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The efficient coding hypothesis posits that sensory systems of animals strive to encode

sensory signals efficiently by taking into account the redundancies in them. This principle

has been very successful in explaining response properties of visual sensory neurons as

adaptations to the statistics of natural images. Recently, we have begun to extend the

efficient coding hypothesis to active perception through a form of intrinsically motivated

learning: a sensory model learns an efficient code for the sensory signals while a

reinforcement learner generates movements of the sense organs to improve the encoding

of the signals. To this end, it receives an intrinsically generated reinforcement signal

indicating how well the sensory model encodes the data. This approach has been tested

in the context of binocular vison, leading to the autonomous development of disparity

tuning and vergence control. Here we systematically investigate the robustness of the

new approach in the context of a binocular vision system implemented on a robot.

Robustness is an important aspect that reflects the ability of the system to deal with

unmodeled disturbances or events, such as insults to the system that displace the stereo

cameras. To demonstrate the robustness of our method and its ability to self-calibrate, we

introduce various perturbations and test if and how the system recovers from them. We

find that (1) the system can fully recover from a perturbation that can be compensated

through the system’s motor degrees of freedom, (2) performance degrades gracefully if

the system cannot use its motor degrees of freedom to compensate for the perturbation,

and (3) recovery from a perturbation is improved if both the sensory encoding and the

behavior policy can adapt to the perturbation. Overall, this work demonstrates that our

intrinsically motivated learning approach for efficient coding in active perception gives rise

to a self-calibrating perceptual system of high robustness.

Keywords: active perception, sparse coding, reinforcement learning, robotics, stereo vision, vergence, robustness

1. INTRODUCTION

A number of studies in the last four decades addressed the ques-

tion of how sensory neurons encode information and showed

that neural systems might employ an efficient code to represent

incoming data, i.e., a code that exploits redundant information

(Attneave, 1954; Barlow, 1961; Field, 1994). The visual system

has been a primary target of these studies, where the main result

showed that neurons in primary visual cortex (V1) might encode

visual information through a sparse code, i.e., a code where, at any

given moment, only a few neurons out of the entire population

fire. A sparse coding strategy has several benefits (Willshaw et al.,

1969; Lennie, 2003), including increased memory, less interfer-

ence between stored patterns and reduced energy consumption,

as compared to a dense code (i.e., where many units are simul-

taneously active). Importantly, when the sparse coding principle

is applied to the encoding of natural images (i.e., scenes from

nature), it leads to the emergence of basis functions whose struc-

ture resemble that of V1 simple cells’ receptive fields (Olshausen

et al., 1996). The idea of sparse coding has been confirmed by

neurophysiological experiments, showing sparse activation of V1

neurons in primates when probed with image sequences of nat-

ural stimuli (Weliky et al., 2003) and has been extended to other

sensory domains, including the olfactory and auditory domain

(Perez-Orive et al., 2002; Smith and Lewicki, 2006). Most stud-

ies treated the problem of efficient coding without considering

the effects of behavior. The connection between sensory inputs

and behavior, commonly referred to as the perception-action cycle

is important both to (1) understand the development of sensory

representations in neural systems as a function of the task per-

formed (Rothkopf et al., 2009) and to (2) design artificial systems,

such as robots that autonomously learn and adapt to a chang-

ing environment. Indeed, a big technological challenge for such

systems is to learn in an efficient and unsupervised way.

We consider this problem in the context of binocular vision.

Binocular disparity, the difference between the image projected

on left and right retina, is used by organisms with two frontal

eyes as a primary depth cue. In order to focus on a point at a

certain depth, the two eyes are required to jointly turn inwards or

outwards, such that the same object or world feature appears in

the center of both images and disparity is nullified. Such type of
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eye movement is known as vergence and represents a fundamental

component of visually-guided behavior.

Many approaches to perform vergence in robotic systems

employ computer vision techniques to estimate disparity from

stereo-images followed by the use of a feedback controller to move

the eyes and nullify disparity. These methods are often dependent

on pre-defined system parameters and camera calibration. Some

methods have used reinforcement learning to autonomously learn

vergence control; however, they all require estimating disparity by

the use of a pre-defined set of filters (Piater et al., 1999) or a pop-

ulation of disparity-selective neurons (Franz and Triesch, 2007;

Wang and Shi, 2010).

In our previous work (Zhao et al., 2012; Lonini et al.,

2013c) we have presented a method that autonomously learns

how to verge two cameras on a common world feature based

on the efficient coding hypothesis. The model makes use of

a form of intrinsic motivation to learn efficient sensory rep-

resentations in the perception-action cycle. A sparse coding

model learns to encode sensory information using binocular

basis functions at different resolutions, while a reinforcement

learner generates the camera movement, according to the out-

put of the sparse coding model. Sensory coding and behavior

develop in parallel, by minimizing the same cost function: the

error between the original stimulus and its reconstruction by

the sparse coding model. The rationale behind the approach is

that, the more similar left and right images are, the easier they

are to encode. Thus, if the actions taken by the reinforcement

learning (RL) agent drive the system to perform correct ver-

gence, the reconstruction error will be minimized. Importantly,

the reward to the reinforcement learning agent is generated

within the system and does not explicitly specify the goal to be

attained.

In this paper we show that the joint learning of the sen-

sory and the control part produces a system that is robust with

respect to unmodeled disturbances. This is a critical issue for

stereo vision systems: for example an insult to the system might

cause a displacement of one camera, which in turn modifies

the extrinsic parameters (i.e., the relative offset of the two cam-

eras) of the model of the system. We consider four different

types of perturbations that we apply to one camera: blur, roll

(in-plane rotation), tilt (vertical misalignment), and pan (hor-

izontal misalignment). We show that the system can still learn

vergence despite the perturbations. Moreover, when a pertur-

bation is introduced, adapting the bases of the sparse coding

models to the changed input statistics improves the perfor-

mance, as compared to a case where only the policy of the

RL agent is adapted and the bases are tuned to unperturbed

images. The results underline the importance of adapting both

the sensory encoding and the behavior of the system. The use

of an intrinsic reward, coupled to an efficient coding of the sen-

sory inputs, allows the model to continuously learn under a

multitude of conditions. This self-calibrating property is highly

desirable for robotic systems that have to operate in changing

environments.

We use the head of the humanoid robot iCub as a test platform.

The iCub robot stereo head represents a convenient platform to

study active perception, because it replicates the main degrees

of freedom of the human head and eyes. We train the model

using the iCub simulator and use it to quantitatively assess the

performance of the system. We then show that the model also

works well on the real robot. The paper is organized as follows:

in section 2 we describe the model architecture, the perturba-

tions used and the experimental setup. Section 3 contains the

results of the robustness analysis and section 4 discusses the

results.

2. MATERIALS AND METHODS

In this section, we first provide an overview of the architecture of

the vergence control system; then we describe the set of distor-

tions applied to the stereo images, which are used to assess the

robustness of the method. Finally we describe the iCub robotic

platform and the simulator used to run the experiments.

2.1. MODEL ARCHITECTURE

The vergence control model consists of three main stages (see

Figure 1):

• Pre-processing: stereo patches are extracted from the input

binocular images and normalized.

• Sensory encoding: two sparse coding models are used to encode

the input images at different resolutions.

• Motor control: a reinforcement learning agent generates ver-

gence commands to move the cameras of the robot according

to the output of the sparse coding models.

A detailed description of our model architecture has been intro-

duced in (Lonini et al., 2013c). We report here the main elements

for the sake of completeness.

2.1.1. Pre-processing

Stereo images are acquired from the cameras of the iCub robot

(320 × 240 pixels) and converted to gray-scale. The fixation point

is defined to be at the center of each input image. A 128 ×

128 pixel image is cut from the center of left and right images

(Figure 1, red windows); the image is subsampled to 16 × 16 pix-

els using a Gaussian pyramid and patches of size 8 × 8 pixels

are extracted; this set of patches (receptive fields) corresponds

to patches of size 64 × 64 in the original image. The subsam-

pling operation is performed to reduce the computational burden

required to train the sparse coding model as well as to learn basis

functions at a coarse resolution. To learn basis functions at a fine

resolution, patches of size 8 × 8 pixels are extracted from 72 × 72

pixel foveal windows (Figure 1, blue windows), without perform-

ing any subsampling. From each foveal window, we extract a total

of 81 patches of size 8 × 8 pixels, where patches at the coarse scale

are shifted horizontally and/or vertically by multiples of 1 pixel.

This ensures that the same number of patches is extracted at each

scale. For each scale, each left (right) patch is transformed into a

column vector xL
k (xR

k ) and preprocessed to have zero mean and

unit norm. Corresponding left and right patches are vertically

concatenated to form a stereo-patch xk, where the first 64 compo-

nents of xk correspond to the left patch and the last 64 correspond

to the right patch. The subscript k indexes the patch within an

image.
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FIGURE 1 | Architecture of the model for vergence control [adapted from Lonini et al. (2013c)].

2.1.2. Sparse coding model

The input to a sparse coding model is a matrix of 81 patches

within an input stereo image at a given scale (i.e., coarse or fine).

A stereo patch is approximated through the sparse coding model

by a linear combination of binocular (stereo) basis functions φ.

Formally this approximation is expressed by:

[

x̂L
k

x̂R
k

]

=

B
∑

i = 1

a
(k)
i

[

φL
i

φR
i

]

, (1)

where B = 288 is the total number of basis functions available in

the dictionary of each sparse coding model. In order to ensure

sparseness of the representation we allow only 10 coefficients ai

to be non-zero. The sparse coding model is trained to represent

the original image as accurately as possible given this sparseness

constraint. The total squared reconstruction error over all the

stereo-patches, normalized by the energy in the original image

measures the loss of information due to the encoding. This is

defined by:

e =

P
∑

k = 1

‖xk − x̂k‖
2

P
∑

k = 1

‖xk‖2

, (2)

where P is the total number of patches within an image.

Learning occurs online through a two-step procedure: for

each patch, a set of coefficients ai and basis functions φ

are selected from the basis dictionary using matching pursuit

(Mallat and Zhang, 1993), a greedy algorithm that finds a set

of bases to represent the input patch. Then, the chosen bases

are adapted through gradient descent on the reconstruction

error function (Olshausen et al., 1996). Given a foveal win-

dow Ij(t) at time t and scale j (i.e., coarse or fine), we com-

pute the B-dimensional feature vector, sj(t), by averaging the

squared weighting coefficients over the P patches taken from the

window:

sj(t) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
P

P
∑

k = 1

(

a
(k)
1 (t)

)2

...

1
P

P
∑

k = 1

(

a
(k)
B (t)

)2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (3)

where a
(k)
i denotes the coefficient1 of basis i for patch k.

In biological terms, each entry of the state vector models the

pooled responses of binocular simple cells (coefficients a
(k)
i for

a given i) over different locations of the visual field (different

patches k). The receptive field of a binocular simple cell is repre-

sented here by a basis function φi, which is sensitive to a specific

orientation, spatial frequency and disparity. The result of this

pooling roughly corresponds to the operation performed by com-

plex cells, which receive inputs from many simple cells at different

locations and tuned to the same disparity.

2.1.3. Reinforcement Learning

The reinforcement learning agent receives as input the combined

feature vector s(t) from each scale and maps it to a vergence

change �α(t). The reward for the agent is the negative sum of the

reconstruction errors of the two sparse coding models. The goal

of the RL agent is to select actions to maximize the discounted

1For the convenience of reading, we drop the index j indicating that the

coefficients ai depend on the scale.
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cumulative future reward R(t)

R(t) =

∞
∑

k = 0

−γ−k[eC(t + k) + eF(t + k)], (4)

where eC and eF are the reconstruction errors (2) for the coarse

and fine scale sparse coding models, respectively2.

The RL architecture we use is the natural actor-critic algo-

rithm as described in Bhatnagar et al. (2009), with an additional

regularization factor to keep the weights of the policy bounded.

Two linear neural networks (NN) are used to implement the

actor (policy) and the critic (value function). The critic network

receives as an input the state s(t) and produces as output the value

V(t) of the current state

V(t) = vT(t)s(t), (5)

where v(t) are the weights of the network at time t and the super-

script T denotes the transpose operator. The policy network maps

states to actions and its output layer contains as many neurons as

possible actions that the agent can generate. Each action is a rela-

tive change �α(t) in the current vergence angle α(t). We chose a

set A of 11 actions, uniformly spaced on a logarithmic scale as

A = {−8◦, −4◦,−2◦,−1◦,−0.5◦, 0◦, 0.5◦, 1◦, . . . , 8◦} to allow

coarse and fine movements.

The activation za of each output neuron at time t is

computed as

za(t) = θT
a (t)s(t), (6)

where θa(t) is the vector of weights from the state s to action a at

time t.

The probability of choosing action a is computed according to

a softmax operation on the activation of the output neurons that

is:

πa(s(t)) =
exp(βza(t))

11
∑

j = 1

exp
(

βzj(t)
)

, (7)

where β is the inverse of the temperature parameter which con-

trols the amount of exploration vs. exploitation. During training

this parameter is set to 1.

2.2. IMAGE PERTURBATIONS

We consider four types of perturbations to assess the robust-

ness as well as the adaptation properties of the model. These

perturbations simulate either an unmodeled disturbance or the

consequence of an event which causes a change in the extrinsic

camera parameters (e.g., a collision). The perturbations are sim-

ulated by applying the following transformations to one of the

cameras of the robot (we chose the right one):

• Blur: the original image is blurred by applying a rotationally

symmetric Gaussian lowpass filter. Three different levels of blur

2Maximizing (4) corresponds to minimizing the total reconstruction error.

are chosen, corresponding to the following three different com-

binations of the standard deviation σ and kernel size S of the

filter reported in Table 1.

• Rotations: We add a constant roll (5◦, 15◦ or 25◦), tilt (2◦, 6◦

or 16◦) or pan (2◦ or 4◦) angle to the right camera. The roll

simulates an in-plane rotation of the camera; the tilt and pan

mainly produce, respectively, a vertical and horizontal offset

of the right image with respect to the left image. In biologi-

cal terms, the pan and tilt rotations have a loose analogy with

the clinical condition named strabismus, where the gaze direc-

tion of one eye is constantly deviated with respect to that of the

other eye. In a robotic system this perturbation might occur as

a result of an insult to the system.

The effect of each perturbation is shown in Figure 2B. Details

on how to simulate those rotations from the original images are

provided in the Appendix. Importantly, since the RL agent can

only change the vergence angle, tilt and roll perturbations can

not be fully compensated. In contrast, the effect of a pan per-

turbation can be fully compensated by the model through the

controlled degree of freedom. We assess how the model deals with

each condition.

2.3. EXPERIMENTAL SETUP

The iCub robot is an open source humanoid robotic platform.

The head of the robot (Beira et al., 2006) has a total of six

degrees of freedom: three in the neck (pan, tilt, roll) and three

in the eyes (independent pan for left and right eye, common

tilt). In our setup, we keep the neck of the robot fixed and con-

trol anti-symmetrically the pan of the two eyes such as to only

modify the vergence angle. In order to accurately quantify the

performance of our method, we train the model using the iCub

simulator, which provides a controlled environment for extensive

testing.

Table 1 | Parameters of the different blur levels.

σ [px] 4 16 32

S [px] 8 × 8 32 × 32 64 × 64

FIGURE 2 | (A) A screenshot from the iCub simulator showing the

experimental setup; (B) Types of perturbations applied to right image from

the robot camera (Blur of σ = 4 px; Roll of 5◦; Pan of 4◦; Tilt of 2◦).
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The stereo images acquired from the cameras of the simulated

robot have a resolution of 320 × 240 pixels. The focal length is

equivalent to 257 pixels which yields a horizontal field of view

of ∼64◦. Thus, a patch at the coarse and fine scale subtends a

visual angle of, respectively, 14.2 and 1.8◦.

We use a flat square object of side 1 m fronto-parallel to the

robot at a varying distance ranging from 0.5 to 2 m (Figure 2A).

During training the object distance is varied uniformly within

that range every 10 iterations. This range of distances corresponds

to vergence angles varying from 8 to 2◦. We constrain the maxi-

mum vergence angle to be 20◦. Similarly, the texture applied on

the object is also changed by randomly drawing it from a set of 24

different images. Changing the texture provides the sparse coding

model with sufficient statistics about the environmental stimuli to

allow a diverse set of basis functions to develop. Training is per-

formed online, where the sparse coding model as well as the RL

are both updated at each iteration of the algorithm.

3. RESULTS

We first compare how performance changes when a distortion is

present, with respect to the control model (i.e., a model trained

without any distortion). Each model is trained for 100,000 itera-

tions and performance is measured by the absolute mean vergence

error (AME) during training. Since the largest action that the

model can take in one step corresponds to a change of 8◦ in

vergence, more than one step may be required to reach the tar-

get vergence value. For example, if the current vergence is 20◦

and the target vergence is 1◦, the minimum number of steps

required to reach the target vergence is 4 (one possible sequence

of actions is −8◦, −8◦, −2◦, −1◦). In order to prevent a bias in

the estimation of the performance, we only consider the error in

the iteration preceding the stimulus change (i.e., the 9th itera-

tion after presentation of a new stimulus). If the new stimulus

is introduced at time t, the AME is

AME(t) =
1

N

N/2
∑

k = −N/2 + 1

|α(t + 9 + 10k) − α∗(t + 9 + 10k)| (8)

where α∗ is the target vergence angle for the stimulus and N is the

size of the averaging window. In our experiments we use a value of

N = 500 iterations. Since the averaging window is centered on the

data point, to compute the AME when there are no previous or

subsequent data points available (i.e., t < N/2 and t > T − N/2,

with T being the total number of training iterations) we replicate

the data point3.

Figure 3 shows the AME during training for four different per-

turbations, averaged over five different simulation runs. The level

of the perturbation that we use corresponds to the images of

Figure 2. As we can see from the decrease of the vergence error,

the model can learn to verge under all types of perturbations con-

sidered. As a comparison, a random policy for selecting actions

would lead to a vergence error of 7.5◦. The performance of the

system and its final accuracy depend both on the type of pertur-

bation and, as we will show below, on its level. The AME for the

3For example we assume α(t′) = α(0) if t′ < 0.

FIGURE 3 | The AME of vergence during training for the four types of

perturbations introduced (blur, roll, pan, and tilt), averaged over 5

simulations. The control represents the case where no perturbation is

applied (gray line). The AME for a random policy is ∼7.5◦ (not shown). Error

bars represent one standard deviation.

control settles at ∼0.2◦ at the end of training. For the pan rotation

(horizontal misalignment) the model displays a similar perfor-

mance. This is because the system can still find a position of zero

disparity and maximum redundancy by acting on the vergence

angle. The vergence position in this case will correspond to the

fixation on a point that is horizontally shifted by 2◦ with respect

to the fixation point of the control case. This vergence position

can be reached without any change in the system since our RL

agent outputs relative vergence angles. For the other three pertur-

bations the final accuracy is lower compared to the control case. In

the case of blur, this is due to the loss of high frequency informa-

tion. On the other hand, the tilt and roll rotations induce a change

in the redundancy of information between left and right image at

the vergence position, which affects the performance. However,

the final error is ∼1◦, which shows good learning of the vergence

control.

As previously mentioned, the performance of the system at the

end of learning also depends on the level of the perturbation we

introduce. To quantify this performance we run the training phase

with different levels of perturbation and observe the final AME of

the vergence. Figure 4 shows the results for each type of pertur-

bation, averaged over 5 simulations as before. Again, the AME for

a random policy is ∼7.5◦. As expected, the performances are not

affected in the pan rotation case. For the other conditions, the

performance degrades as the level of each perturbation increases.

In the case of blurred images, the learned policy performs better

than a random policy up to values of σ = 16 pixels (AME ∼3◦).

For roll angles up to 15◦, the AME is ∼2◦, indicating that the

model can learn vergence, despite the significant rotation between

left and right images. For a roll angle of 25◦ the AME reaches on

average 6◦. The AME for the tilt perturbation reaches a value of

∼2.5◦ for a tilt angle of 6◦, which corresponds to a vertical offset

of 18 pixels in the image. When the tilt angle is 16◦ (vertical off-

set of 74 pixels), performance degrades drastically and the AME

increases to ∼8.5◦.

In order to assess whether the model can generalize well on

new data after training, a test is conducted using a new set of
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FIGURE 4 | AME of vergence at the end of training is plotted as a

function of the level of each perturbation (average over 5 simulation

runs): (A) blur; (B) roll; (C) pan; (D) tilt. AME increases with the level of a

perturbation for all types of perturbation, except the pan perturbation (see

text). Error bars represent one standard deviation.

five textures and evaluating the greedy policy. In that case (7) is

replaced by

πa(s(t)) =

⎧

⎨

⎩

1 if a = argmaxa{za(t)}

0 otherwise

. (9)

The stimulus depth is randomly changed between 2 and 0.5 m

every 10 iterations and a texture is drawn from the test set every

200 iterations. The test runs for a total of 1000 iterations. The

same random sequence is used for all the perturbations. Figure 5

shows a box plot of the vergence error during the test for each

case. The median vergence error is used to remove the effect of

outliers during the test. For the control case the median of the

vergence error is 0.15◦. The effect of a roll rotation of 5◦ is also

fully compensated, while the blur (σ = 4 px) and the tilt rotation

induce a slightly larger median vergence error, which is ∼0.25◦.

Overall the model performs well in the test sessions for all cases

considered. In general, the errors are smaller than that measured

at the end of training because the greedy policy is used for testing.

Figure 6 shows example basis functions from the learned dic-

tionaries for each perturbation condition and for each scale. Basis

functions are tuned to different orientations and spatial frequen-

cies. Left and right part (vertically concatenated) for bases tuned

to zero disparity are identical, while bases tuned to non-zero dis-

parities show a horizontal shift between the left and right part

(Figure 6-Control). Each perturbation induces a specific change

in the bases that reflects the type of perturbation. The blur condi-

tion produces mostly monocular bases at the fine scale, indicated

by the fact that the right part is plain. The roll perturbation

induces a rotation of the right part with respect to the left, while

the tilt rotation produces some bases with a vertical shift between

left and right parts, representing vertical disparity.

FIGURE 5 | Box plot of the vergence error in the test session for all

types of perturbations considered. The red line in each box indicates the

median; edges of a box are the 25th (q1) and 75th (q3) percentiles. The

whiskers extend to values up to q3 + 1.5(q3 − q1). The plotted range

extends up to approximately ±2.7σ (standard deviation) of the data. Values

outside this range are considered outliers and are not plotted.

FIGURE 6 | Example basis functions that emerge at the end of training

(100,000 iterations) for coarse (left column) and fine scale (right

column). Each row corresponds to a different perturbation (Roll of 25◦; Blur

of σ = 4 px; Tilt of 2◦). The pan perturbation case is not considered, as it

does not induce any significant change in left and right part of the bases as

compared to the control case. See also the video available online for the roll

perturbation (Lonini et al., 2013a).

To assess how adaptation of the bases affects learning of the

policy when a perturbation is introduced, we consider the fol-

lowing scenario: we first train a model without any perturbation

(control case) for 100,000 iterations. Then, a perturbation is

introduced and the model is further trained under either of the

following two conditions: first, the bases of the sparse coding

models are updated and second, the bases remain fixed as they

were before the perturbation. These situations may be roughly

analogous to the biological case of an insult to the system occur-

ring either before or after the end of the critical period (Hubel

and Wiesel, 1970). In terms of robotics, this could correspond

to a perturbation induced by a shock received by the robot, after
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the system has been trained in an unperturbed scenario. Figure 7

shows the AME during training for three different perturbations

(blur, roll and tilt perturbation, first row) as well as the recon-

struction error of the sparse coding model for the fine scale

(bottom row), under the two conditions. We observe that the

AME decreases more for the case where the bases are allowed to

change vs. the case when the system uses the same bases learned

in the no-perturbation condition (Figure 7, red vs. blue line).

Importantly, the policy weights are allowed to change in both

cases. Thus, the RL can adapt to the perturbation, even when

the same set of basis functions is used. As expected, when the

bases are allowed to change, the reconstruction error decreases.

This is because the adapted bases can represent the perturbed

images better than the original set of bases, trained on unper-

turbed images; moreover the policy that emerges leads to lower

vergence errors, which translates into lower reconstruction errors.

Notably, the reconstruction error for the blur case drops in both

conditions (adapting and non-adapting bases) because blurring

one of the images makes it easier to encode. Also, the AME for the

roll perturbation at the onset of the perturbation (∼3◦) is lower

than the AME obtained at the end of training for the same type

of perturbation (cfr. Figures 4B, 7). The reason is that the bases

trained in absence of the perturbation can still be used to detect

disparity, when the perturbation is introduced. A video show-

ing the development of the basis functions, before and after the

roll perturbation is introduced, is available online (Lonini et al.,

2013a). It can be seen that during exposure to the perturbation,

the right part of several basis functions rotates, relatively to the

left part.

Finally, we test the model trained in the simulator on the real

robot to assess the performance when different perturbations are

applied. Three sources of uncertainties affect the reliability of the

measure of the vergence error on the iCub: 1) the backlash in the

DC motors (≤ 1◦) that prevents us from accurately measuring the

actual vergence angle from the encoder readings; 2) the error in

the measure of the distance of the stimulus from the robot; 3) the

estimates of the extrinsic camera parameters as well as lens distor-

tions. Figure 8 shows the left and right image anaglyph from the

robot cameras before and after vergence is achieved, for all types

of perturbations (blur of σ = 4 px; roll of 5◦; pan of 4◦; tilt of 2◦).

The model is able to achieve correct vergence under all the pertur-

bations considered. Of notice, the camera parameters of the real

iCub differ from that of the simulator. A video of the robot per-

forming the vergence in each condition is available online (Lonini

et al., 2013b).

4. DISCUSSION

Despite an increasing interest in intrinsic motivations there is

still no universally accepted definition. One standpoint is that

extrinsic motivations are driven by variables outside of the con-

troller (e.g., battery level, state of the sensors), whereas intrinsic

motivations are related to variables within the brain (or con-

troller) of the agent. Thus, intrinsic motivations are driven by

epistemic goals, i.e., goals directed to improve the knowledge of

the agent, rather than producing a direct change in the world

(Baldassarre, 2011). (Zhao et al., 2012) and (Lonini et al., 2013c)

have recently proposed a form of intrinsically motivated learning

for efficient coding in active perception. They generalize classic

notions of efficient coding to movements of the sense organs that

facilitate efficient encoding of the sensory data. To this end, a

sensory coding model is coupled with a reinforcement learner

for controlling the sense organs. The reinforcement learner is

rewarded for movements that make the sensory input easier to

encode. This approach is closely related to a recent formula-

tion of intrinsic motivations as aiming to maximize compression

progress (Schmidhuber, 2009) to create a more compact (and

thus interesting) representation of the data. Our system also

favors compression progress because achieving a smaller recon-

struction error after a vergence command, while using the same

amount of neural resources (number of active basis functions),

FIGURE 7 | AME (first row) and reconstruction error of the fine

scale sparse coding models (bottom row) when the bases of

the sparse coding models are adapted (red) vs. fixed (blue).

The perturbation occurs after 100,000 iterations. Curves show the

average over 5 simulations. Error bars represent one standard

deviation.
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FIGURE 8 | Test on the real iCub. Anaglyph of left and right image, before

(left) and after (right) vergence is achieved for each perturbation (from top to

bottom: Blur of σ = 4 px; Roll of 5◦; Pan of 4◦; Tilt of 2◦). See also online

video (Lonini et al., 2013b).

implies that the data are encoded more efficiently. Zhao et al.

(2012) and (Lonini et al., 2013c) have shown that in the context

of binocular vision, this leads to a fully autonomous learning of

disparity representations and accurate vergence control. The sys-

tem discovers that it is useful to properly verge its eyes, because

this enables it to encode the sensory data more efficiently.

In this paper we build on this previous work and provide

an analysis of the robustness of the approach to various per-

turbations. We believe that the robustness and self-calibrating

properties of a robotic system are a matter of great importance

when building autonomous robots capable of adapting to chang-

ing environments. We first show that learning occurs under all the

perturbations considered and the model performance degrades

gracefully with the size of the perturbation. We then compare

the condition where the bases (filters) are allowed to adapt

when a perturbation is present with the case where they are left

unchanged from training on normal images. Adaptation of the

bases leads to a more efficient encoding of the input images, which

in turns leads the RL to adapt the policy, in a completely unsuper-

vised fashion. Thus, a changed condition in the system, such as a

rotation or misalignment of a camera, is automatically handled by

our model. A complete compensation of the pan perturbation is

obtained as the model controls the vergence angle. Similarly, a full

compensation for the tilt and roll perturbation could be achieved

if the RL agent was allowed to independently control the tilt and

roll angle for each eye.

Previous work addressing the issue of vergence in active stereo

vision systems has often relied on computer vision techniques to

infer disparity from the stereo pair, and then controlling the stereo

cameras through a feedback loop. These methods often require

the knowledge of the intrinsic (e.g., focal length and optical cen-

ters of the cameras) and the extrinsic (relative position of the two

cameras) parameters of the cameras. Examples include cepstral

or zero-disparity filters (Olson and Coombs, 1991), correlation-

based methods (Capurro et al., 1997) and feature matching

(Hansen and Sommer, 1996). Reinforcement learning has been

used to learn vergence, by using as reward the disparity estimated

through feature matching (Piater et al., 1999) or by a population

of disparity-tuned neurons (Franz and Triesch, 2007; Wang and

Shi, 2010). The main limitation of these approaches is that the

disparity filters are not learned from the data. Importantly, to

our knowledge, there is no work that is directly addressing the

robustness of a vergence control method to image distortions.

Our model provides a way to autonomously adapt both the

sensory representation as well as the control of the behavior

by the simultaneous learning of the two systems. The proposed

method can be extended to other domains, such as the learning

of smooth-pursuit behavior, which is currently under develop-

ment. Future work should address whether this new framework

for efficient coding in active perception can be further extended

to other sensory modalities and what insights into the biology of

active perception it provides.
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APPENDIX

We describe here how the perturbations are generated. A rota-

tion of a camera induces a projective transformation of the image.

To simulate our pan, tilt and roll perturbations we thus com-

pute this transformation, also called homography. Formally, the

homographic image transformations H, is computed by:

H = KRK−1, (10)

where K is a 3 × 3 matrix, containing the camera intrinsic param-

eters (focal length and image center coordinates) and R is a 3 × 3

matrix containing the three angles of rotation of the camera (pan,

tilt, in-plane rotation4) (Faugeras, 1993). The forms of K and R

are the following:

K =

⎡

⎣

f 0 cx

0 f cy

0 0 1

⎤

⎦, (11)

R =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

c(ry)c(rz) −c(ry)s(rz) s(ry)

c(rx)s(rz) + s(rx) c(rx)c(rz) − −s(rx)c(ry))

sin(ry)c(rz) s(rx)s(ry)s(rz)

c(rx)s(ry)c(rz) + c(rx)s(ry)s(rz) + c(rx)c(ry)

s(rx) sin(rz) +c(rz)s(rx)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (12)

where cx and cy are the image center coordinates, f is the focal

in pixel values and c() and s() denote, respectively, the cosine

and sine operation. rx, ry, and rz indicate the tilt, pan and roll

angle, respectively. We thus simulate those rotations by applying

the homographic transformation to the acquired images. For each

pixel of coordinates [uv] of the original image, the correspond-

ing position after the perturbation would be [u′v′1]⊤ = H[uv1]⊤.

Cubic interpolation is used to compute the pixel values at integer

pixel coordinates. Remember that the system has no knowledge

about the perturbation nor the camera parameters, and the steps

described here are only used to simulate a perturbation in one

of the cameras. Also, as the result of a rotation is a relative mis-

alignment of the two cameras, it is actually irrelevant whether the

rotation is applied to one or both cameras to demonstrate the

ability of the system to correct for a perturbation.

4We indicate the in-plane rotation degree of freedom also as roll.
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