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Abstract

Flows of dense granular materials comprise regions where the material is flowing,
and regions where it is static. Describing the dynamics of the interface between these
two regions is a key issue to understand the erosion and deposition processes in nat-
ural environments. A free interface simplified model for non-averaged thin-layer flows
of granular materials has been previously proposed by the authors. It is a coordinate-
decoupled (separated variables) version of a model derived by asymptotic expansion
from an incompressible viscoplastic model with Drucker-Prager yield stress. The free
interface model describes the evolution of the velocity profile as well as the position of
the transition between static and flowing material. It is formulated using the coordinate
Z in the direction normal to the topography and contains a source term that represents
the opposite of the net force acting on the flow, including gravity, pressure gradient, and
internal friction. In this paper we introduce two numerical methods to deal with the
particular formulation of this model with a free interface. They are used to evaluate the
respective role of yield and viscosity for the case of a constant source term, which cor-
responds to simple shear viscoplastic flows. Both the analytical solution of the inviscid
model and the numerical solution of the viscous model (with a constant viscosity or the
variable viscosity of the µ(I) rheology) are compared with experimental data. Although
the model does not describe variations in the flow direction, it reproduces the essential
features of granular flow experiments over an inclined static layer of grains, including
the stopping time and the erosion of the initial static bed, which is shown to be closely
related to the viscosity for the simple shear case.

Keywords. Granular materials, static/flowing transition, non-averaged thin-layer flow,
interface dynamics, velocity profile, erosion, stopping time

1 Introduction

Understanding and theoretically describing the static/flowing transition in dense granular
flows is a central issue in research on granular materials, with strong implications for industry
and geophysics, in particular in the study of natural gravity-driven flows. Such flows (e.g.,
landslides or debris avalanches) play a key role in erosion processes on the Earth’s surface and
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represent major natural hazards. In recent years, significant progress in the mathematical,
physical, and numerical modeling of gravity-driven flows has made it possible to develop
and use numerical models for the investigation of geomorphological processes and assess
risks related to such natural hazards. However, severe limitations prevent us from fully
understanding the processes acting in natural flows and predicting landslide dynamics and
deposition, see e.g. [14]. In particular, a major challenge is to accurately describe complex
natural phenomena such as the static/flowing transition.

Geophysical, geotechnical, and physical studies have shown that the static/flowing tran-
sition related to the existence of no-flow and flow zones within the mass plays a crucial role
in most granular flows and provides a key to understanding their dynamics in a natural
context, see [14] for a review. This transition occurs in erosion-deposition processes when a
layer of particles flows over a static layer or near the destabilization and stopping phases.
Note that natural flows often travel over deposits of past events, which may or may not be
made of the same grains, and entrain material from the initially static bed. Even though
erosion processes are very difficult to measure in the field, e.g., [10, 2, 46], entrainment of
underlying material is known to significantly change the flow dynamics and deposition, e.g.,
[20, 43, 33, 11, 34, 37].

Experimental studies have provided some information on the static/flowing dynamics in
granular flows, showing for example that the presence of a very thin layer of erodible material
lying on an inclined bed may increase the maximum runout distance of a granular avalanche
flowing down the slope by up to 40% and change the flow regimes [34, 22, 16]. In these
experiments that mimic natural flows over initially static beds (Figure 1), quasi-uniform
flows develop when the slope angle θ is a few degrees lower than the typical friction angle δ
of the involved material [16]. Figures 2 and 3 show new data extracted from the experiments
performed by [16] on the change with time of the static/flowing interface position b and
the velocity profiles U(Z) within the granular mass, where Z is the direction normal to the
bed. At a given position X along the plane, the flow is shown to excavate the initially
static layer immediately when the front reaches this position. The static/flowing interface
rapidly penetrates into the static layer, reaching a lowest position (that depends on the slope
angle) for significantly high slopes and then rises almost linearly or exponentially toward the
free surface until the whole mass of material stops (Figure 2). A theoretical description of
these observations is still lacking. In particular, questions remain as to what controls the
change with time of the static/flowing interface position and the velocity profiles and how
these characteristics are related to the rheology of the granular material and the initial and
boundary conditions.
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Figure 1: Experimental setup from [34] and [16] to study granular column collapse over inclined
planes covered by an initially static layer made of the same grains as those released in the
column. For slope angles θ a few degrees smaller than the typical friction angle δ of the
involved material, a quasi-uniform flow develops behind the front.
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Figure 2: Position of the static/flowing interface b as a function of time t until the granular mass
stops, measured at X = 90cm from the gate, from experiments of granular collapse over an
initially static granular layer of thickness b0 = 5mm on an inclined channel of slope angle
θ = 19o (green squares), θ = 22o (blue stars), θ = 23o (red crosses), and θ = 24o (black
vertical crosses). Time t = 0s corresponds to the time when the front of the flowing layer
reaches the position X = 90cm. The approximate upward velocity ḃ of the static/flowing
interface is indicated in m/s for each slope angle. These new results have been extracted
from the experiments performed by [16] and [17] for granular columns of initial down-
slope length r0 = 20cm, initial thickness h0 = 14cm, and width W = 20cm (i.e., volume
V = 5600cm3). Note that the position of the free surface when the mass stops, i.e. when
b = h, represented by the upper point for each angle, slightly depends on the slope angle
and decreases as the slope angle increases, from about 0.025m at θ = 19o to about 0.018m
at θ = 24o.
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Figure 3: Velocity profiles U(Z) at different times until the granular mass stops, measured at X =
90cm from the gate, in experiments of granular collapse over an initially static granular
layer of thickness b0 = 5mm on an inclined channel of slope angle (a) θ = 19o, (b) θ = 22o,
and (c) θ = 24o. Time t = 0s corresponds to the time when the front of the flowing
layer reaches the position X = 90cm. These new results have been extracted from the
experiments performed by [16] and [17] for granular columns of initial down-slope length
r0 = 20cm, initial thickness h0 = 14cm, and width W = 20cm (i.e., volume V = 5600cm3).

In order to alleviate the high computational costs required to describe the real topography
and the rheology, which both play a key role in natural flow dynamics, thin-layer (i.e., the
thickness of the flow is assumed to be small compared to its down-slope extension) depth-
averaged models are generally used to simulate landslides [41]. Such models have been
rigorously derived for arbitrary topography, but the static/flowing transition has generally
been neglected, e.g., [5, 4, 35, 29]. Several attempts have been made to describe this transition
in thin-layer (i.e., shallow) models, in particular by deriving an equation for the static/flowing
interface position or by establishing erosion/deposition rates, e.g., [27, 23]. However, these
approaches are generally based on debatable phenomenological laws and/or are too schematic
to be extended to natural flows [24]. The simplifications used in some previous models lead to
an inconsistent energy equation [6]. Indeed, some of these models prescribe a given velocity
profile to deduce the entrainment rate (see e.g., [8] or references in [6]). However, in transient
flows, the velocity profile changes with time as shown for example in the multilayer shallow
model of [18]. A better understanding of the non-averaged case is necessary before defining
more physically relevant depth-averaged models including the static/flowing transition. This
is why we focus here on non-averaged thin-layer models.

Recent work has shown that viscoplastic flow laws with yield stress describe well gran-
ular flows and deposits in different regimes, from steady uniform flows [19, 42, 25, 26] to
transient granular collapse over rigid or erodible horizontal beds [12, 28, 31] and inclined
beds [21, 36, 18] or accelerating/decelerating channel flows [39]. Very good agreement with
experiments is obtained even though these laws, and in particular the so-called µ(I) rheology,
where I is the inertial number [26], have been shown to be ill-posed in the quasi-static regime,
i.e., for small I (and also for large I) [1]. These promising results may be related to the use
of a coarse mesh, whereby simulations avoid the ill-posedness by damping the fast-growing
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high wavenumbers [36]. In any case, the quasi-static regime near the static/flowing interface
is known to be very complex, involving strong and weak force chains and local rearrangement
of particles, e.g., [13, 40] and has been widely studied, in particular using discrete element
methods, e.g., [14, 9, 3]. This regime is not accurately described by the proposed viscoplastic
laws involving a simple yield stress. Questions however remain as to whether such ‘simple’
viscoplastic laws are able to describe quantitatively the change with time of the static/flowing
interface position and the velocity profiles observed experimentally for flows over an initially
static bed and how the viscosity affects these processes.

Based on such a viscoplastic model with yield stress, an analytic expansion in the non-
averaged thin-layer regime is provided in [7], giving a theoretical basis for equations describing
the static/flowing interface dynamics in a dry granular material. A key point in this approach
that fundamentally differs from previous thin-layer models (see [24] for a review) is that even
if the flow is assumed to be thin, the normal coordinate Z is still present (there is no depth-
averaging). The static/flowing interface is free in this approach, in the sense that it has no
explicit equation defining its evolution. Its time variation is instead implicitly determined
by an extra boundary condition on the velocity at this interface. The model from [7] being
still too complicated, however a formal decoupling of the coordinates X in the down-slope
direction and Z normal to the topography is proposed in [30], leading to a model with only
the coordinate Z, but including a source term S that represents the opposite of the net force
acting on the flow, including gravity, pressure gradient, and internal friction. We propose
here to evaluate the dynamics produced by the free interface model of [30], for the most
simple case involving a constant source S. This corresponds to assuming no dependency on
the down-slope coordinate X in the model of [7]. It is also equivalent to considering simple
shear solutions to the original viscoplastic model, which shows that in this case the model is
valid without a smallness assumption. Although the down-slope coordinate X plays a key
role in real flows, taking into account the fluctuations of the free surface, topography, and
inflow information, we must first understand the dynamics when X is not involved. We show
that the analysis of this simple shear system provides new insight into the change of the
static/flowing interface position and the velocity profiles with time.

Because the boundary conditions and interface evolution are formulated in an uncommon
way, specific methods must be used to deal numerically with the free interface model. We
introduce two numerical methods that give similar grid-independent results, thereby showing
that our model is well-posed for the case considered here involving only Z dependency.

The paper is organized as follows. The model of [7, 30] for the case of a constant source
(corresponding to simple shear flows of the viscoplastic model) is recalled in Section 2. Then,
in Section 3, we derive an analytical solution for the inviscid model with a constant source
term, which partly reproduces the experimental observations and shows explicitly how the
static/flowing interface position and the velocity profiles are related to the flow characteristics
and to the initial and boundary conditions. In Section 4, we introduce two new numerical
methods for the simulation of the viscous model, with a constant viscosity or the variable
viscosity associated with the µ(I) rheology. The numerical results show that, as opposed
to the inviscid model, viscosity makes it possible to reproduce the initial penetration of the
static/flowing interface within the static bed and the exponential shape of the velocity profiles
near this interface. Finally, in Section 5, these results are discussed based on comparison with
former experimental and numerical studies on granular flows, showing the key features and
the limits of the non-averaged thin-layer model for providing a better understanding and
modeling of laboratory and natural flows.
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2 The free interface model

2.1 Origin of the model: viscoplastic rheology with yield stress

The initial governing equations express the dynamics of an incompressible (∇ · U = 0)
viscoplastic material with Drucker–Prager yield stress,

∂tU + U · ∇U −∇ · σ = −g, (1)

with the rheological law

σ = −p Id + 2νDU + µsp
DU

‖DU‖ , (2)

where U is the velocity, −g gravitational acceleration, σ the stress tensor (normalized by the
density), p the scalar pressure (also normalized by the density), and DU the strain rate tensor
DU = (∇U + (∇U)t)/2. Here the norm of a matrix A = (Aij) is ‖A‖ = (1

2

∑
ij A2

ij)
1/2.

The coefficients µs > 0 and ν ≥ 0 are the internal friction and the kinematic viscosity,
respectively. In general ν and µs could depend on ‖DU‖ and p, but we shall consider µs

constant here since the so-called µ(I) law can be written in this form for some viscosity ν,
see Subsection 4.5.

2.2 Free interface model with source term

A non-averaged thin-layer model for flows described by (1), (2) with a static/flowing interface
has been derived in [7]. It is formulated for the coordinates X in the direction tangent to
the topography and Z normal to the topography. The topography is described by its angle
θ(X) with respect to the horizontal (see Figure 4 for a flat topography). For the case of
simple shear (no dependency on X), no smallness assumption is necessary [7, section 2.3]
and the model can be written as the following free interface problem with a source term.
The unknowns are U(t, Z) (velocity in the direction tangent to the topography) defined for
b(t) < Z < h, where h > 0 is the given constant thickness of the layer and b(t) the unknown
position of the static/flowing interface, 0 < b(t) < h. They obey the following equations,

∂tU(t, Z) + S(t, Z) − ∂Z

(
ν∂ZU(t, Z)

)
= 0 for all Z ∈ (b(t), h), (3)

with the following boundary conditions for all t > 0,

U = 0 at Z = b(t), (4a)

ν∂ZU = 0 at Z = b(t), (4b)

ν∂ZU = 0 at Z = h. (4c)

The source S(t, Z) is assumed to be given and represents the opposite of the net force,
excluding the viscous force (see [30] and (10) below). The viscosity ν can a priori depend on
t and Z in the model. The velocity is extended by defining U(t, Z) = 0 for 0 ≤ Z ≤ b(t),
corresponding to the static domain. The initial condition is formulated as

U(0, Z) = U0(Z) for all Z ∈ [0, h], (5)

where U(0, Z) is the limit of U(t, Z) as t ↓ 0. The initial velocity U0(Z) is given for Z ∈ [0, h],
such that for some b0 ∈ (0, h) (initial position of the interface), the function U0 satisfies
U0(Z) = 0 for Z ∈ [0, b0], and ∂ZU0 > 0 for Z ∈ (b0, h). The system is completed by the
static equilibrium condition

S(t, b(t)) ≥ 0 for all t ∈ (0, T ], (6)

that states that the net force must be resistive in the static layer. The velocity U obtained
when solving (3)-(6) is expected to satisfy ∂ZU > 0 for b(t) < Z < h. As proved in [30], this
is the case as soon as ∂ZS ≤ 0 and ν > 0.
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The unusual nature of the system (3)-(6) lies in the fact that the interface position b(t)
is free, meaning that it has no given equation relating ḃ(t) ≡ db/dt to other quantities. Its
evolution is instead implicitly governed by the boundary conditions (4a), (4b). An interesting
property of the model (3)-(6) is that a differential equation can nevertheless be derived for
the time evolution of the position of the interface, valid under some conditions, as follows
(see [30]).

• If ν > 0 then
∂Z

(
ν∂ZU

)
(t, b(t)) = ν∂2

ZZU(t, b(t)) = S(t, b(t)), (7)

and whenever S(t, b(t)) 6= 0, one has

ḃ(t) =

(
∂ZS(t, b(t)) − ∂2

ZZ(ν∂ZU)(t, b(t))

S(t, b(t))

)
ν. (8)

• If ν = 0 and ∂ZU(t, b(t)) 6= 0, then

ḃ(t) =
S(t, b(t))

∂ZU(t, b(t))
. (9)

These formulas show the strong interrelationship between the velocity profile in the direction
perpendicular to the inclined plane and the evolution of the static/flowing interface position.
Erosion, i.e. penetration of the static/flowing interface into the erodible bed, occurs when
ḃ(t) < 0, and deposition when ḃ(t) > 0.

The full model of [7] is indeed more general than (3)-(6), since it includes a possible
dependency on X . It is derived under the assumptions that the thickness of the layer, the
curvature of the topography, and the viscosity are small, the internal friction angle is close
to the slope angle, the velocity is small, and the pressure is convex with respect to the
normal coordinate Z. Then an intermediate model with formal decoupling of the X and
Z coordinates has been proposed in [30], corresponding to a non-constant source term S in
(3)-(6). An important motivation for our simple shear study is the possibility to later deal
with the full X-dependent case.

Under the present assumption of simple shear, the source term S is indeed constant (see
below Section 2.3). Interestingly, equation (9) shows that ḃ(t) ≥ 0 (i.e. the static/flowing
interface never drops) when ν = 0 because S(t, b(t)) ≥ 0 and ∂ZU > 0. This means that for
the inviscid model, a layer flowing on top of an initially static layer will not erode, i.e. the
static material will not be put into motion (this property is however not true when S depends
on Z, in which case we can have ḃ(t) < 0 together with ∂ZU(t, b(t)) = 0 and S(t, b(t)) = 0,
see [30]). For the viscous model (equation (8)), and still with constant source term S, erosion
or deposition can occur, depending on whether ∂2

ZZ(ν∂ZU)(t, b(t)) is positive or negative,
respectively.

2.3 Free interface model with constant source

The most simple case in the free interface model (3)-(6) is when we take the source term S
to be constant in time and space. Indeed, according to [7, section 2.3], when all quantities
are independent of X , the pressure becomes hydrostatic p = g cos θ(h − Z), and the source
takes on a constant value

S = g(− sin θ + µs cos θ), (10)

where g > 0 is gravitational acceleration, θ > 0 the constant slope angle (note that this
sign convention differs from [7, 30]), and µs = tan δ > 0 the friction coefficient with δ the
friction angle related to the material. The source term is thus the result of the balance
between the driving force due to gravity (−g sin θ < 0) and the friction force (µsg cos θ >
0). Indeed according to [7, Proposition 2.1], for the source term (10), the solution to the
system (3)-(6) is an exact solution to the two-dimensional original viscoplastic model (1), (2)
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without dependency on X . This means that the free interface model (3)-(6) with a constant
source term (10) exactly describes the simple shear flows of (1), (2), corresponding to the
configuration shown in Figure 4.

θ

x

z

flowing layer

static layer

h

X

b(t)

Z

Figure 4: Simplified flow configuration consisting of a uniform flowing layer over a uniform static
layer, both parallel to the rigid bed of slope angle θ. The static/flowing interface position
is b(t) and the total thickness of the mass h is constant.

We observe that with (10) and µs = tan δ, the static equilibrium condition (6) is simplified
and becomes tan θ ≤ µs, i.e.

θ ≤ δ, (11)

meaning that the internal friction must at least neutralize the gravity force due to the slope.
This is a necessary condition for the existence of a solution to the free interface model (3)-(6).
Indeed, if this condition is not satisfied, we expect that “b = 0”, meaning that the entire layer
immediatly flows down the inclined plane.

The remainder of the paper is devoted to the evaluation of this constant source term
model.

3 Analytical solution for the inviscid model with constant

source term

3.1 Analytical solution

For the inviscid model where ν = 0, the free interface model (3)-(6) can be written

∂tU(t, Z) + S(t, Z) = 0 for all Z ∈ (b(t), h), (12)

with the following boundary condition for all t > 0,

U(t, b(t)) = 0, (13)

and with the initial condition (5) and the static equilibrium condition (6). Moreover, if the
source term is chosen constant and uniform as in (10), i.e.,

S(t, Z) = S := g cos θ(tan δ − tan θ) ≥ 0, (14)

with µs = tan δ, θ ≤ δ, then we can infer an analytical solution. Specifically, the solution to
(12), (13), (5) is given by

U(t, Z) = max
(
U0(Z) − St, 0

)
for all Z ∈ [0, h]. (15)

8



Equation (15) shows that the velocity profile (at all times when a flowing layer exists) has
the same shape as the initial velocity profile: it is just shifted towards decreasing velocities at
constant speed S and clipped below the value 0. Note that the velocity profile only depends
on g, θ, δ through S in (14). If S = 0, the solution is steady, whereas if S > 0, the velocity
decreases with time until the flow stops. Furthermore, the interface position b(t) results from
the following implicit equation:

U0(b(t)) = St. (16)

This equation has a unique solution in [b0, h] for all times t ≤ tstop, where tstop is the time
when the whole mass stops, defined by

tstop =
U0(h)

S
=

U0(h)

g cos θ(tan δ − tan θ)
. (17)

The complete stopping of the flow occurs at t = tstop. For all times t > tstop, the velocity U
can be extended by setting U(t, Z) = 0 for all Z ∈ [0, h], and b(t) = h.

3.2 Choice of the parameters and initial conditions

In order to compare the analytical solution to the results presented in Figures 2 and 3
extracted from the experiments performed by [16], we have to define the friction angle δ, the
slope angle θ, the thickness of the granular layer h, the thickness of the initially static layer
b0, and the initial velocity profile U0(Z). Glass beads of diameter d = 0.7mm were used,
with repose and avalanche angles of about 23o and 25o, respectively. Because wall effects are
known to increase the effective friction for granular flows in channels such as those of [16],
we use here a friction angle of δ = 26o [44, 25, 21]. We perform different tests by varying the
slope angle θ from 19o to 24o. Indeed, for slope angles θ much lower than δ, the interface
reaches the top of the layer very quickly, preventing us from observing a possible erosion of
the static layer. We set b0 = 5mm, which is the thickness of the initial static layer in the
experiments, and h = 0.02m, corresponding to the mean thickness at the position X = 90cm
where the measurements were performed, see Figure 3. Thus unless specified, we always take

δ = 26o, b0 = 0.005m, h = 0.02m. (18)

The objective here is only to compare the order of magnitude and the general trend of the
analytical solution to the experimental results, since the experiments are more complicated
than the uniform granular layer and the initial conditions defined in the model. In particular,
the thickness of the granular layer in the experiments may vary by up to 20% during the flow
and slightly depends on the inclination angle (see Figure 3). Furthermore, the initial velocity
profiles and the maximum velocity also depend on the inclination angle, whereas we impose
here the same velocity profile for all the tests.

Velocity profiles in experimental granular flows have been extensively measured in differ-
ent regimes, see e.g., [19]. For free surface flows over rigid inclined beds, the velocity profiles
vary with inclination, thickness of the flow, and time. Essentially, the velocity profiles may
vary from a linear profile for thin layers over small slope angles to Bagnold-like profiles for
higher inclinations. The same general trend is observed for thicker flows (see Figure 5 of
[19]). For surface flows over a pile of static grains, the velocity profiles roughly exhibit an
upper linear part in the flowing layer and a lower exponential tail near the static/flowing
interface (see Figure 6 of [19]). This is consistent with the measurements shown in Figure 3.
Furthermore, experimental results suggest that the shear rate ∂ZU is almost constant and
equal to 0.5

√
g
d (see e.g., equation (11) of [19]). As a result, for a linear profile of slope α1

(see case (a) below), we choose α1 = 70s−1, which is consistent with the velocity profiles
measured at t = 0s (see Figure 3).

In order to investigate the different possible profiles of the velocity, we choose three initial
velocity profiles defined, for all Z ∈ [b0, h], as:

1. linear profile U0(Z) = α1(Z − b0), with α1 = 70s−1,
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2. exponential profile U0(Z) = α2(e
βZ − eβb0), with α2 = 0.1ms−1 and β = 130m−1,

3. Bagnold profile U0(Z) = α3((h − b0)
3

2 − (h − Z)
3

2 ), with α3 = 545m−1/2s−1.

In each case, the maximum velocity is U0(h) ≃ 1ms−1. For each profile, equation (9) provides
explicitly the time evolution of the static/flowing interface position as follows:

1. b(t) =
S

α1

t + b0,

2. b(t) =
1

β
log

(
S

α2

t + eβb0
)

,

3. b(t) = h −
(
(h − b0)3/2 − S

α3

t
)2/3

.

These formulae are valid as long as t ≤ tstop = U0(h)/S, i.e., b(t) ≤ h.
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Figure 5: Static/flowing interface position b as a function of time t for the inviscid model, different
slope angles and an initially static granular layer of thickness b0 = 5mm, using (a) a
linear, (b) an exponential, and (c) a Bagnold initial velocity profile. The experimental
results from Figure 2 are shown for comparison.
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Figure 6: Velocity profiles U(Z) at different times for the inviscid model, with a linear initial velocity
profile and an initially static granular layer of thickness b0 = 5mm over an inclined plane
of slope (a) θ = 19o and (b) θ = 24o. The experimental results from Figure 3 are shown
for comparison.
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Figure 7: Velocity profiles U(Z) at different times for the inviscid model, with an initially static
granular layer of thickness b0 = 5mm over an inclined plane of slope (a,c) θ = 19o and
(b,d) θ = 24o, using (a,b) an exponential and (c,d) a Bagnold initial velocity profile. The
experimental results from Figure 3 are shown for comparison.
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3.3 Results and comparison with experiments

We compare here our analytical results with the experimental data shown in Figures 2 and
3. The velocity profiles at the position X = 90cm from the gate at different times for slope
angles θ = 19o, 22o, 23o, and 24o were taken from the experiments of [16] and [34] ([17]).
The position of the static/flowing interface has been calculated using a velocity threshold
of 1cm/s. The material has been assumed to be static when the particle velocity is lower
than this threshold. In order to observe velocity profiles on one side of the flow (through
the transparent channel wall) and monitor the evolution of the interface separating flowing
and static grains, black beads have been used as tracers at a volume fraction of about 50%.
Measurements have been made from successive frames during short time intervals of 0.01–0.04
s ([17]).

The b(t) curves are plotted in Figure 5 and the U(Z) profiles in Figures 6 and 7. The
evolution of the static/flowing interface position b(t) obtained from the analytical solution
(Figure 5) reproduces to a certain extent the experimental observations. The shape of b(t) is
directly related to the velocity profile, as demonstrated by equation (9). For the analytical
solution, depending on the initial velocity profile, the stopping time is in the range 2.75-
3s for θ = 24o, 1.35-1.5s for θ = 22o, and 0.75-0.85s for θ = 19o, whereas tstop ≃ 3.4s,
tstop ≃ 1.4s, and tstop ≃ 0.9s in the experiments, respectively. As a result, the stopping time
is well reproduced by the analytical solution, even though its strong increase for θ = 24o

is underestimated in the analytical solution. On the other hand, the penetration of the
static/flowing interface within the initially static bed is not reproduced by the analytical
solution that instead predicts a static/flowing interface rising towards the free surface at all
times.

The decrease of the velocity with time is relatively well reproduced up to about 0.8s. With
the analytical solution, the velocity profiles maintain the same shape whereas the maximum
velocity decreases, as roughly observed in the experiments. The decrease of the maximum
velocity in the experiments and with the analytical solution are very similar (Figure 7). At
later times (t ≥ 1s) and at θ = 22o and θ = 24o, the experiments show a clear change in the
velocity profile (see Figure 3c at t = 1s and t = 2s) that is not reproduced by the constant
shape of the velocity profiles predicted by the analytical solution. Furthermore, the maximum
velocity decreases much faster in the experiments. In the experiments, the velocity profiles
seem to be closer to linear for smaller slopes (θ = 19o and θ = 22o) and more exponential
for θ = 24o. Referring to equation (16) and Figure 5, this may explain why b(t) measured
experimentally has an exponential shape at θ = 24o, whereas it is closer to linear for smaller
slope angles.

4 Numerical solution to the viscous free interface model

In this section, we consider a numerical solution to the free interface model (3)-(6) with
viscosity ν > 0 and constant and uniform source term S given by (14). We first present
two robust numerical methods to obtain the numerical solution. Then, we describe the main
features of the transient regime by a scale analysis. Finally, we compare our numerical results
with experiments, first with constant viscosity and then with variable viscosity deduced from
the µ(I) viscoplastic rheology.

Given the unusual form of our model with a free moving interface, some comments are in
order. From the mathematical standpoint, it is not obvious that the boundary formulation (4)
gives a well-posed problem. Actually, it is known [1] that the µ(I) rheology can lead to an ill-
posed problem. We claim that for the simple shear configuration considered here, the model
is well-posed (although this would not be the case if X dependency were involved, see [7]). To
support this claim, we observe that we consider two different numerical methods which both
deliver stable, grid-independent solutions. Moreover, the second numerical method is related
to an optimal problem under a very classical form (see (26) below), for which well-posedness
is well-known. From a numerical standpoint, we point out that both numerical methods
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are computationally effective. Let us mention in passing that none of these methods uses
the differential equation (8) which would require an intricate treatment of the third-order
derivative, but use instead the boundary conditions (4).

4.1 Discretization by moving the interface

The first numerical method involves rewriting (3), (4), (5) for a normalized coordinate 0 ≤
Y ≤ 1. We perform the change of coordinates

t = τ, Z = b(τ) + (h − b(τ))Y, (19)

that leads to the differential relations ∂τ = ∂t+ḃ(τ)(1−Y )∂Z and ∂Y = (h−b(τ))∂Z . Here, ∂t

and ∂τ denote the differentiation with respect to time at constant Z and Y , respectively. The
change of coordinates (19), and hence the discretization method presented in this subsection,
is appropriate as long as there is a flowing layer so that h− b(τ) > 0. Another discretization
method dealing with the stopping phase when b(t) reaches the total height h is presented in
Subsection 4.2. The discretization method considered in this subsection has the advantage
of tracking explicitly the position of the static/flowing interface, whereas the method of
Subsection 4.2 requires post-processing to evaluate the interface position.

Using the change of coordinates (19), equation (3) becomes

∂τU − ḃ
1 − Y

h − b
∂Y U + S − 1

(h − b)2
∂Y (ν∂Y U) = 0 for all Y ∈ (0, 1), (20)

and the boundary conditions (4) become

U = 0 at Y = 0, (21a)

ν∂Y U = 0 at Y = 0, (21b)

ν∂Y U = 0 at Y = 1. (21c)

We split the space domain (0, 1) into nY cells of length ∆Y with nY ∆Y = 1 and denote
the center of the cells by Yj = (j − 1/2)∆Y , for all j = 1 . . . nY . For n ≥ 0, the discrete
times tn are related by tn+1 = tn +∆tn, where ∆tn is the time step (chosen according to the
CFL condition (25) below) and t0 = 0. We write a finite difference scheme for the discrete
unknowns Un

j ≃ U(tn, Yj) and bn ≃ b(tn), for all j = 1 . . . nY and all n ≥ 1, using the initial

conditions U0 (and b0) to initialize the scheme. For all n ≥ 0, given (Un
j )1≤j≤nY

and bn, the

equations to compute (Un+1
j )1≤j≤nY

and bn+1 are

Un+1
j − Un

j

∆tn
− (1 − Yj)

h − bn
a

n+ 1

2

j +S(tn, Yj)−
νn

j+1/2
(Un+1

j+1 − Un+1
j ) − νn

j−1/2
(Un+1

j − Un+1
j−1 )

(h − bn)2∆Y 2
= 0,

(22)
for all j = 1 . . . nY , with

a
n+ 1

2

j =






ḃn+ 1

2

Un
j − Un

j−1

∆Y
if ḃn+ 1

2 ≤ 0,

ḃn+ 1

2

Un
j+1 − Un

j

∆Y
if ḃn+ 1

2 ≥ 0,
with ḃn+ 1

2 =
bn+1 − bn

∆tn
, (23)

together with the boundary conditions

Un+1
0 = −Un+1

1 , (24a)

Un+1
0 = Un+1

1 , (24b)

Un+1
nY +1 = Un+1

nY
. (24c)

In (22), the values νn
j+1/2

are assumed to be known, and they are computed as interface

values from a given variable viscosity ν(t, Z). Equations (24a) and (24c) are used to provide
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the ghost values Un+1
0 and Un+1

nY +1 needed in (22) for j = 1 and j = nY , respectively, whereas
equation (24b) is used to determine bn+1 as described below. We observe that in (22), the
diffusive term is treated implicitly in time, and the first-order derivative of U is treated
explicitly using upwinding. As a result, we impose the CFL condition

∆tn|ḃn+ 1

2 |
h − bn

≤ ∆Y. (25)

This CFL condition is evaluated approximately using the value ḃn− 1

2 from the previous time
step, since ḃn+ 1

2 is unknown at the beginning of the time step; for n = 0, the value 0 is
used (hence, no CFL condition is initially enforced, but the time step is taken small enough).
Typical values are ∆t0 = 10−4s for the initial time step and ∆Y = 10−4.

The solution to (22), (23), (24) is obtained as follows. We can solve the system (22)
together with the boundary conditions (24a), (24c) for any value of bn+1 since it is a linear
system in Un+1 with right-hand side containing Un, the source term and the advection term
(remember that the advective derivative is treated explicitly). This leads to a tridiagonal
linear system with a matrix that results only from the time derivative and the diffusive terms.
This matrix, which is diagonally dominant, has an inverse with nonnegative entries. Thus,
the solution (Un+1

j )1≤j≤nY
can be expressed linearly with nonnegative coefficients in terms

of the coefficients (a
n+1/2

j )1≤j≤nY
which appear on the right-hand side and which depend on

the still unknown interface position bn+1. According to (23) and since Un
j is nondecreasing

with respect to j (it should remain nondecreasing because we assume ∂ZS ≤ 0), Un+1
j is

thus, for all j = 1 . . . nY , a nondecreasing continuous and piecewise linear function of bn+1,
with two different formulae corresponding to whether bn+1 is greater or smaller than bn. In
particular, the remaining boundary condition (24b), which is equivalent to Un+1

1 = 0 owing
to (24a), determines a unique solution bn+1, see Figure 8. The value of bn+1 can be computed
explicitly by solving the linear system twice with two different right-hand sides and using
linear interpolation. The first solve uses the right-hand side evaluated with the temporary
value bn for bn+1, yielding a temporary value for Un+1

1 . If the obtained value is negative (left
panel of Figure 8), the second solve is performed using the value h for bn+1, otherwise the
value 0 is used (right panel of Figure 8). Once bn+1 is known, we determine the entire profile
Un+1

j for all j = 1 . . . nY by linear interpolation.

Un+1
1

bn h
0

•

•

•

bn+1

•

Un+1
1

bn h
0

•

•

•
•

bn+1

Figure 8: Velocity Un+1
1 versus bn+1. The chosen value for bn+1 is determined by the intersection of

the curve with the horizontal axis.

4.2 Discretization by an optimality condition

The second numerical method for solving (3), (4), (5) with positive viscosity ν > 0 uses a
formulation as an optimal problem set on the whole interval (0, h), valid under the assumption
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∂ZS(t, Z) ≤ 0,






min(∂tU + S − ∂Z(ν∂ZU), U) = 0 for all Z ∈ (0, h),

∂ZU = 0 at Z = h,

U = 0 at Z = 0,

(26)

where we consider a no-slip boundary condition at the bottom. Note that this condition
becomes relevant whenever the static/flowing interface reaches the bottom, a situation en-
countered in our simulations as shown in Figure 10c. In (26), the static/flowing interface
position b(t) no longer appears explicitly, but has to be deduced from the velocity profile as

b(t) = inf {Z ∈ [0, h] such that U(t, Z) > 0} . (27)

We split the space domain (0, h) into nZ cells of length ∆Z with nZ∆Z = h, and denote
the center of the cells by Zj = (j − 1/2)∆Z, for all j = 1 . . . nZ . The discrete times tn, for
all n ≥ 0, are related by tn+1 = tn + ∆tn, where ∆tn is the time step (chosen according to
the CFL condition (30) below) and t0 = 0. We discretize the problem (26) using a finite
difference scheme by writing for the discrete unknowns Un

j ≃ U(tn, Zj)

min

(
Un+1

j − Un
j

∆tn
+ S(tn, Zj) −

νn
j+1/2

(Un
j+1 − Un

j ) − νn
j−1/2

(Un
j − Un

j−1)

∆Z2
, Un+1

j

)
= 0,

(28)
for all j = 1 . . . nZ . The boundary conditions, which are discretized as Un

nZ+1 = Un
nZ

at the
free surface (Z = h) and as Un

0 = −Un
1 at the bottom (Z = 0), are used to provide the ghost

values involved in the discretization of the diffusive term. The problem (28) is solved in two
steps as

U
n+1/2

j − Un
j

∆tn
+ S(tn, Zj) −

νn
j+1/2

(Un
j+1 − Un

j ) − νn
j−1/2

(Un
j − Un

j−1)

∆Z2
= 0,

Un+1
j = max(U

n+1/2

j , 0).

(29)

Owing to the explicit discretization of the diffusive term, we use the CFL condition

2 sup
j

νn
j+1/2

∆tn

∆Z2
≤ 1. (30)

We could also consider an implicit discretization to avoid any CFL condition, but each time
step would be more computationally demanding. Finally, the thickness of the static layer
can be evaluated as

bn =
(
min

{
j ∈ {1 . . . nZ} such that Un

j > 0
}
− 1
)
× ∆Z. (31)

However, to prevent bn from being influenced by small values of U and for better accuracy,
we prefer to use

bn = max
(
Zkn−

√
2Un

kn/C0, 0
)
, kn = min

{
j ∈ {1, . . . , nZ} such that Un

j ≥ C0∆Z2/2
}

,

(32)
where C0 is an appropriate constant of the order of S/ν, in relation to (4a), (4b), (7).

In our computations, we use 200 space cells. With the value h = 0.02m, this leads to
∆Z = 10−4m. Since S/ν ≃ 1.35ms−2/(5 × 10−5m2s−1) = 2.7 × 104 m−1s−1, this gives a
velocity threshold of (S/ν)∆Z2/2 ≃ 1.4 × 10−4 ms−1. This value is much smaller than the
accuracy of experimental velocity measurements which is around 1cm/s.
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4.3 Scales in the transient regime

We assume that the source term S is constant, and that the viscosity ν is also constant.
Then, the solution to the viscous model (3), (4), (5) depends on the constant S, the total
thickness h, the viscosity ν, the initial thickness of the static layer b0, and the initial velocity
profile U0(Z). We introduce dimensionless quantities, denoted by carets (hats),

t = τ t̂, Z = lẐ, h = lĥ, b = l̂b, U = uÛ, (33)

where τ is a time scale, l a space scale, and u = lα1 with α1 being the order of magnitude of
the initial shear rate. In order to write (3) in dimensionless form, we take

l = ν
α1

S
, τ =

l2

ν
= ν

(α1)
2

S2
. (34)

The dimensionless equation is then

∂btÛ + 1 − ∂2
bZ bZ

Û = 0 for all Ẑ ∈ (̂b, ĥ),

with boundary conditions Û = ∂ bZ Û = 0 at Ẑ = b̂ and ∂ bZ Û = 0 at Ẑ = ĥ. If we take a linear

initial velocity profile, this dimensionless solution Û depends only on ĥ = h/l and b̂0 = b0/l.
Actually, since the problem is invariant by translation in Z, the solution depends only on
(h − b0)/l.

Numerical investigations for a constant source S using the scheme described in Subsection
4.1 show the behavior illustrated in Figure 9. The static/flowing interface position b(t) first
decreases until a time tc and reaches a minimal value bmin (starting phase). Then b(t)
increases and (if h is sufficiently large) reaches an asymptotic regime with upward velocity
ḃ∞ (stopping phase), before fully stopping when it reaches h.

b

h

t tc

b
0

b
min

starting
phase

stopping
phase

Figure 9: Schematic evolution of the thickness of the static/flowing interface as a function of time.

According to the above scaling analysis, if the velocity profile is initially linear with shear
α1, and if

h − b0

l
=

(h − b0)S

να1

≫ 1, (35)

then the dimensionless problem has no parameter left and the velocity Û is therefore a fixed
profile (in terms of Ẑ− b̂0), as well as b̂− b̂0. We conclude with (33) that the quantities tc, b0−
bmin, ḃ∞ are proportional to τ , l, l/τ , respectively. We obtain the following proportionality
factors from the numerical simulation

tc = 0.15ν
(α1)

2

S2
, b0 − bmin = 0.43ν

α1

S
, ḃ∞ = 0.95

S

α1

· (36)
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Note the dependency on the ratio α1/S, which is due to the homogeneity of the problem (3),
(4) with respect to (U, S) (a new solution can be obtained by multiplying (U, S) by a positive
constant, with b unmodified).

4.4 Results and comparison with experiments for constant viscosity

We consider a constant and uniform source term of the form (14). The case of a linear initial
velocity profile is simulated using different values of the viscosity ν (taken constant) and slope
angles θ. The results obtained with the two methods of Subsections 4.1 and 4.2 are always
identical, thus we shall not specify which one is used. As discussed in Subsection 4.3, the
static/flowing interface always penetrates the initially static layer, in contrast to what has
been observed for the inviscid model, within a length b0 − bmin proportional to ν, according
to (36). In other words, the flow excavates the static bed. However, for ν < 10−5m2s−1, the
penetrating length is too small to be observed. For ν = 10−5m2s−1 (Figure 10a), b0 − bmin =
8 × 10−4m for θ = 24o (with tc = 5 × 10−2s) and b0 − bmin = 2 × 10−4m for θ = 19o (with
tc = 4×10−3s). Thus, the static/flowing interface penetrates only slightly within the initially
static layer. As the viscosity increases (Figure 10b), the static/flowing interface penetrates
deeper into the initially static layer and even reaches the bottom for ν = 10−4m2s−1 at
θ = 24o (Figure 10c). The results that best reproduce the experimental observation for the
penetration of b(t) within the initially static layer are obtained with ν ≃ 5 × 10−5m2s−1.
In good agreement with the experiments, the simulations with viscosity predict that the
depth and duration tc of penetration of the static/flowing interface within the initially static
layer increase with the slope angle. Furthermore, the values of b(t) and tc are in reasonable
agreement with those observed experimentally (Figure 10b and Figure 17 of [16]).

Qualitatively similar results are obtained using different initial velocity profiles (Figure
12). However, the shape of b(t) is affected by the choice of the initial velocity profile. For
example, for an exponential initial velocity profile with θ = 24o and ν = 5× 10−5m2s−1, the
static/flowing interface position b(t) stagnates at an almost constant position for the first
0.5s, contrary to the case of a linear initial velocity profile (Figures 10b and 12b).

The convex shape of b(t) during the migration of the static/flowing interface up to the
free surface obtained with the viscous model is very different from that observed and from
that obtained with the inviscid model, which predicted a linear shape related to the linear
initial velocity profile. With the viscous model, the time evolution of b(t) and the velocity
profile U(t, Z) are not so clearly related to the shape of the initial velocity profile, as shown
for example in Figure 12 for θ = 24o. The velocity profiles for the viscous model are also very
different from those for the inviscid model. Whatever the shape of the initial velocity profile,
the velocity profiles later exhibit an exponential-like tail near the static/flowing interface,
similar to that observed experimentally. They also exhibit a convex shape near the free
surface which can be observed, although not as marked, in some but not all experimental
velocity profiles (e.g., Figure 3c). While the maximum velocity decreases too fast at t = 0.5s
and θ = 24o compared to the experiments and to the inviscid model, the velocity is much
closer to the experiments at t = 1s than with the inviscid model (Figure 11b). For θ = 19o

and θ = 22o, the decrease in velocity at time t = 0.7s is overestimated in the viscous model.
Finally, we briefly look at the stopping time tstop of the whole granular layer. The stopping

time for the inviscid model and for the experiments is given in Table 1, for different slope
angles. The stopping time is smaller for viscous than for inviscid flow, whatever the shape of
the initial velocity profile. Given that the stopping time for the inviscid model is expressed
as tstopν=0 = U0(h)/S, we can evaluate numerically the difference (tstopν=0 − tstopν ), where tstopν

denotes the stopping time for the viscous model. Our numerical simulations show that this
difference depends to a moderate extent on the viscosity (Figure 13 where the slope of the
curves suggests a behavior of this difference close to ν1/4 for the present parameters). In any
case, the presence of viscosity diminishes the stopping time. Consequently, according to Table
1, the stopping time is significantly smaller in the viscous model than in the experiments.
This can also be observed in Figures 10 and 12 (right).
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Figure 10: Static/flowing interface position b as a function of time t for different slope angles using a
linear velocity profile and different viscosities (a) ν = 10−5m2s−1, (b) ν = 5×10−5m2s−1,
and (c) ν = 10−4m2s−1. The experimental results from Figure 2 are shown for compari-
son.
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Figure 11: Velocity profiles U(Z) at different times, with a linear velocity profile, for two different
viscosities (a-b) ν = 5 × 10−5m2s−1 and (c-d) ν = 10−4m2s−1, and for the slope angles
(a-c) θ = 19o, and (b-d) θ = 24o. The experimental results from Figure 3 are shown for
comparison.
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Figure 12: (left) Velocity profiles U(Z) for an inclined plane of slope θ = 24o and (right) evolution
of the thickness of the static/flowing interface position b for different slope angles, with
a viscosity ν = 5 × 10−5m2s−1, using an exponential (a-b) and a Bagnold (c-d) initial
velocity profile. The experimental results from Figures 2 and 3 are shown for comparison.

Table 1: Stopping time tstop for the inviscid model tstop
ν=0 = U0(h)/S (for linear initial velocity profile)

and in the experiments (from Figure 2), for different slope angles.

tstop (s) θ = 19o θ = 22o θ = 24o

inviscid model 0.79 1.4 2.8
experiments 0.94 1.3 3.3
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4.5 Variable viscosity

The viscoplastic description of granular materials involves fundamentally a Drucker-Prager
yield stress proportional to the pressure, the coefficient being the static friction parameter
µs = tan δ. A full rheological law including this yield stress (i.e., defined for all values of
the strain rate and not only close to zero) has been proposed in [26], the so called µ(I)
rheology. As described in [21], this rheology can be interpreted as a decomposition (i.e., (2))
of the deviatoric stress tensor in a rate-independent pure plastic part proportional to µs and
a viscous part with pressure- and rate-dependent dynamic viscosity η given by

η = (µ(I) − µs)
pdyn

2‖D‖ , (37)

where pdyn is the dynamic pressure, D is the strain rate tensor, ‖D‖2 = 1
2

∑
ij D2

ij , and I is
the inertial number defined by

I =
2‖D‖d√
pdyn/ρs

, (38)

with d the grain diameter as before and ρs the grain density. The kinematic pressure p is
related to pdyn by p = pdyn/ρ, with ρ = φρs the density of the granular material, φ being the
volume fraction. If we consider a slope aligned velocity field depending only on the normal
coordinate Z (simple shear flow), the arguments of Subsection 2.3 show that the solution
to the viscoplastic model (1), (2) is described by the system (3), (4), (5) with the constant
and uniform source term S given by (14) and ν = η/ρ. Such a flow has hydrostatic pressure
p = g cos θ(h − Z) and shear rate ‖D‖ = ∂ZU/2. Thus with (37), the kinematic viscosity
becomes

ν = (µ(I) − µs)
g cos θ(h − Z)

∂ZU
, (39)

with

I =
∂ZUd√

φg cos θ(h − Z)
. (40)

Then the term appearing in (3) is

ν∂ZU = (µ(I) − µs)g cos θ(h − Z), (41)

and the part of this term proportional to µs indeed balances in (3) the corresponding part
in S from (14). The nonlinearity is given according to [26] as

µ(I) = µs + (µ2 − µs)
I

I + I0

, (42)
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with µ2 > µs the friction at large strain rate and I0 is a constant that depends on the material
used and other device specificities, see [25, Appendix A]. Here we take the value I0 = 0.279
proposed by [25]. Note that the boundary condition (4c) is automatically satisfied and can
therefore be skipped.

For the discretization, we use the method of Subsection 4.2 with the discrete unknowns
Un

j ≃ U(tn, Zj), Zj = (j − 1/2)∆Z for j = 1 . . . nZ , nZ∆Z = h. The equations (3), (41)
with (42), (40) are discretized with finite differences under the conservative form

U
n+1/2

j − Un
j

∆tn
+ S(tn, Zj) −

Φn
j+1/2

− Φn
j−1/2

∆Z
= 0, (43)

for all j = 1 . . . nZ , with

Φn
j+1/2 = (µ(Ij+1/2) − µs)g cos θ(h − Zj+1/2), Ij+1/2 =

d (Un
j+1 − Un

j )/∆Z
√

φg cos θ(h − Zj+1/2)
(44)

for j = 0 . . . nZ , with Zj+1/2 = Zj + ∆Z/2 = j∆Z, and once U
n+1/2

j has been computed, we
set

Un+1
j = max(U

n+1/2

j , 0). (45)

Since Φn
nZ+1/2

= 0, there is no need to define Un
nZ+1, in accordance with the loss of the free

surface boundary condition (4c). On the left boundary (bottom), we use as before the no-slip
condition, Un

0 = −Un
1 . We use the CFL condition 2νmax∆tn ≤ ∆Z2, with νmax defined as the

maximum value of ν computed with (39). The interface position bn is computed according
to (32).

As previously, we take µs = tan(26o), h = 0.02m, b0 = 0.005m, and d = 7×10−4m. As in
[16], we take φ = 0.62. We choose µ2 = tan(28o), which leads to ν(Z = b0) ≃ 5×10−5m2s−1,
corresponding to the order of magnitude of ν taken in Subsection 4.4. We consider the case
of a linear initial velocity profile, with slope angles θ = 19o, 22o, 24o. The numerical results
for the static/flowing interface position b(t) and velocity profiles U(Z) are plotted in Figures
14 and 15. In comparison with numerical results of Figures 10(b) and 11(a-b) obtained with
the constant viscosity model, the shapes are similar, in particular for the initial erosion of the
static bed. The behavior of the interface position b(t) reaching the free surface close to the
stopping time is here closer to the prediction of the inviscid model (see Figure 5(a)). However,
this behavior does not recover (since ν vanishes at the free surface) the expected behavior,
which is roughly linear, of the experimental results of Figure 2. The comparison with the
experimental results is better with the µ(I) rheology than with a constant viscosity. For
clarity, the static/flowing interfaces and the velocity profiles corresponding to the different
cases are plotted in Figure 16 for θ = 22o.
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Figure 14: Static/flowing interface position b as a function of time t, for variable viscosity associated
with the µ(I) law, with linear initial velocity profile and slope angles θ = 19o, θ = 22o,
θ = 24o. The experimental results from Figure 2 are shown for comparison.
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Figure 15: Velocity profiles U(Z) at different times, for variable viscosity associated with the µ(I)
law, with linear initial velocity profile and slope angles θ = 19o and θ = 24o. The
experimental results from Figure 3 are shown for comparison.
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Figure 16: Static/flowing interface position b as a function of time t (left) and velocity profiles U(Z)
at time t = 0.5s (right), with linear initial velocity profile and slope angle θ = 22o, for
respectively our model without viscosity, with constant viscosity ν = 5 × 10−5m2s−1,
variable viscosity associated with the µ(I) law, and experimental measurements.

It is important to explain the behavior of the solution close to the free surface. As said
above, there is no need to impose any boundary condition at the free surface, because the
pressure vanishes there. Nevertheless, the behavior close to the free surface of the solution
to the parabolic problem (3) is deduced from the property that ∂Z(ν∂ZU) is bounded, which
gives ν∂ZU ∼ h − Z. For the model with constant viscosity, this leads to ∂ZU ∼ h − Z
and U has a (rather) parabolic profile close to the free surface. For the model with µ(I)
rheology, (41) implies that I tends to a finite value as Z → h, and thus with (40), we obtain
∂ZU ∼

√
h − Z, and U has a (rather) Bagnold profile close to the free surface. We conclude

that in any case, the Neumann condition ∂ZU = 0 is recovered at the free surface, even if
not enforced explicitly. For the model with the µ(I) rheology, ∂ZU tends to zero more slowly
than for the model with constant viscosity, leading to a behavior closer to the prediction of
the inviscid model. Nevertheless, the property ∂ZU = 0 at the free surface, which seems to
be a consequence of the incompressible viscoplastic model, makes it impossible to obtain a
good representation of the experimental stopping phase.

Note that the µ(I) rheology was introduced precisely to represent the Bagnold profile
(without a static phase) U(Z) = c(h3/2 − (h− Z)3/2), where c is determined by the relation
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µ(I) = tan θ, which gives

c =
2

3

I0

d

tan θ − µs

µ2 − tan θ

√
φg cos θ. (46)

This Bagnold profile without a static phase is a steady solution to the system (3), (41) with
(42), (40), but only when µs < tan θ < µ2. In our framework, we have a static phase, the
flow is not steady, and tan θ < µs. The formula (46) is therefore not applicable and would
give a negative c. Our choice of α3 is nevertheless of the same order of magnitude as (46).

5 Discussion and conclusion

We have considered the 1D (in the direction normal to the flow) non-averaged model with
static/flowing dynamics that was initially proposed in [30]. This model is based on the
description of a granular material by a yield stress viscoplastic rheology. Here we have
assumed that the source term in this model is constant, which corresponds to simple shear
solutions to the viscoplastic model. Thus, all the quantities are assumed to be independent
of the down-slope variable and in particular the flow thickness is constant. We have shown
that this free interface model can be solved with reliable and relatively simple numerical
methods. We have compared model solutions for both the inviscid and viscous models to
observations from experiments on granular flow over an inclined static layer of grains. The
analytical solution for the inviscid model and the numerical results for the viscous model
reproduce quantitatively some essential features of the change with time of the velocity, of
the static/flowing interface position, and of the stopping time of the granular mass, even
though the flow thickness in the experiments is not perfectly uniform and the initial velocity
profile changes with slope angle and flow thickness as discussed below.

The analytical solution for the inviscid model shows that the evolution of the static/flowing
interface position is proportional to the source term and inversely proportional to the shear
rate (equation (9)). For the viscous model (with constant viscosity), the analysis shows
that the evolution of the interface is related to the viscosity, the source term, and the first-
and third-order derivative of the source term and the velocity, respectively (equation (8)).
Owing to the appearance of this third-order derivative, the dynamics of the static/flowing
interface cannot be reduced to a simple differential equation in terms of depth-averaged
quantities. While the shape of the initial velocity profile is preserved at all times for the in-
viscid model according to (15), the viscous model predicts that an exponential-like tail near
the static/flowing transition and a convex shape near the free surface develop. The viscous
contribution enables the static/flowing interface to initially penetrate within the static layer
(which is eroded), as observed in the experiments, and contrary to the inviscid model.

The viscoplastic model used here has the great advantage of involving only two param-
eters, i.e., the friction coefficient µs and the viscosity ν (or the coefficient µ2 for the µ(I)
rheology), whereas the so-called partial fluidization theory, involving an order parameter to
describe the transition between static and flowing material, also reproduces the erosion of
the static bed and the velocity profiles predicted here with the viscous model [33], but at the
cost of additional empirical equations for the time-change of a state parameter.

One of the important results of the analysis lies in the explicit expressions obtained from
the analytical solution, especially for the time evolution of the static/flowing interface. The
dynamics are controlled by the source term S that is constant when the pressure is assumed
to be hydrostatic and when the slope and thickness are assumed to be constant. In such a
case, S(t, Z) = S = g cos θ(tan δ − tan θ), with µs = tan δ. Comparable results have been
obtained from the analytical solution of thin-layer depth-averaged equations for a granular
dam-break (i.e., with non-constant h) [32, 15]. This analytical solution predicts a granular
mass front velocity that decreases linearly with time

Uf = max
(
2
√

kgh0 cos θ − (g cos θ(tan δ − tan θ) t, 0
)

, (47)
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where k ≃ 0.5 (see [34]). Furthermore, the stopping time of the analytical front for the
granular dam-break is

tf = 2

√
kh0

g cos θ

1

tan δ − tan θ
. (48)

Equations (47), (48) for the front velocity and the stopping time of the front for a depth-
averaged model of a granular dam-break are very similar to equations (15) and (17) respec-
tively, found here for the velocity of the flow and for the stopping time of the granular layer
in the non-averaged case and without viscosity.

Although the initial penetration of the static/flowing interface into the static layer (ero-
sion) can be reproduced by taking into account the viscosity, this leads at the same time to an
underestimation of the stopping time. The viscous model better reproduces the exponential-
like tail of the velocity profile near the static/flowing interface than the inviscid model, but
overestimates the convexity of the velocity profile near the free surface. Furthermore, the
change in shape of the velocity profile observed in the experiments during the stopping phase
is reproduced by the viscous model, as opposed to the inviscid model. However, the de-
crease in maximum velocity near the surface is too fast in the viscous model. All these
results suggest that (i) viscosity plays an important role near the static/flowing interface
at depth and in this region a reasonable estimate for the viscosity is ν ≃ 5 × 10−5m2s−1

and (ii) viscous effects in the experiments seem to be much smaller near the free surface.
These observations suggest a non-constant viscosity, as proposed in the so-called µ(I) flow
law, e.g., [19, 42, 25, 26]. As in [21], we have used the µ(I) flow law to derive the value
of the viscosity, which becomes variable and nonlinear with respect to the shear rate. This
flow law reproduces approximately the value of the viscosity at the static/flowing interface
(i.e., ν ≃ 5 × 10−5m2s−1) and at the free surface (vanishing viscosity). However, this model
does not allow us to significantly improve the accuracy of the behavior of the static/flowing
interface close to stopping. This is because it imposes a Bagnold behavior close to the free
surface, which is in contradiction with experiments that predict a linear behavior. A more
detailed numerical simulation of the granular collapse over sloping beds with the complete
viscoplastic model and the µ(I) rheology gives a dynamic viscosity of around 0.2Pa·s near
the front, increasing up to about 0.4Pa·s behind the front (see Figure 11 of [36] and Figure
10 of [21]), leading to a kinematic viscosity of ν = 1.3×10−4m2s−1 and ν = 2.6×10−4m2s−1,
respectively, for a density of ρ = 1550kg/m3. Note also that our treatment of side wall effects
deserves further improvements, since we simply increased the friction coefficient as done in
[44, 25, 21]. Taking into account wall effects changes the static/flowing position, as shown in
particular in [36] for the granular collapse considered here. More precisely, the static/flowing
interface is found to be less deep within the flow when wall effects are accounted for (see
Figures 3 and 4 of [36]). This effect could possibly increase the value of the viscosity needed
in the model to reproduce the penetration of the static/flowing interface observed in the
experiments. This would give values of the viscosity closer to that given by the µ(I) rheology
near the front (Figure 11 of [36]).

It would be of interest to take into account the X-variations of the source S from [30, eq.
(2.12)], thereby accounting for topography, propagation and non-hydrostatic effects. This
would make it possible to study erosion in flows over complex topography in the laboratory
(e.g. [45]) or at the natural scale (e.g. [38]). For the very simple case of flows over a constant
slope and if the pressure is assumed to be hydrostatic (p = g cos θ(h − Z)), taking into
account the X-variations is the same as (according to [30]) considering once again (3)-(6)
with S including an additional term,

S = g cos θ (tan δ − tan θ + ∂Xh) , (49)

and as considering a thickness h = h(t, X) that evolves according to (2.2) in [30]. Then
U = U(t, X, Z) and b = b(t, X). However S = S(t, X) in (49) is still independent of Z. Then
equations (8) and (9) read as follows with S(t, X) defined by (49):
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• If ν > 0 and S(t, X) 6= 0, then

ḃ(t, X) =
−∂2

ZZ(ν∂ZU)(t, X, b(t))

S(t, X)
ν. (50)

• If ν = 0 and ∂ZU(t, X, b(t)) 6= 0, then

ḃ(t, X) =
S(t, X)

∂ZU(t, X, b(t))
. (51)

The model with 0 < b < h is valid as long as S(t, X) ≥ 0, so as to satisfy (6). Indeed,
violating this condition leads to instantaneous flow of the whole layer i.e. b = 0, and full
erosion of the bed. In this case, (3) still has to be solved (with b = 0 and S < 0), but with
boundary conditions (4a), (4c) only. If at some later time S becomes positive again, b can rise
above the value b = 0. Thus when S(t, X) can change sign, there is in general a succession
of progressive depositions and sudden full erosions of the bed. As discussed previously, the
experimental granular flow is not perfectly uniform, as illustrated for example for the granular
collapse at θ = 22o in Figure 17. In this case, tan δ − tan θ = 0.0837, so that near the front,
where the h-gradient is strongest (∂Xh(t = 0.66s, X = 90cm) ≃ 0.125 as shown in Figure
17), S is negative and thus even the inviscid model predicts that erosion occurs. Later, when
the front flows beyond the position X = 90cm, ∂Xh decreases with values around ≃ 5×10−3.
Therefore S becomes positive, and with the inviscid model, the static/flowing interface rises
(i.e. deposition occurs). For the viscous model, for the case S ≥ 0 studied in this paper,
occurrence of erosion (ḃ < 0) or deposition (ḃ > 0) is related according to (50) to the change
of sign of ∂2

ZZ(ν∂ZU)(t, X, b(t)), i.e. positive and negative, respectively. Therefore, when the
X variations are considered and under the hydrostatic assumption, the occurrence of erosion
or deposition depends on the signs of both S and ∂2

ZZ(ν∂ZU)(t, X, b(t)).
The influence of a Z-dependency of S on the static/flowing interface dynamics and on the

erosion process in the free interface model (3)-(6) is studied in [30]. It would be interesting to
extend the approach proposed here to 2D and possibly 3D, so as to capture the static/flowing
interface in thin-layer models, as proposed in [7]. The orders of magnitude assumed in [7]
are indeed satisfied in the experiments discussed here, because the typical length is L = 1m,
the typical time is τ = 0.33s, (so that L/τ2 = g), h = 0.02m, and ν = 5 × 10−5m2s−1,
leading to ε ≡ h/L = 0.02, tan δ − tan θ = O(ε), and the normalized viscosity ντ/L2 ≃ 10−5

is of the order of ε2 or ε3. The primary models of [7] with dependency on X and without
hydrostatic assumption (giving S depending also on Z) lead however to severe nonlinearities
and ill-posedness, so that the numerical treatment of these extensions with all flow-aligned
variations represents a major challenge.

An important issue is also to summarize the dynamics of the normal velocity profile using
a finite number of parameters (for example the interface position b, the thickness h, and the
shear rate), in order to keep computational costs low enough to simulate natural situations.
This could lead to a depth-averaged model, which has until now seemed inaccessible because
of the dependency on the third normal derivative in the differential equation (8).
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Figure 17: Thickness profile h as a function of down-slope position X in the experiments performed
by [16] and [17], at times t = 0.66s, 0.78s, 1.02s. The value X = 0 corresponds to the
position of the gate. The slope angle is θ = 22o. Note that the vertical scale differs from
the horizontal one, since the thickness of the flow represents only 7% of its horizontal
extension.
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