsets of R d and the same holds for the graph functions of T -1 n (c), we deduce that for any compact region V of R d+1 there is n 0 (a priori depending on V ) such that

F n ∩ V is in the past of T -1 n (c) ∩ V for n ≥ n 0 . Since the compact region U c contains a fundamental region of T -1
n (c) for very n, we deduce that for n big F n is contained in the past of T -1 n (c). But by our starting assumption, one also has that T max (F n ) = T max (S n )/t n ≥ n, and this gives a contradiction.

Area and total area

In the sequel, except if explicitly mentioned, the integrals will be on the compact manifold H d /Γ.

Let us recall notations from Subsection 2.1. If K is a τ -convex set, then V ǫ (K) is clearly a Γ-invariant measure, and so are the area measures S i (K). Any Γ-invariant Radon measure µ on H d defines a Radon measures in H d /Γ: it is the only measure μ on H d /Γ such that if U ⊂ H d /Γ is a Borel set and ψ : U → H d is a measurable section of the projection π :

H d → H d /Γ, then ψ * (μ) = µ.
In practice, if E is a Borel subset of H d which meets every orbit of Γ exactly once, then the measure of any Borel set ω of H d /Γ is µ(π -1 (ω) ∩ E).

In our case, we obtain measures V ǫ (K) and S i (K) on H d /Γ. Using (5) we deduce that

V ǫ (K) = 1 d + 1 d i=0 ǫ d+1-i d + 1 i S i (K) . (24) 
Remark 3.20. Notice that for any Borel subset ω ⊂

H d /Γ, S d (K)(ω) is the derivative of V ǫ (K)(ω) for ǫ = 0. As V ǫ+h (K) = V ǫ (K) + V h (K + ǫK(H)) we get that for any Borel subset ω ⊂ H d /Γ dV ǫ (K)(ω) dǫ (ǫ) = S d (K + ǫK(H))(ω) ,
or equivalently

V ǫ (K)(ω) = ǫ 0 S d (K + tK(H))dt . (25) 
We also get an invariant formulation of the weak-convergence stated in Lemma 2.5.

Lemma 3.21. If the support functions of τ -convex sets converge for the sup norm to the support function of a τ -convex set, then the associated measures V ǫ and S i on H d /Γ weakly converge.

Proof. As any continuous function on H d /Γ can be expressed as the sum of continuous functions with supports in small open sets by means of a partition of the unity, it is sufficient to prove that

f dV (K n ) → f dV (K)
assuming that the support of f is contained in a small chart U where a section ψ : U → H d is defined. But, by definition we have

f dV (K n ) = U f dV (K n ) = ψ(U ) f • ψ -1 dV (K n )
and so the convergence stated directly follows from Lemma 2.5.

We still denote by A(K) the measure S d (K) on H d /Γ, and by Area(K) the total area of K, i.e. Area(K) = A(K)(H d /Γ) .

Corollary 3.22. If the support functions of τ -convex sets converge for the sup norm to the support functions of a τ -convex set, then the corresponding area measures weakly converge.

In particular, the total area is continuous for this topology.

If ∂ s K is C 1 , then the total area is the total volume of the manifold ∂ s K/Γ τ for the induced metric by Corollary 2.18.

We prove below that the total area is monotonic.

Lemma 3.23. Let K 0 , K 1 be two τ -convex sets, with K 1 contained in the interior of K 0 . Then Area(K 0 ) ≤ Area(K 1 ) .

Proof. Let us first suppose that K 0 and K 1 are C 2 + , with respective hyperbolic support functions h 0 and h 1 on H d . Note that h 1 < h 0 . For λ ∈ (0, 1), let

K λ = (1 -λ)K 0 + λK 1 . It has hyperbolic support function (1 -λ)h 0 + λh 1 , so K λ is clearly C 2 + .
We can use the inverse of the Gauss map of K λ , say χ λ , to get a smooth family of parameterizations of ∂K λ . Recall by (1) that χ λ (η) = grad H η h λ -h λ (η)η, so the variational field X = ∂ λ χ λ at a point χ λ (η) is simply given by

X(χ λ (η)) = grad H η (h 1 -h 0 ) -(h 1 -h 0 )(η)η .
The variation of the area of ∂K λ is given by

∂ λ Area(K λ )| t=λ = - ∂K λ /Γτ s λ X(x), G λ (x) -dµ λ
where µ is the intrinsic volume form and s λ is the sum of the principal eigenvalues computed with respect the normal G (so s λ is positive).

Using the parameterization given by χ λ and the fact that χ * λ (µ λ ) = dA(K λ ) we conclude that

∂ λ Area(K λ )| t=λ = s λ X(χ λ (η)), η -dA(K λ ) = s λ (h 0 -h 1 )dA(K λ ) ≥ 0 .
The general case follows by a density argument, see Appendix A and Corollary 3.22. Proposition 3.24. There exists a non-negative number c(τ ) such that for every τ -convex set K, if Area(K) > c(τ )dH d then K is a Cauchy convex set (that is, it is contained in the interior of Ω τ ).

As already noted, if τ is a coboundary, i.e. Ω τ is the future cone of a point, if K is a τ -convex set with Area(K) = 0, then K = Ω τ that implies that K is Cauchy. So in this case c(τ ) = 0. On the other hand, the example constructed in Subsection 3.7 implies that in general c(τ ) cannot be chosen arbitrarily small. Proof. For any n > 0, let K n be such that Area(K n ) > n and suppose that K n touches the boundary of Ω τ . By Corollary 3.18, K n is in the past of Σ T for some T independent of n, hence by Lemma 3.23, Area(K n ) ≤ Area(Σ T ), that is again a contradiction if n is sufficiently large.

The covolume

Let K be a τ -convex set. The covolume of K, denoted by covol(K) is the volume of the complementary of K/Γ τ in the manifold Ω τ /Γ τ . As this complementary is open, the covolume is well defined. It is also finite. This can be seen for example for level sets of the cosmological time, then using the monotonicity of the covolume. Equivalently, it is the volume (the Lebesgue measure) of Ω τ \ K in a fundamental domain for Γ τ (note that Minkowski isometries preserve the Lebesgue measure).

It can be convenient to consider the covolume as a function on the set of τ -equivariant hyperbolic support functions. For this reason we often will write covol(h) to denote the covolume of the corresponding convex set. In the same way we will denote by A(h) the area measure on H d induced by the domain K.

Lemma 3.25. The function covol is continuous on the set of τ -convex sets.

Proof. Let K n be at distance 1/n from K. From Remark 3.14

K + 1 n K(H) ⊂ K n and K n + 1 n K(H) ⊂ K , so covol K + 1 n K(H) ≥ covol(K n ) and covol K n + 1 n K(H) ≥ covol(K) . But clearly covol K + 1 n K(H) = covol(K) + V 1/n (K)(H d /Γ), so covol(K n ) -covol(K) ≤ V 1/n (K)(H d /Γ) ,
and V 1/n (K)(H d /Γ) goes to 0 when n goes to infinity (this is clear using an expression analog to (26) below and the argument after it). In the same way covol

(K) -covol(K n ) ≤ V 1/n (K n )(H d /Γ) ,
so to conclude it remains to prove that V 1/n (K n )(H d /Γ) goes to 0 when n goes to infinity. But by (25) we have

V 1/n (K n )(H d /Γ) = 1/n 0 Area(K n + tK(H))dt . (26) 
By Lemma 3.23, Area(K n + tK(H)) ≤ Area(K n + 1/nK(H)) ≤ Area(K n + K(H)). As K n converges to K, K n + K(H) are in the past of a τ -convex set C, so again by Lemma 3.23,

Area(K n + tK(H)) ≤ Area(C) and V 1/n (K n )(H d /Γ) ≤ 1/nArea(C).
As we noted in Section 3.1 the set of τ -convex sets is convex. So speaking about convexity of the covolume is meaningful. We will first prove that it is convex on the convex subset of Cauchy τ -convex sets. The convexity on the set of τ -convex sets will follow by continuity. The idea is to write the covolume in terms of a volume of a convex body, obtained by cutting some convex fundamental domain by a hyperplane. Such convex fundamental is described in the following.

Proposition 3.26. Let S be any convex Γ τ -invariant C 1 space-like surface in Ω τ . Given x, y ∈ R d+1 , let us set ψ(x, y) = x -y, x -y -. Let us fix a point x ∈ S and consider the region P (x) = {y ∈ I + (S)|ψ(x, y) ≤ ψ(γx + τ γ , y) ∀γ ∈ Γ} .

Then P (x) is a convex fundamental domain of I + (S) for the action of Γ τ . Moreover the interior of P (x) is the set

int P = {y ∈ I + (S)|ψ(x, y) < ψ(γx + τ γ , y) ∀γ ∈ Γ \ {1}} . (27) 
Note that in the Fuchsian case it is possible to construct a convex fundamental domain for the whole domain Ω (the future cone of the origin), as it suffices to consider the cone in R d+1 of a Dirichlet polyhedron for Γ in H d . Moreover, if x ∈ H d , the polyhedron P (x) defined in Proposition 3.26 coincides with the cone on the Dirichlet polyhedron centered at x.

To prove the Proposition we need the following lemma:

Lemma 3.27. For any divergent sequence γ n ∈ Γ and any compact set C in I + (S) inf y∈C ψ(γ n x + τ γn , y) → +∞ .

Proof. This property is easily checked if C ⊂ S. Indeed for y ∈ S, ψ(γ n (x) + τ γn , y) is bigger than the intrinsic distance d S (γ n (x) + τ γn , y).

On the other hand, since S/Γ τ is compact, the intrinsic distance on S is complete and since the action of Γ τ is proper we conclude that d S (γ n (x) + τ γn , C) diverges as n → +∞. Now if C ⊂ I + (S), we can consider its projection onto S. For y ∈ I + (S), if y ′ denotes its projection on S, we have that y = y ′ + e with e time-like vector orthogonal to S at y ′ . Then for any z ∈ S we have ψ(z, y) = ψ(z, y ′ ) + e, e -+ 2 y ′ -z, e -. Notice that since the plane through y ′ and orthogonal to e is a support plane for S, we have that y ′ -z, e -≥ 0.

Then putting c = sup y ′ ∈K ′ | e, e -|, then ψ(z, y) ≥ ψ(z, y ′ ) -c for any z ∈ S and y ∈ C. Then (28) follows.

Proof of Proposition 3.26. Notice that if x 1 , x 2 ∈ R d+1 are two space-like related points, then the set of points y such that ψ(x 1 , y) ≤ ψ(x 2 , y) is the closed half-space in R d+1 bounded by the plane orthogonal to the segment [x 1 , x 2 ] and passing through its middle point (x 1 + x 2 )/2. Since the orbit of any point x ∈ Ω τ is space-like (see Remark 3.10), P (x) is convex.

In order to show that the Γ τ -orbit of any point y ∈ I + (S) meets P (x), notice that by Lemma 3.27, for any y ∈ I + (S), there is a point x 1 on the orbit of x where the function ψ(•, y) attains the minimum. Then, if x 1 = γ 1 x + τ γ1 , then putting y 1 = γ -1 1 y + τ γ -1 1 we have that on the orbit of x the minima of the function ψ(•, y 1 ) is attained at x so y 1 ∈ P .

Finally proving (27) we will have the interior of P (x) contains at most 1 point for each orbit, that concludes the proof that P is a fundamental region.

So, it remains to prove that int P = {y ∈ I + (S)|ψ(x, y) < ψ(γx + τ γ , y) ∀γ ∈ Γ \ {1}} . The inclusion ⊂ is immediate. Suppose by contradiction that there is a point y on the boundary of P such that ψ(y, x) < ψ(y, γx + τ γ ) ∀γ ∈ Γ \ {1}.

There exists a sequence y n ∈ I + (S) converging to y and γ n such that ψ(γ n (x) + τ γn , y n ) < ψ(x, y n ) . As y n converges to y we may apply (28) and deduce that γ n is not diverging. Since Γ is discrete, up to passing to a subsequence we may assume that γ n = γ is constant different from 1.

But then passing to the limit in the above inequality we get ψ(γ(x) + τ γ , y) ≤ ψ(x, y) , that contradicts the assumption on y.

The following lemma in the Euclidean setting will be the main ingredient of the convexity of the covolume. Although it is classical, see e.g. [BF87, 50.], we reproduce the proof for completeness.

Lemma 3.28. In the Euclidean space R d+1 let R be a hyperplane orthogonal (with respect to the Euclidean structure) to a vector u. Let D be a convex body with non-empty interior in R, and C 0 and C 1 be two convex bodies in R d+1 contained in the same side of R as u, such that their orthogonal projection onto R is D. Then, for λ ∈ [0, 1],

V ((1 -λ)C 0 + λC 1 ) ≥ (1 -λ)V (C 0 ) + λV (C 1 ) ,
where V is the volume.

Equality holds if and only if

C 0 = C 1 + U or C 1 = C 0 + U , with U a segment directed by u.
Such convex bodies are sometimes called canal class [START_REF] Schneider | Convex bodies: the Brunn-Minkowski theory, volume 44 of Encyclopedia of Mathematics and its Applications[END_REF].

Proof. For any x ∈ D, let L(x) be the line orthogonal to H and passing through x. Take any k i ∈ C i ∩ L(x), i = 1, 2. The convex combination of k 0 and k 1 belongs to ((1 -λ)C 0 + λC 1 ) =: C λ and also to L(x). So the convex combination of C i ∩ L(x), for i = 0, 1, is a subset of C λ ∩ L(x). Denoting by l λ (x) the length of the segment C λ ∩ L(x), and using the linearity of the length, we get

l λ (x) ≥ (1 -λ)l 1 (x) + λl 2 (x) . (29) 
Of course C λ projects orthogonally onto D, and by Fubini Theorem,

V (C λ ) = D l λ (x)dx ≥ (1 -λ) D l 0 (x)dx + λ D l 1 (x)dx = (1 -λ)V (C 0 ) + λV (C 1 ) . ( 30 
)
Suppose that C 1 = C 0 + U where U is a segment parallel to u of length c. Then C λ = C 0 + λU , so l λ (x) = l 0 (x) + λc, and equality holds in (29) and hence in (30). Now suppose that equality holds in (30). Then equality holds in (29) and so for every x ∈ D and every λ ∈ [0, 1]

(1 -λ) (C 0 ∩ L(x)) + λ (C 1 ∩ L(x)) = C λ ∩ L(x) . (31) 
For x ∈ D, let y 1/2 be an end-point of the vertical segment L(x) ∩ C 1/2 , and let v be a (Euclidean) support vector at y 1/2 . By (31) there are end-points y 0 , y 1 on L(x) ∩ C 0 and L(x) ∩ C 1 respectively such that y 1/2 = 1 2 y 0 + 1 2 y 1 . Denoting by H e λ the (Euclidean) support functions of C λ , we have

H e 1/2 (v) = y 1/2 , v =
On the other hand,

H e 1/2 (v) = 1 2 H e 0 (v) + 1 2 H e 1 (v)
, that, together with the previous equation and with y i , v ≤ H e i (v), leads to H e i (v) = y i , v . In other words, C 0 and C 1 have parallel support hyperplanes along the lines directed by u. On any segment in the interior of D, part of the boundaries of C 0 and C 1 are graph of convex or concave functions with parallel tangents, so they have the same derivative almost everywhere, hence they differ by a constant c 1 for the convex part and c 2 for the concave part. So for example H e 0 (v) = y 0 , v = y 1 +c 1 u, v = H e 1 (v)+c 1 v, u for suitable v ∈ R d+1 . Note that as C 0 and C 1 are contained in the cylinder which projects onto D, H e 0 (v) = H e 1 (v) for any v ∈ R d+1 with u, v = 0. Finally, H 0 -H 1 = max( c 1 u, • , c 2 u, • ) and this last term is the support function of the segment between c 1 u and c 2 u.

From 3.28 we can simply deduce an analogous statement in the Lorentzian setting.

Corollary 3.29. In Minkowski space R d,1 let R be a space-like hyperplane orthogonal (for the Minkowski product) to a vector u. Let D be a convex body with non-empty interior in R, and C 0 and C 1 be two convex bodies in R d+1 contained in the same side of R as u, such that their orthogonal projection (in Minkowski sense

) onto R is D. Then, for λ ∈ [0, 1], V ((1 -λ)C 0 + λC 1 ) ≥ (1 -λ)V (C 0 ) + λV (C 1 ) ,
where V is the volume.

Equality holds if and only if C

0 = C 1 + U or C 1 = C 0 + U , with U a segment directed by u.
Proof. If R is the horizontal plane R d ⊂ R d+1 , then the Lorentzian orthogonal projection coincides with the Euclidean projection, so the statement is an immediate consequence of Lemma 3.28.

If R is not horizontal, there is a Lorentzian isometry f sending R to the horizontal plane

R d ⊂ R d+1 . Notice that the orthogonal projections of f (C i ) to R d coincide with f (D). So we deduce V ((1 -λ)f (C 0 ) + λf (C 1 )) ≥ (1 -λ)V (f (C 0 )) + λV (f (C 1 )
) . Since f is volume preserving and (1 -λ)f (C 0 ) + λf (C 1 ) = f ((1 -λ)C 0 + λC 1 ) we obtain the result.

Figure 1: K 1 is a convex cap, and K 2 = K 1 + U . For λ ∈ [0, 1], the volume is linear along (1 -λ)K 1 + λK 2 , but for λ = 0, this is not a convex cap.

Let D be a convex body contained in a space-like hyperplane R with non-empty relative interior. A (Lorentzian) convex cap based on D is a convex body in R d+1 with no empty interior such that • R is a support plane of K and K ∩ R = D

• For each x ∈ ∂D the line L(x) through x orthogonal in the Minkowski sense to R meets K only at x.

Notice that if K is a convex cap based on D then the second condition implies that D is the orthogonal projection of K to R, but the condition is not equivalent (see Figure 1).

Since two caps based on D cannot differ by a segment, Corollary 3.29 immediately gives the following consequence.

Corollary 3.30. The volume is strictly convex on the set of convex caps (of same base).

Notice that the same result holds as well for caps in Euclidean setting. We can prove now the convexity of the covolume.

Proposition 3.31. The covolume is strictly convex on the set of Cauchy τ -convex surfaces.

Proof. Let K 1 and K 2 be two Cauchy τ -convex surfaces, and for λ ∈ [0, 1] let

K λ = (1 -λ)K 1 + λK 2 .
Let us choose a strictly convex space-like C 1 τ -invariant convex surface S such that the K λ are in the future of S. Let s ∈ S and P := P (s) be the convex fundamental domain of I + (S) given by Proposition 3.26.

Fact: Let u be a support vector of S at s. Then y + u lies in the interior of P for any y ∈ P .

By a direct computation we have

ψ(y + u, γ τ (s)) -ψ(y + u, s) = ψ(y, γ τ (s)) -ψ(y, s) + 2 u, s -γ τ (s) -. (32) 
Notice that the last term is strictly positive since u is a support vector of S at s, whereas ψ(y, γ τ (s)) -ψ(y, s) ≥ 0 by the assumption on y. By (27) it follows that y + u is in the interior of P . Let R be an affine hyperplane orthogonal to u chosen so that 

K λ ∩ P is in the past side R -of R for every λ ∈ [0, 1]. Note that D = R ∩ P is compact, as it is part of the boundary of the compact convex set R -∩ Ω τ . S P R K i

Finally let us denote

C i = K i ∩ P ∩ R -, i = 1, 2. By the choice of R, we have that C i ∩ R = P ∩ R = D.
The fact shows that if x ∈ R \ int P , then for no ǫ > 0 the point x -ǫu is contained in P . So C i is a convex cap (see Figure 2).

Define C λ = (1 -λ)C 1 + λC 2 . For x ∈ C λ , there are x i ∈ C i such that x is a convex combination of x 1 and x 2 . By convexity, x belongs to P and R -, and by definition x belongs to

K λ . So C λ ⊂ K λ ∩ P ∩ R -. If K 1 = K 2 , then C 1 and C 2 , are different caps so Corollary 3.30 gives (1 -λ)V (K 1 ∩ P ∩ R -) + λV (K 2 ∩ P ∩ R -) = (1 -λ)V (C 1 ) + λV (C 2 ) < V (C λ ) ≤ V (K λ ∩ P ∩ R -) . (33) 
By definition, for any λ ∈

[0, 1], covol(K λ ) = -V (K λ ∩ P ∩ R -) + c ( 
34) where c is a constant depending only on S, P and H (actually c = V (P ∩R -)+covol(S)).

Since each τ -convex set is limit of Cauchy τ -convex sets, and the covolume is continuous, Proposition 3.31 implies that the covolume is convex on the set of τ -convex sets. Then, Theorem 1.2 is proved.

Remark 3.32. One could also consider the covolume as a function on the set of all τ -convex sets, for all τ ∈ Z 1 (Γ, R d+1 ). This set is a convex cone. But the covolume is certainly not convex on this bigger set. Otherwise one should have covol

((1 -λ)Ω τ + λΩ τ ′ ) ≤ (1 -λ)covol(Ω τ ) + λcovol(Ω τ ′ )
that implies that the covolume of (1-λ)Ω τ +λΩ τ ′ is zero. But (1-λ)Ω τ +λΩ τ ′ ⊂ Ω (1-λ)τ +λτ ′ , and in general the inclusion is strict. Then contradiction follows because for any τ , Ω τ is the only τ -convex set with zero covolume.

For Γ-invariant surfaces, there is a representation formula for the covolume, namely covol

(h) = - 1 d + 1 hdA(h) (35) 
where h is the hyperbolic support function of K. We cannot hope such a simple formula holds in general, but we have the following relation.

Lemma 3.33. If K 1 ⊂ K 0 are τ -convex sets with hyperbolic support functions h 1 ≤ h 0 , then

(h 0 -h 1 )dA(h 0 ) ≤ covol(h 1 ) -covol(h 0 ) ≤ (h 0 -h 1 )dA(h 1 ) . (36) 
Proof. First assume that h 0 and h 1 are C 2 + and h 1 < h 0 . Notice that the region K 0 \ K 1 is foliated by the convex combinations K t of K 0 and K 1 . Thus covol(h 1 ) -covol(h 0 ) is the volume of the quotient of the region that is image of the equivariant map from [0, 1] × H d to Ω τ defined by χ(t, η) = grad H η h t -h t (η)η where h t = (1 -t)h 0 + th 1 (compare with (1)). Notice that covol(h 1 ) -covol(h 0 ) = [0,1]×H d /Γ χ * (dV ) where dV is the (d + 1)-volume form on R d+1 . Since for each t the map χ(t, •) is inverse of the Gauss map of the boundary of K t = (1 -t)K 0 + tK 1 , and since the area form of a C 1 -space-like surface is defined by contracting the volume form by the normal vector, we deduce that

χ * (dV )(∂ t , e 1 , . . . , e d ) = dV (χ * (∂ t ), χ * (e 1 ), . . . , χ * (e t )) = -χ * (∂ t ), η -dV (η, χ * (e 1 ), . . . , χ * (e d )) = -χ * (∂ t ), η -dA(K t )(e 1 , . . . e t ) .
In other words, χ *

(dV ) = -χ * (∂ t ), η -dt ∧ dA(h t ). Now Dχ(∂ t ) = grad H (h 1 -h 0 ) -(h 1 -h 0 )η so we deduce that χ * (dV ) = (h 0 -h 1 )dt ∧ dA(h t ). Finally integrating, we obtain covol(h 1 ) -covol(h 0 ) = 1 0 (h 0 -h 1 )dA(h t )dt .

As for a convex function

f : [0, 1] → R f ′ (0) ≤ f (1) -f (0) ≤ f ′ (1) ,
by Theorem 1.2 we deduce the formula above. Now for the general case, take sequences of C 2 + τ -equivariant support functions (h 0 (n)) n and (h 1 (n)) n converging respectively to h 0 and h 1 , see Appendix A. For large n, up to add a suitable constant, we can suppose that h 1 (n) < h 0 (n). By continuity of covolume we have that covol(h

1 (n)) -covol(h 0 (n)) -→ n→+∞ covol(h 1 ) -covol(h 0 ) .
So in order to prove (36) it is sufficient to prove that

(h 0 (n) -h 1 (n))dA(h 0 (n)) → (h 0 -h 1 )dA(h 0 ) ,
as well as the convergence for the analog right hand terms. As h 0 (n) -h 1 (n) uniformly converges to h 0 -h 1 , by Corollary 3.22, A(h 0 (n)) weakly converge to A(h 0 ). Putting

f n = h 0 (n) -h 1 (n) and f = h 0 -h 1 we have f n dA(h 0 (n)) -f dA(h 0 ) ≤ f n -f ∞ Area(h 0 (n)) + f dA(h 0 (n)) -f dA(h 0 )) .
Remark 3.34. With h 1 ≤ h 0 , putting h t = h 0 + t(h 1 -h 0 ), the previous lemma and the weak convergence of the area measure implies that

lim t→0 covol τ (h t ) -covol τ (h 0 ) t = (h 1 -h 0 )dA(h 0 ) .
Lemma 3.39. With the notations of Lemma 3.38, dA(h 0 ) = dµ .

Proof. From Lemma 3.38, with f = -1, we get Area(h 0 ) ≥ dµ .

We have to prove the other inequality. For a positive a consider the τ -equivariant function h 0 + a. Notice that in general it is not a support function. However we consider the domain

K a = {p ∈ R d+1 | p, η -≤ h 0 (η) + a, ∀η ∈ H d } ,
and let h a be the support function of K a , so that h 0 ≤ h a ≤ h 0 + a. From (36) we get

(h a -h 0 )dA(h a ) ≤ covol(h 0 ) -covol(h a ) ≤ (h a -h 0 )dA(h 0 )
or in a more convenient way

-(h a -h 0 )dA(h a ) ≥ covol(h a ) -covol(h 0 ) ≥ -(h a -h 0 )dA(h 0 ) . ( 37 
) As L µ (h a ) ≥ L µ (h 0 ), covol(h a ) -covol(h 0 ) + (h a -h 0 )dµ ≥ 0 ,
and using ( 37)

-(h a -h 0 )dA(h a ) + (h a -h 0 )dµ ≥ 0 that is (h a -h 0 )dµ ≥ (h a -h 0 )dA(h a ) .
Now using that a ≥ h a -h 0 we get a dµ ≥ (h a -h 0 )dA(h a ) .

From Lemma 3.12, h a coincides with h 0 + a almost everywhere for A(h a ), hence dµ ≥ Area(h a ) .

Letting a → 0 and using the convergence of the total area, we get the estimate we need.

Remark 3.40. In the Fuchsian case, using the representation formula (35) for the covolume, the functional L µ has a form very similar to the functional used in the variational approach for the Monge-Ampère equation, see [START_REF] Trudinger | The Monge-Ampère equation and its geometric applications[END_REF]4.5] and the references therein.

Proof of Theorem 1.1. Let f be a C 2 Γ-invariant function on H d . There is a constant c > 0 such that ∇ 2 f -(f -c)g H ≥ 0. In particular f -c is a Γ-invariant support function, see (2) 
. By Lemma 3.38:

(f -c)dµ ≥ (f -c)dA(h 0 ) .
From Lemma 3.39, we know that the equality holds for constants. Then we can conclude that

f dµ ≥ f dA(h 0 )
for any C 2 -function. Considering -f , for any C 2 -function we get

f dµ = f dA(h 0 ) .
By approximation we obtain that this equality is true for any C 0 function, hence µ = A(h 0 ), and the theorem is proved.

Using the correspondence between the Area measure of K and the Monge-Ampère measure MA(h) described in Proposition 2.14, we can prove Theorem 1.3 stated in the introduction.

Proof of Theorem 1.3. Notice that for each γ there is a vector s γ ∈ R d and a γ ∈ R such that

(γ • h 0 )(x) -h 0 (x) = s γ , x -a γ = x, s γ a γ - .
In particular letting H 0 be the 1-homogeneous extension of h to I + (0) we conclude that

H 0 (γ -1 x) -H 0 (x) = x, s γ a γ - .
Putting τ γ := -sγ aγ the formula above easily shows that τ is a cocycle and the equivariance

H 0 (γY ) -H 0 (Y ) = -τ γ -1 , Y - holds. By (22) H 0 is a τ -equivariant convex function.
So by Theorem 1.1, there is a τ -equivariant convex function h on B such that A(h) = 1 -x 2 µ . By Proposition 2.14 we have MA(h) = µ. As h is τ -equivariant as h 0 , then on the boundary h = h 0 .

Finally let us consider the regularity problem. From Proposition 3.24 there is a constant c = c(τ ) ≥ 0 such that if µ > cdH d , then the τ -convex set K with A(K) = µ is contained in the interior of Ω τ .

By Corollary 2.33 we get:

Theorem 3.41. Let f be a Γ-invariant C k+1 -function, k ≥ 2, with f (x) > c(τ ) for every x ∈ H d . Then the boundary of the τ -convex set K with A(K) = f dH d is a strictly convex space-like surface of class C k+2 with Gauss-Kronecker curvature f -1 .

Proof. Corollary 2.33 immediately gives that ∂ s K is strictly convex C k+2 hypersurface. Notice that its Gauss-Kronecker curvature is f -1 > 0 so the Gauss map is a C k+1homeomorphism with inverse map of class C k+1 . Moreover, ∂K = ∂ s K by Lemma 3.9.

Theorem 1.4 and Theorem 1.6 are just quotient versions of preceding results.

Equivariant Pogorelov example

Let us take a cocycle τ such that ∂ s Ω τ contains a (d -1)-polyhedron T . The goal of this section is to prove that there exists a τ -convex set with positive area measure (in the sense that A(K) ≥ c 0 dH d for some c 0 ) which meets the boundary of Ω τ .

Remark 3.42. Recall by [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF] that ∂ s Ω τ is simplicial if the corresponding stratification in H d is locally finite. In dimension d = 3 if ∂ s Ω τ is simplicial, then either it is a tree (that is the space is simple), or it must contain a 2-polygon. Examples of simplicial space-times which are not simple are for instance constructed in [BMS13]. This shows the existence of cocyles satisfying the condition we consider in this section.

The geometry of ∂ s Ω in the non-simplicial case is still not understood if d > 2. The only example the authors know in dimension d = 3 is described in [BMS13]. We remark that in this example the boundary of ∂ s Ω contains a 2-polygon so the construction described in this section works even in this case.

It remains open to understand whether there is a lattice Γ < SO + (3, 1) and a cocycle τ such that the corresponding domain is not simple but c(τ ) = 0.

By [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF] T 1 is isometric to the Cartesian product (int T ) × R, so its volume is infinite. If the stabilizer of T were trivial the projection T 1 → Σ 1 /Γ τ would be an injective isometric immersion of a Riemann manifold of infinite volume into a compact manifold, and this is impossible. Now if γ τ is in the stabilizer of T , then γ stabilizes the image of T through the Gauss map in H d . By [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF] this is the geodesic in H d orthogonal to the hyperplane R containing T . Notice that the stabilizer of a geodesic in a uniform lattice can be either trivial or a cyclic group. Since we have proved that it is not trivial, the Lemma follows.

By the proof of Lemma 3.45, μ stabilizes the segment [ℓ -, ℓ + ]. Moreover notice that µ τ acts as an isometry on T , so it fixes a point of T . Up to a translation we may suppose that µ τ fixes 0, that is, τ µ = 0 and µ τ = µ.

Consider the function

f 1 (x) = sup n∈Z (µ n • f )(x) .
It is < µ >-invariant by construction. Proof. Notice that the transformation µ leaves R and T invariant (in particular µ| R is an orthogonal transformation of finite order). On the other hand we have µ n (1, 0, . . . , 0) = (cosh na, 0, . . . , 0, sinh na) , µ n d+1 (0, 0 . . . , 0, 1) = (sinh na, 0, . . . , 0, cosh na) for any n ∈ Z.

Since τ µ = 0, by Lemma 3.4, (µ n • f )(x) = (µ -n x) d+1 f µ -n (x) (µ -n x) d+1 so a simple computation shows that (µ n • f )(x) = ǫβ 2 r α (x) (cosh an -x 1 sinh an) α-1 1 + β 2 x 1 -tanh an 1 -x 1 tanh an The previous lemma, Corollary 3.6 and formula (15) imply the following:

Corollary 3.47. For any compact subset C in B there is a constant c 0 > 0 such that MA(f 1 ) > c 0 L on C.

Another simple consequence of Lemma 3.46 is the following Theorem A.1. For a given τ -support function h and for any δ > 0, there is a C 2 + τ -support function h δ such that h -h δ L ∞ ≤ δ.

Proof. Let K be a convex domain such that the Γ-translates of the interior of K cover H d , and C be the constant appearing in the last property. If r is sufficiently small, ĥr -Cr-h K < δ/3. Notice that the 1-homogeneous extension of ĥr -Cr is convex in the cone over K. Since ĥr -C is τ -equivariant, it turns out that h ′ = ĥr -Cr is a C 1 τ -support function over H d .

Moreover, since h ′ -h = ĥr -Cr -h is Γ-invariant we get that h ′ -h H d ≤ δ/3.

Repeating the average procedure on h ′ we obtain a C 2 τ -support function whose distance from h ′ is less than δ/3. Notice that ∇ 2 (h ′′ ) -h ′′ g H is semidefinite positive and h -h ′′ < 2δ/3, so h δ := h ′′ -δ/3 is a C 2 + τ -support function whose distance from h is less than δ.

Let us now prove the properties of this average process. The first property is a direct consequence of the next proposition and the fact that the function A(r) behaves as the inverse of the volume V (r) of the hyperbolic ball of radius r for small r. By (23) we have that f (y) = h(γy) -h(y) is the restriction of the linear function f (x) = x, γ -1 τ γ -, and we have that ĥr (γx) -ĥr (x) = fr (x). Now the τ -equivariance of ĥr is ensured by this remark and the following Lemma.

Lemma A.3. If f is the restriction of a linear function on H d , then fr = f for every r.

Proof. Since the 1-homogeneous extension, F , of f is linear, we have that its Minkowski gradient is constant. By the computation in Lemma 2.3 we know that the derivative of F at a point H d coincides with ∇grad H ( f ) -f Id, so we conclude that ∇ 2 ff g H = 0 on H d . In particular we have ∆ f = d • f . So we deduce from the divergence theorem that where S(x, r) is the boundary of B(x, r), ν is the unit exterior normal and dS r is the area form of the sphere S(x, r).

In order to compute the last integral consider the unit tangent sphere at x, S d-1 = {v ∈ R d,1 | v, v -= 1, v, x -= 0} , and the parameterization given by the exponential map: φ : S d-1 → S(x, r) , φ(v) = cosh (r)x + sinh (r)v .

We have φ * (dS r ) = sinh (r) d-1 dS d-1 . From ν(φ(v)) = sinh (r)x + cosh (r)v we deduce that D f (x)[ν] = DF (x)[ν] = F (ν) = sinh (r)F (x) + cosh (r)F (v) = sinh (r) f (x) + cosh (r)F (v), so we get fr (x) = 1 ω d-1 sinh (r) d S d-1

(sinh (r) d f (x) + sinh (r) d-1 cosh (r)F (v))dS d-1 .

Since F is linear S d-1 F dS d-1 = 0, so the previous formula shows that fr (x) = f (x).

Let us consider now the regularizing properties of the average process. Until the end of the section we use the notation •, • to denote the metric on H d . where Ṽ is any Killing vector field such that Ṽ (x) = v.

Proof. First we assume that h is C 1 . Let γ t the isometric flow generated by Ṽ . We have to compute Since Ṽ is a Killing vector field, it is divergence free, so grad H h, Ṽ = div(hV ). Applying the divergence theorem we obtain a proof of the formula. Notice that D ĥr continuously depends on the point, so ĥr is C 1 . Consider now the case where h is only C 0 . Take a sequence of C 1 -functions h n converging to h uniformly on compact subsets of H d . We have that (( ĥn ) r ) converges to ĥr as n → +∞ uniformly on compact subsets. So in order to conclude it is sufficient to notice that D( ĥn ) r (x) converges to the 1-form α r (x)[v] = S(x,r) u(y) ν(y), Ṽ (y) dS r (y) .

It follows that ĥr is differentiable and D ĥr = α. Finally we have to prove the last property.

Proposition A.6. Let h be a support function. For any convex compact subset K of H d , there is a constant C = C( h Lip(K) ) such that ĥr -Cr is a support function on K.

The proof of this proposition is first done assuming that h is C 2 and then using an approximation argument. The proof in the regular case follows by a computation of the Hessian of ĥr .

Corollary 2. 15 .

 15 Let c > 0. Then on B A(h) ≥ cdH d ⇒ MA(h) ≥ cL .

  Theorem 2.27 (Comparison Principle, Rauch-Taylor, [RT77], [Gut01, 1.4.6]). Let O be a bounded open convex set of R d . If u, v ∈ C(O) are convex functions such that for any Borel set

Figure 2 :

 2 Figure 2: The light-gray region represents P whereas the dark-grey region represents C i .

Lemma 3. 46 .

 46 For any δ > 0, let C = z ∈ B |x 1 (z)| < 1 -δ . Then there are a finite number of n 1 . . . n k ∈ Z such that f 1 (z) = max i (µ ni • f )(z)for any z ∈ C.

2 .

 2 Since x 1 ∈ [-1, 1] we have that x1-tanh an 1-x1 tanh an ∈ [-1, 1]. Notice that by definition of C, we have|x 1 | ≤ 1 -δ for every x ∈ C. So we easily see that 1 (cosh an -x 1 sinh an) α-1 1 + β 2 x 1 -tanh an 1 -x 1 tanh an 2 → 0 uniformly on C both for n → +∞ and for n → -∞. It follows that, putting a 0 = min f | K , there is a finite list I = {n 1 . . . , n k } such that for n / ∈ I 1 (cosh an -x 1 sinh an) α-1 1 + β 2 x 1 -tanh an 1 -x 1 tanh an 2 ≤ a 0 for every x ∈ C. So for x ∈ C f 1 (x) = max i (µ ni f )(x) .

Proposition A. 2 .

 2 Let h be a continuous function of H d . Given a compact subset K, denote by δ(r, K) = sup{|h(x) -h(y)|, x ∈ K, y ∈ B(x, r)} .Then ĥr -h K ≤ |A(r)V (r) -1| h Kr + δ(r, K).Proof. The estimate is obtained by a direct computation. For x ∈ K:ĥr (x) -h(x) = A(r) B(x,r) h(y)dH d (y) -1 V (r) B(x,r) h(y)dH d (y) + 1 V (r) B(x,r) (h(y) -h(x))dH d (y) ≤ |A(r)V (r) -1| h Kr + δ(r, K) .We now show that if h is τ -equivariant so is ĥr . Notice that if γ ∈ Γ then ĥr (γ(x)) -ĥr (x) = A(r)B(γ(x),r) h(y)dH d (y) -B(x,r) h(y)dH d (y) = A(r) B(x,r) (h(γy) -h(y))dH d (y) .

  fr (x) = d ω d-1 sinh (r) d B(x,r) 1 d ∆ f (y)dH d (y) = 1 ω d-1 sinh (r) d S(x,r) D f (y)[ν]dS r (y)

Lemma A. 4 .

 4 If h is a continuous function, then ĥr is C 1 and given a tangent vector v at x, we haveD ĥr (x)[v] = A(r) S(x,r)h(y) ν(y), Ṽ (y) dS r (y)

  lim t→0 ĥr (γ t (x)) -ĥr (x) γ t y) -h(y))dH d (y) .This limit clearly exists and we haveD ĥr (x)[v] = A(r) B(x,r)grad H h(y), Ṽ (y) dH d (y) .

Remark A. 5 .

 5 In the proof we have showed in particular that ifh is C 1 then D ĥr (x)[v] = A(r) B(x,r) grad H h(y), Ṽ (y) dH d (y) .Applying Lemma A.4 to the continuous function h ′ (x) = grad H h(x), Ṽ (x) , we see that for any Killing vector field Ṽ the function x → D ĥr (x)( Ṽ (x)) is C 1 . Thus ĥr is C 2 . More generally by an induction argument, one shows that if h is of class C k , then ĥr is of class C k+1 .

  function on B. Denote by D 1 the set where h 1 > h 2 and D 2 the set where h 2 > h 1 . Notice that D i are open and for each x ∈ D i the set of subdifferentials of h at x coincides with the set of subdifferentials of h If h is a convex function on B, by the Alexandrov theorem, it is C 2 almost everywhere and then the right-hand side of (16) has still a meaning. It is actually the regular part of the Lebesgue decomposition of MA(h) [TW08, Lemme 2.3].

i . Now let E be where h 1 coincides with h 2 . Notice that if x ∈ E each subdifferential of h i at x is also a subdifferential of h at x. It follows that MA(max{h

1 , h 2 })(ω) ≥ min{MA(h 1 )(ω), MA(h 2 )(ω)} .

(15)

• If h is C 1 , then ∂h(x) = grad x h, and then MA(h)(ω) = L(gradh(ω)) ,

for which it can be deduced that [Gut01, 1.

1.14], if h is C 2 MA(h)(ω) = ω det Hess x hdx .

(16)

•

  for a bounded open convex set O, h convex on O and for any Borel set E of O, mL(E) ≤ MA(h)(E) ≤ M L(E), for some fixed M > m > 0 . Theorem 2.29 (Caffarelli, [Gut01, Theorem 5.2.1]). Let O be a bounded open convex set of R d . Let h be a convex function in O satisfying (17). Assume that h ≥ 0 on O and let C = {x ∈ O|h(x) = 0}. If C is non-empty and contains more than one point, then C has no extremal point in O.

	(17)

y 0 , v + 1 2 y 1 , v ,where •, • is the positive product of R d+1 .

≤ 4(2|h(0)| + 2C x ) ≤ 8(|h(0)| + C x ) .

Analogously In particular with (16):

Cauchy-Schwarz inequality gives 

Putting the inequalities together, by Fubini,

Now integrating in polar coordinates on B k + we get that

The function F (y) = 1/4 0

(y+Ct) d-k dt is decreasing and by Beppo-Levi Theorem, as k ≤ d/2, lim y→0 + F (y) = +∞.

This shows that |h(0)| > c where c depends only on C, c 0 , k, and d. Now let h satisfying the hypothesis of the theorem. Let h j be a C 2 convex function on

As MA(h j ) weakly converges to MA(h), one can see that there is positive constant, that we still denote by c 0 , such that for j sufficiently large, MA(h j ) ≥ c 0 L. Moreover, on 3 4 B d , h j is C-Lipschitz for the same constant C than h [Roc97, 10.6]. Let us introduce the following

. As sup ∂B h ′ j -sup ∂B h j is close to 0 as j → +∞, the fact then gives that for j big sup

By Remark 3.8 and Proposition 3.7, the function h τ + f is continuous on B. Notice that K coincides with the set {p ∈ R d+1 | p, x -≤ h τ (x) + f (x), ∀x ∈ B}. Since p ∈ ∂ s K, by compactness of B, there must exist y ∈ B such that p, ŷ -= (h τ + f )(y) (otherwise, p would be an interior point of K).

Hence x and y are two different support vectors at p, so p is not regular. The Gauss image of the set of regular points has full area measure by Proposition 2.16.

Hausdorff distance and convergence

The difference of two τ -equivariant maps is Γ-invariant. This gives a continuous function on the compact manifold H d /Γ. The set of τ -convex sets can be endowed with the following distance.

Definition 3.13 (Hausdorff distance). The τ -Hausdorff distance between two τ -convex sets is the uniform norm of the difference of their support functions.

Remark 3.14. Let K(H) denote the closure of the future of

It follows that the distance between two τ -convex sets K and K ′ is the minimum of the λ ≥ 0 such that K + λK(H) ⊂ K ′ and K ′ + λK(H) ⊂ K.

For x ∈ Ω τ , the cosmological time is the Lorentzian distance from x to the boundary of Ω τ . By [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF] the cosmological time is a Γ τ -invariant C 1,1 -function of the interior of Ω τ with value on [0, +∞). Moreover, the level surface Σ t is the boundary of the set Ω τ +tK(H). In particular the support function of the future of Σ t on H d is h τ -t.

For a given Γ τ -invariant surface S, we will denote by T min (S) (resp. T max (S)) the minimum (resp. the maximum) of the cosmological time on S.

Lemma 3.15. Let K be a τ -convex set with support function h, and let S be its boundary. Then T min (S) (resp. T max (S)) is equal to the minimum (resp. maximum) of h τ -h on H d . Proof. Let Σ m be the level set of T corresponding to the level m = T min . As K ⊂ I + (Σ m ), then h ≤ h τ -m, i.e. h τ -h ≥ m. On the other hand, if p is the point of K realizing the minimum of the cosmological time on ∂K, then the tangent plane of Σ m at p is a support plane of K at p. If x, x ∈ B, is the corresponding normal vector, then h(x) = h τ (x) -m.

The main tool will be the following convergence result. Lemma 3.16. Let Σ t be a level set of the cosmological time, and let (K n ) be a sequence of τ -convex sets which meet the past of Σ t . Then -up to passing to a subsequence -(K n ) converges to a τ -convex set with respect to the τ -Hausdorff distance.

Proof. Let (S n ) be the sequence of boundaries of the K n . Notice that S n is the graph of some 1-Lipschitz function ũn defined on the horizontal plane R d . By a standard use of Ascoli-Arzelà theorem, if there is a compact subset in R d+1 which meets all the surfaces S n , then up to passing to a subsequence the functions ũn converge to a 1-Lipschitz function u uniformly on compact subsets of R d .

To check that S n meets a compact region of R d+1 , notice that by the assumption there is a point x n ∈ Σ t whose past meets S n . By the invariance of S n , any point in the orbit of x n works as well. Since the quotient Σ t /Γ τ is compact [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF], then there is a compact fundamental region C of Σ t for the action of Γ τ . So we may assume that x n ∈ C. Thus, S n meets I -(C) ∩ Ω τ which is a compact region.

Up to passing to a subsequence, we can deduce that ũn converges to a 1-Lipschitz function ũ. Clearly the graph of ũ is the boundary of a τ -convex set K. It remains to prove that K n converges to K with respect to the τ -Hausdorff distance.

Suppose by contradiction that (K n ) does not converge to K in the sense of Definition 3.13. That means that there exists a ǫ > 0 such that, for arbitrarily large n, there exists

More generally, adapting the Euclidean argument [START_REF] Carlier | On a theorem of Alexandrov[END_REF], one can prove that if h < h τ , the area measure is the Gâteaux gradient of the covolume.

Remark 3.35. In the C 2 + case, the area measure is the determinant of a symetric matrix (3). The determinant of d × d symmetric matrix can be polarized as a d-linear form. If moreover we are in the Fuchsian case, it follows from the representation formula (35) that the covolume can be polarized as a (d + 1)-linear form. Using a density argument, the covolume can be polarized on the set of all Γ-invariant convex sets. This leads to a theory similar to the mixed-volume theory in the convex bodies case [START_REF] Fillastre | Fuchsian convex bodies: basics of Brunn-Minkowski theory[END_REF]. There is no such similar theory in the general τ -convex case. The point is that the set of Γ invariant convex set is a (convex) cone, and we can take a convex cone as fundamental domain in I + (0). Actually, a mixed-covolume theory can be done for suitable convex sets in any convex cone -without mention of an ambient metric, see [START_REF] Khovanskii | On the theory of coconvex bodies[END_REF].

Although some questions remain, for example to find an isoperimetric inequality in the general τ -convex case, see [START_REF] Fillastre | Fuchsian convex bodies: basics of Brunn-Minkowski theory[END_REF] for the Fuchsian case.

Proof of the theorems

We fix a Γ-invariant positive Radon measure µ on H d and a cocycle τ . The aim of this section is to construct a τ -convex set with area measure µ.

Consider the functional on the space of hyperbolic τ -equivariant support functions

Note that L µ is continuous (and even convex) by Lemma 3.25.

Proof. By Lemma 3.15, the maximum of the cosmological time on the corresponding convex sets goes to infinity. By Lemma 3.19, the minimum of the cosmological time also goes to infinity. Let a n be the minimum of the cosmological time on the convex set with support function h n . Again by Lemma 3.15 and Lemma 3.19, (h τ -h n ) ≤ ca n . So the linear part of L µ grows (in absolute value) linearly in a n . On the other hand covol(h n ) ≥ covol(h τ -a n ). But the volume of the past of the level set of the cosmological time coincides with V an (h τ ) that is a polynomial of degree d + 1 by (24). It follows that covol(h τ -a n ) ≥ c ′ a d+1 n .

Lemma 3.37. L µ attains its minimum.

Proof. Let α ∈ [-∞, +∞) be the infimum of the range of L µ . Let (h n ) be a minimizing sequence for L µ of τ -invariant hyperbolic support functions. By Lemma 3.36, the L ∞norm of (h n ) are uniformly bounded from above, so from Corollary 3.17 one can extract a subsequence converging to the support function h. By continuity, L µ (h) = α.

Lemma 3.38. Let h 0 be a support function on which L µ attains its minimum. Then for any Γ-invariant support function f ,

As h a < h 0 , we can use (36), which gives 0 ≤ (-af )dA(h a ) + af dµ so we get

for any a. The result follows by letting a → 0 and using the weak convergence of the area measures (Corollary 3.22).

In practice we will construct a τ -convex function h on B with MA(h) > c 0 L. Considering some r < 1 such that a fundamental domain for the projective action of Γ on B is contained in the ball of radius r, from Corollary 2.15 there will be a constant c ′ such that A(h) ≥ c ′ dH d .

Let f 0 be a function given in Remark 2.31 for k = d -1:

and β is a suitable constant ≥ 1. We have f 0 ≡ 0 on [ℓ -, ℓ + ], with ℓ ± = (±1, 0, . . . , 0).

Up to compose by a global isometry, we can suppose that the polyhedron T ⊂ ∂ s Ω τ contains 0 in its interior and is contained in the (d -1)-linear space

Recall that H τ is the support function of Ω τ on I + (0) and h τ is its restriction to the ball B. We notice that h τ ≥ 0 and h τ = 0 exactly on [ℓ -, ℓ + ].

Proof. Notice that by definition of f 0 we have that f 0 (x) ≤ cr(x) for any x ∈ B and some c. So it is sufficient to show that there is

Let Ω = I + (T ). It is an F-convex set contained in Ω τ with support function h on B. Note that h = 0 on [ℓ -, ℓ + ]. So to prove the claim it is sufficient to check that for x ∈ B \ [ℓ -, ℓ + ] we have h(x) > cr(x) for some c.

But in R, 0 is contained in the interior of the convex body T , so T contains in its interior a small ball centered at 0, whose support function is c • R some c, where • R is the norm associated to •, • R , the scalar product on R induced by the Minkowski product. For any

But for any y ∈ T , y, e 1 -= y, e d+1 -= 0, so for any

Now we take f = ǫf 0 . Notice that

where Γ τ acts on the set of convex functions of B as explained in Section 3.1. By definition f ∞ is a convex function on B. Actually it is the support function of the convex hull of the union of all the γ • K(f ), so it is a fixed point for the action of Γ τ . Moreover, since f ≤ h τ , we have that f ∞ (x) ≤ h τ (x) for any x ∈ B, and

The rest of this section is devoted to prove the following proposition.

Proposition 3.44. For any compact subset C of B, there is

The first step is to compute the stabilizer of T in Γ τ .

Lemma 3.45. The stabilizer of T in Γ τ is a Z-group generated by an element, say µ τ .

Proof. First we prove that the stabilizer of T is not trivial. Notice that for each γ τ ∈ Γ τ either γ τ (T ) = T or γ τ (int T ) is disjoint from int T .

If T 1 denotes the subset of the level set Σ 1 of the cosmological time that retracts in int T , by the equivariance of the retraction we have that either γ τ (T 1 ) = T 1 or they are disjoint.

Corollary 3.48. For any ξ ∈ ∂B \ {ℓ ± } we have f 1 (ξ) < h τ (ξ) . Proof. By Lemma 3.46 there exists n ∈ Z such that f 1 (ξ) = (µ n •f )(ξ). Now, as μ-n (ξ) / ∈ {ℓ ± } (because μ stabilizes [ℓ -, ℓ + ]) we have that (µ n • f )(ξ) < (µ n • h τ (ξ)), and then

where the last equality holds since h τ is Γ τ -invariant.

Notice now that the function f ∞ can be obtained as

Proposition 3.44 follows then from the following lemma, together with Corollary 3.47, Corollary 3.6, and (15) imply the following: Lemma 3.49. For any compact subset C in B there exist a finite number of cosets

Proof. We will prove that for any infinite sequence [γ n ] of distinct elements in X we have that f [γn] converges uniformly to -∞ on C. Suppose by contradiction that there exists a sequence [γ n ] such that min f [γn] is bounded on C. As Γ is cocompact, its elements are hyperbolic. So, up to pass to a subsequence there is a point ℓ ∈ ∂B such that γ-1 n (x) converges uniformly to ℓ on C. Fact: we may choose γ n in their cosets so that ℓ / ∈ {ℓ -, ℓ + }. Take the disk ∆ = {x ∈ B|x 1 = 0}. Its < μ >-orbit is a union of disjoint disks ∆ i = μi (∆) which converge to ℓ + (for n → +∞) and to ℓ -(for n → -∞) and whose hyperbolic distance is a.

In particular, for each n we have that γ-1 n (C) is contained between ∆ kn and ∆ kn+h where h is any integer number less than the hyperbolic diameter of C divided by a. It follows that μ-kn γ-1 n sends C into the region bounded by ∆ 1 and ∆ h . In particular changing γ n with γ n µ kn we have that the point ℓ is contained in the region annulus on ∂B bounded ∆ 1 and ∆ h , so it is neither ℓ -nor ℓ + . The fact is proved. Now by Lemma 3.4 we have

uniformly on C contradicts the assumption. Now let C be a compact set of H d containing a fundamental domain for the action of Γ. From Proposition 3.44 and Proposition 2.14, on C the area measure of K(f ∞ ) is bounded from below by a positive constant times the hyperbolic volume measure. As the area measure is invariant under the action of Γ, it follows that on H d the area measure of K(f ∞ ) is bounded from below by a positive constant times the hyperbolic volume measure.

Corollary 3.50. Let K ∞ be the τ -convex set corresponding to f ∞ . There is a constant c 0 such that A(K ∞ ) ≥ c 0 dH d , but K ∞ meets ∂ s Ω τ and in particular it is not strictly convex.

As a corollary we get Corollary 3.51. There is no τ -convex set with smooth boundary and with constant curvature function c 0 .

Proof. Suppose by contradiction that such set, say K, exists and let h its support function on B. By Proposition 2.14 and (6) we should have

On the other hand by Corollary 3.50 we have

By the comparison principle (Theorem 2.27)

This implies that h coincides with h τ on [ℓ -, ℓ + ], so ∂K contains the points of ∂Ω τ which satisfy either p, l--= 0 or p, l+ -= 0. In particular for each point p in the interior of T , the two light-like vectors through p directed as land l+ are contained in ∂K.

Thus the intersection of ∂K with the time-like 2-plane U passing through x and orthogonal to the plane R containing T is the union of two geodesic rays with different directions. Since this intersection is transverse, ∂K cannot be smooth.

A Smooth approximation

In this section we will prove that any τ -convex set K can be approximated by a sequence (K n ) of C 2 + τ -convex sets. We limit ourself to consider C 2 -approximation only for simplicity. In fact the same techniques can be implemented to produce a smooth approximation. In Remark A.5 some details will be given in this direction.

The main idea is to use an average procedure to construct a sequence h n of C 2 -support functions converging to h. Basically, given any r > 0 we define by the hyperbolic average of any continuous function h of radius r the following function

where B(x, r) is the hyperbolic ball centered at x of a radius r and ω d-1 is the volume of the standard sphere S d-1 of constant curvature 1. For brevity we denote by

We will show the following facts

• ĥr → h as r → 0 uniformly on compact subsets of H d .

• if h is τ -equivariant, so is ĥr .

A further difficulty is that the average procedure in general does not produce support functions. However if h is τ -equivariant, we will prove that there exists a constant C > 0 such that ĥr -Cr is a support function for any r. To prove this result it will suffice the following property about ĥr .

• If h is a support function, for any convex compact domain K of H d , there is a constant C = C( h Lip(K) ) such that ĥr -Cr is a support function on K.

(Here being a support function on K ⊂ H d means that its 1-homogeneous extension on the cone over K is convex.) First let us show how the enlisted properties of the hyperbolic average imply the density statement we want to prove in this section.

Lemma A.7. Assume that h is C 2 . Let v be a tangent vector at x ∈ H d . Then

where Ṽ is the Killing vector field extending v and generating a hyperbolic transformation with axis through x (i.e., Ṽ (x) = v and ∇ Ṽ Ṽ = 0 at x).

Proof of Lemma A.7. Let γ t be the isometry flow generated by Ṽ . The path c(t) = γ t (x) is a geodesic passing through x such that ċ = v. In particular, we have

Differentiating the formula ĥr (c(t)) = A(r)

grad H h(γ t y), Ṽ (γ t (y)) dH d (y) .

The statement is then proved by differentiating again this formula at t = 0.

We will need the following lemma. Let Lip K (h) be the best Lipschitz constant of h on K, and let h Lip(K) = h K + Lip K (h). Proof. By uniform convergence, u n K converge to u K , which is less than u K ′ . So we have to prove that the limit superior of Lip K (h n ) is less than Lip K ′ (u). Let x, y be two points in K, and z be the intersection point of the ray from x towards y and ∂K ′ . So y = (1 -λ)x + λz with λ = y -x / z -x , then by convexity we have

Let ǫ > 0 and suppose by contradiction that u n are not (Lip K ′ (u) + ǫ)-Lipschitz on K for n big. This implies that there is two sequences x n and y n in K such that

Let z n be the intersection point of the ray from x n towards y n and ∂K ′ . By (38) we have that

Now, up to take a subsequence, z n → z in ∂K ′ and x n → x in K. Notice in particular that z -x > 0. Since u n → u uniformly on K ′ we have that

and by ( 39)

Given a hyperbolic support function h let us denote by h the corresponding support function on the ball. Recall that h(x) = λ(x)h(v(x)) where λ(x) = 1 -x 2 and v : B → H d is the radial map.

Using that for each compact subset K of H d the map v : v -1 (K) → K is bi-Lipschitz we simply check that there are two constants α < β depending on K such that for any support

where the Lipschitz constant of h is computed with respect to the Euclidean metric of the ball while the Lipschitz constant of h is computed with respect to the hyperbolic metric.

So Lemma A.8 implies the following corollary.

Corollary A.9. Let (h n ) n be a sequence of hyperbolic support functions on an open subset U ⊂ H d converging uniformly on any compact set of U to h. Let K ⊂ U be a compact set, and K ′ ⊂ U a compact set containing K in its interior. Then there is a constant

Proof of Proposition A.6. There is a constant C = C(d) such that if Ṽ is any Killing vector field and x a point in H d such that ∇ Ṽ Ṽ (x) = 0 then for any y ∈ B(x, 1)

where r = d H (x, y). This can be seen because as the hyperbolic space has negative curvature, the map f (y) = Ṽy is convex, hence locally Lipschitz, and f grad H f = -∇ Ṽ Ṽ [START_REF] Bishop | Manifolds of negative curvature[END_REF]. By applying an isometry, one sees that the constant does not depend on x.

Let us assume that h is C 2 . By Cauchy-Schwarz and one of the inequalities above, we get that for every y ∈ B(x, r) grad H h, ∇ Ṽ Ṽ (y) ≥ -grad H h B(x,r) Ṽx Cr .

Moreover, ∇ 2 h -hg H ≥ 0, that implies ∇ 2 (h)( Ṽy , Ṽy ) -h(y) Ṽx 2 ≥ -|h(y)| Ṽy 2 -Ṽx 2 ≥ -h B(x,r) Cr .

Lemma A.7 implies that ∇ 2 ( ĥr ) -ĥr g H (v, v) ≥ -A(r)V (r)C( h B(x,r) + grad H h B(x,r) v )r .

So in particular for any x ∈ K, if v = 1, then (∇ 2 ( ĥr ) -ĥr g H )(v, v) ≥ -A(r)V (r)C( h Kr + grad H h Kr )r and as K r is convex, gradh Kr = Lip Kr (h), and as A(r)V (r) → 1 when r → 0, there exists C ′ such that (∇ 2 ( ĥr ) -ĥr g H )(v, v) ≥ -C ′ h Lip(Kr) r , ||v|| = 1 , so ĥr -C ′ h Lip(Kr) r is a support function. Now consider the case where h is only continuous. Let (H n ) n be a sequence of C 2 + support functions converging to the extension H of h uniformly on compact subset of I + (0) (Lemma 2.12). From Corollary A.9 for any ǫ > 0 the functions

are support functions for n big and r < 1, where C 1 = C 1 (K 1 ) is the constant of Corollary A.9.

Taking the 1-homogeneous extension F n of f n , we have that F n is convex over the cone on K for n big. Letting n go to +∞, F n converges to the 1-homogeneous extension of f = ĥr -C ′ C 1 ( h Lip(Kr) + ǫ)r . So f is a support function on K. Since ǫ can be chose arbitrarily we deduce that ĥr -C ′ C 1 h Lip(Kr) r is a support function over K.