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Abstract

We introduce a simplified model for thin-layer flows of granular materials with yield.
The model is based on a viscoplastic rheology with Drucker-Prager yield stress and
describes the dynamics of the velocity profile as well as the transition between static and
flowing material. As opposed to most models developed to describe the static/flowing
transition in thin-layer flows, the variable Z in the direction normal to the topography
is conserved in our model. To evaluate the respective role of yield and viscosity in this
problem, we compare both the analytical solution for the inviscid case and the numerical
solution for the viscous case (with a constant viscosity or the variable viscosity of the p (1)
rheology), with experimental data. Although the model does not describe variations in
the flow direction, it is able to reproduce the essential features of experiments on granular
flow over an inclined static layer of grains, including the stopping time and the erosion
of the initial static bed, which is shown to be closely related to the viscosity.

KEYWORDs. Granular materials, static/flowing transition, thin-layer flow, interface dy-
namics, velocity profile, erosion, stopping time

1 Introduction

Understanding and theoretically describing the static/flowing transition in dense granular
flows is a central issue in research on granular materials, with strong implications for industry
and geophysics, in particular in the study of natural gravity-driven flows. Such flows (e.g.,
landslides or debris avalanches) play a key role in erosion processes on the Earth’s surface and
represent major natural hazards. In recent years, significant progress in the mathematical,
physical, and numerical modeling of gravity-driven flows has made it possible to develop
and use numerical models for the investigation of geomorphological processes and assess
risks related to such natural hazards. However, severe limitations prevent us from fully
understanding the processes acting in natural flows and predicting landslide dynamics and
deposition, see e.g., [24]. In particular, a major challenge is to accurately describe complex
natural phenomena such as the static/flowing transition.

Geophysical, geotechnical, and physical studies have shown that the static/flowing tran-
sition related to the existence of no-flow and flow zones within the mass plays a crucial role
in most granular flows and provides a key to understanding their dynamics in a natural con-
text. This transition occurs in erosion-deposition processes when a layer of particles flows
over a static layer or near the destabilization and stopping phases. Note that natural flows
often travel over deposits of past events, which may or may not be made of the same grains,



Figure 1: Experimental setup from [28] and [12] to study granular column collapse over inclined
planes covered by an initially static layer made of the same grains as those released in the
column. For slope angles 0 a few degrees smaller than the typical friction angle § of the
involved material, a quasi-uniform flow develops behind the front.

and entrain material from the initially static bed. Even though erosion processes are very
difficult to measure in the field, e.g., [7, 2, 36|, entrainment of underlying material is known
to significantly change the flow dynamics and deposit, e.g., [15, 34, 27, 8, 28, 30].

Experimental studies have provided some information on the static/flowing dynamics in
granular flows, showing for example that the presence of a very thin layer of erodible material
lying on an inclined bed may increase the maximum runout distance of a granular avalanche
flowing down the slope by up to 40% and change the flow regimes [28, 17, 12]. In these
experiments that mimic natural flows over initially static beds (Figure 1), quasi-uniform
flows develop when the slope angle 0 is a few degrees lower than the typical friction angle ¢
of the involved material [12]. Figures 2 and 3 show new data extracted from the experiments
performed by [12] on the change with time of the static/flowing interface position b and the
velocity profiles U(Z) within the granular mass, where Z is the direction normal to the bed.
At a given position X along the plane, the flow is shown to excavate the initially static
layer immediately when the front reaches this position. The static/flowing interface rapidly
penetrates into the static layer, stabilizing at an almost constant value for significantly high
slopes and then rising linearly or exponentially toward the free surface until the whole mass
of material stops (Figure 2). A theoretical description of these observations is still lacking.
In particular, questions remain as to what controls the change with time of the static/flowing
interface position and the velocity profiles and how these characteristics are related to the
rheology of the granular material and the initial and boundary conditions.

In order to alleviate the high computational costs required to describe the real topography
and the rheology, both of which play a key role in natural flow dynamics, thin-layer (i.e., the
thickness of the flow is assumed to be small compared to its downslope extension) depth-
averaged models are generally used to simulate landslides [32]. Such models have been
rigorously derived for arbitrary topography, but the static/flowing transition is generally
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Figure 2: Position of the static/flowing interface b as a function of time ¢ until the granular mass
stopes, measured at X = 90cm from the gate, from experiments of granular collapse over
an initially static granular layer of thickness 4 = 5mm on an inclined channel of slope
angle @ = 19° (green squares), 8 = 22° (blue stars), § = 23° (red crosses), and 6§ = 24°
(black vertical crosses). Time ¢ = 0s corresponds to the time when the front of the
flowing layer reaches the position X = 90cm. The approximate upward velocity b of the
static/flowing interface is indicated in m/s for each slope angle. These new results have
been extracted from the experiments performed by [12] and [13] for granular columns of
initial radius ro = 20cm, initial thickness ho = 14cm, and width W = 20cm (i.e., volume
V = 5600cm?®).

neglected, e.g., [4, 3, 29]. Several attempts have been made to describe this transition in
thin-layer (i.e., shallow) models, in particular by deriving an equation for the static/flowing
interface position or by establishing erosion/deposition rates, e.g., [22, 18]. However, these
approaches are generally based on debatable phenomenological laws and/or are too schematic
to be extended to natural flows [19]. In particular, the simplifications used in some previous
models lead to an inconsistent energy equation [5]. A better understanding of the non-
averaged case is necessary to define more physically relevant depth-averaged models including
the static/flowing transition. As a first step in this direction, we focus here on non-averaged
thin-layer models.

Recent work has shown that viscoplastic flow laws with yield stress well describe granular
flows and deposits in different regimes from steady uniform flows [14, 33, 20, 21| to transient
granular collapse over rigid or erodible horizontal beds [9, 23] and inclined beds [16]. Very
good agreement with experiments is obtained even though these laws, and in particular the
so-called p(I) rheology, where I is the inertial number [21], have been shown to be ill-posed
in the quasi-static regime, i.e., for small I (and also for large I) [1]. These promising results
may be related to the use of a coarse mesh, whereby simulations avoid the ill-posedness by
damping the fast-growing high wavenumbers. In any case, the quasi-static regime near the
static/flowing interface is known to be very complex, involving strong and weak force chains
and local rearrangement of particles, e.g., [10, 31]. This regime is not accurately described by
the proposed viscoplastic laws involving a simple yield stress. Questions however remain as
to whether such ‘simple’ viscoplastic laws are able to describe quantitatively the change with
time of the static/flowing interface position and the velocity profiles observed experimentally
for flows over an initially static bed and how the viscosity affects these processes. An an-
alytic expansion in the shallow regime from such a viscoplastic model with yield stress has
been performed in [6], giving a theoretical basis for equations on the static/flowing interface
dynamics in a dry granular material.
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Figure 3: Velocity profiles U(Z) at different times until the granular mass stops, measured at X =
90cm from the gate, in experiments of granular collapse over an initially static granular
layer of thickness b = 5mm on an inclined channel of slope angle (a) § = 19°, (b) § = 22°,
and (c) § = 24°. Time t = 0s corresponds to the time when the front of the flowing
layer reaches the position X = 90cm. These new results have been extracted from the
experiments performed by [12] and [13] for granular columns of initial radius ro = 20cm,
initial thickness ho = 14cm, and width W = 20cm (i.e., volume V = 5600cm?®).



We propose here to evaluate the dynamics produced by the mathematical model of [6],
for a simplified case in which we remove the flow-parallel variable X that is present in [6].
Although this variable X plays a key role in real flows, taking into account the fluctuations
of the free surface, topography and inflow information, we can neglect it at this initial stage.
Thus, we assume here a uniform flow (h = ¢st) over a flat inclined plane (0 = cst). We show
that the analysis of this simple shear system provides new insight into the change with time
of the static/flowing interface position and the velocity profiles.

A key point in our model that fundamentally differs from previous thin-layer models (see
[19] for a review) is that even if the flow is assumed to be shallow, the normal variable Z
is still present. The formulation involves an extra boundary condition at the static/flowing
interface Z = b(t) that determines its time evolution. The effects of gravity and internal
friction are taken into account via a source term S. The model is introduced in Section 2.
Then, in Section 3, we derive an analytical solution for the inviscid case with a constant source
term, which partly reproduces the experimental observations and shows explicitly how the
static/flowing interface position and the velocity profiles are related to the flow characteristics
and to the initial and boundary conditions. In Section 4, we introduce two new numerical
methods for the simulation of the viscous model, with a constant viscosity or the variable
viscosity associated with the u(I) rheology. The numerical results show that, as opposed
to the inviscid case, viscosity makes it possible to reproduce the initial penetration of the
static/flowing interface within the static bed and the exponential shape of the velocity profiles
near this interface. Finally, in Section 5, these results are discussed based on comparison
with former experimental and numerical studies on granular flows, showing the key features
and the limits of this shallow viscoplastic model for providing a better understanding and
modeling of laboratory and natural flows.

2 A simplified model with source term and moving static/flowing
interface

2.1 Origin of the model

A shallow model for viscoplastic flows with yield stress and static/flowing transition has been
derived in [6]. It is formulated in the variables X in the direction tangent to the topography,
and Z normal to it. The topography is described by its angle 6(X) with the horizontal (Figure
4 in the case of a flat topography). The starting governing equations are the dynamics of
an incompressible viscoplastic flow with Drucker—Prager yield stress, characterized by the

rheological law -
D

o pld+ 2vDU + psp Do’ (2.1)
where o is the stress tensor (normalized by the density) p is the scalar pressure (also nor-
malized by the density), DU is the strain rate tensor DU = (VU + (VU)")/2 with U the
velocity vector. Here the norm of a matrix A = (4j;) is [A| = (3 X2,; 43;)"/2. The coeffi-
cients pus > 0 and v > 0 are the internal friction and the kinematic viscosity, respectively.
Under the assumptions that the width of the layer, the curvature of the topography, and the
viscosity are small, the internal friction angle is close to the slope angle, the velocity is small,
and the pressure is convex with respect to the normal variable Z, a formal expansion of the

governing equations leads to the momentum balance equation
oU+ S — 0z (l/azU) =0 forall Z € (bh), (2.2)

where U(t, X, Z) is the velocity in the direction tangent to the topography. The kinematic
viscosity v is taken constant here, but another choice deduced from the so called (1) rheology
is evaluated in Subsection 4.5. In (2.2), h(t, X) is the thickness of the layer, and b(¢, X) is
the position of the interface between the static part Z < b(t, X) (where we set U = 0) and



the flowing part Z > b(t, X). The thickness h evolves according to a kinematic free-surface
condition (not written here), and the evolution of the interface b is implicitly governed by
the boundary conditions for all ¢ > 0,

U=0 atZ=0, (2.3a)
vdzU =0 at Z =0, (2.3b)
vozU =0 at Z=h. (2.3c)

Knowing that the material is at rest in the part below the interface, these boundary conditions
mean that the velocity is continuously differentiable through the interface (in the viscous
case), and that the viscous stress vanishes at the free surface Z = h.

The source S in (2.2) depends on ¢, X, Z and is expressed as

S =g(—sinf + dx(hcos®)) — us0zp for all Z € (b, h), (2.4)

where g > 0 is the gravity acceleration, us = tand > 0 is the friction coefficient with § the
friction angle related to the material, and p(¢, X, Z) is the pressure. This pressure has an
asymptotic nonlinear expression in terms of xU and 0zU, but the particular form of this
expression is irrelevant here. The formula (2.4) is valid in the context of positive angle 6
(note that this convention differs from [6]) and of a (strictly) increasing velocity profile in
the flowing layer, i.e., 92U > 0 for all Z € (b, h).

Z )

static layer

R'

Figure 4: Simplified flow configuration consisting of a uniform flowing layer over a uniform static
layer, both parallel to the rigid bed of slope angle 6. The static/flowing interface position
is b(t), and the total thickness of the mass h is constant.

2.2 The simplified model

The motivation of our simplified model stems from the fact that the system (2.2), (2.3)
involves the dependency on X of the unknowns only via the thickness of the layer h and the
source term S, or equivalently via the expression of the pressure, because of (2.4). In other
words, if the source S and the thickness of the layer h are known, the system (2.2), (2.3) can
be considered as a system in the variables ¢, Z, while X is only a parameter.

Therefore, our simplified model with moving interface considers that (at fixed X, and we
thus omit the variable X) the source is given empirically as a function S(¢,Z). The angle
0 > 0 is then constant, and we assume also that h is independent of time, and therefore
constant. Our system reduces then to finding U(¢, Z) for b(t) < Z < h, and b(t) satisfying
0 < b(t) < h, such that

U, Z)+ 8(t,2) — 0z(vOzU(t, Z)) =0 for all Z € (b(t),h), (2.5)



with the boundary conditions for all £ > 0,

U=0 atZ=0>b(), (2.6a)
voU =0 at Z=b(t), (2.6b)
vozU =0 at Z=h. (2.6¢)

We assume that S(t, Z) is defined for Z € [0, h] and is continuous in time and space. Finally,
we specify a continuous velocity profile UY(Z) defined for Z € [0, h], such that for some
% € (0, h) (initial position of the interface), the function U° satisfies U°(Z) = 0 for Z € [0, 8],
and dzU° > 0 for Z € (b°, h). The initial condition on the velocity is then formulated as

U(0,Z)=U°Z2) forall Zc|0,h], (2.7)

where U(0, Z) is the limit as ¢ | 0 of U(¢, Z) extended by 0 for Z < b(t).

We remark that if we take an hydrostatic pressure p = gcosf(h — Z) in (2.4), neglecting
the derivative in X (we recall that X has been considered as a parameter, which does not
mean that the quantities are independent of X), we infer that S is constant in time (and
uniform in space) with

S = g(—sinf + ps cosb). (2.8)

The source term is thus the result of the balance between the driving force due to gravity
(gsinf > 0) and the friction force (usgcos@ > 0). Indeed, in the case of (2.8), according to
[6], the solution of the system (2.5), (2.6), (2.7) is an exact solution to the two-dimensional
original viscoplastic model without dependency in X.

2.3 Properties of the model

The simplified model (2.5), (2.6), (2.7) enjoys several interesting properties; for more insight
into their proof, we refer to [25]. We make the assumptions stated in Subsection 2.2 on the
initial data.

e Monotonicity of the velocity profile. Assume that v > 0 and that the source term is
decreasing in space

0z5(t,Z) <0 forallt>0, and all Z € [0, A]. (2.9)

Condition (2.9) can be interpreted as a stability condition. Recalling (2.4), this condi-
tion can also be stated as a convexity property for the pressure, i.e., %,p > 0. The
stability condition (2.9) is obviously satisfied if the source term is uniform in space.
Then, under the above assumptions, for all ¢ > 0, and as long as 0 < b(t) < h, the
following holds:

0zU(t,Z) >0 forall Z € (b(t), h). (2.10)

Moreover, the source term is nonnegative at the interface
S(t,b(t)) >0 forall ¢ > 0. (2.11)

This last property is obtained by differentiating (2.6a) with respect to time, which
yields
AU (t,b(t)) + dzU(t,b(t))b(t) = 0. (2.12)
Since v # 0, the condition (2.6b) leads to AU (t,b(t)) = 0. Then, evaluating (2.5) at
Z = b(t), we infer that
S(t,b(t)) = voz ,U(t,b(t)). (2.13)

Owing to (2.10) and using again (2.6b), we obtain 0% ,U (¢, b(t)) = leiir(l)ﬁzU(t, Z)(Z—
¢
b(t)) > 0, whence the result (2.11).



In the case v = 0, we impose (2.11) as an additional condition in the simplified model.
This additional condition can be interpreted as an entropy condition in the limit of
vanishing viscosity.

We observe that in the case (2.8) of constant source, the condition (2.11) implies that
tanf < ug, saying that the internal friction must at least neutralize the gravity force
due to the slope. This is a necessary condition for a solution to the model with moving
interface (2.5), (2.6), (2.7) to exist. Indeed, if this condition is not satisfied, we expect
that “b = 07, meaning that all the layer flows down.

e We can formally derive a differential equation for the time evolution of the position of
the interface.
If v > 0 and S(t,b(t)) # 0, then

b(t) = <8ZS(t,b(t)) - yagzzU(t,b(t))> » (2.14)

S(t,b(t))

This differential equation can be obtained by differentiating (2.6b) with respect to time,
using (2.13), and evaluating the derivative with respect to Z of (2.5) at Z = b(¢).
If v =0 and 9zU(t,b(t)) # 0, then

S(t,0(t))

b(t) = U b(E) (2.15)

this identity being deduced from (2.12), and (2.5) evaluated at Z = b(t).

These formulas show the strong interrelation between the velocity profile in the direction
perpendicular to the inclined plane and the evolution of the static/flowing interface
position.

3 Analytical solution in the inviscid case with a constant
and uniform source term

3.1 Analytical solution
In the inviscid case v = 0, the simplified model (2.5), (2.6), (2.7) can be written
U, Z)+ Sk, Z)=0 forall Z € (b(t),h), (3.1)
with the boundary condition for all ¢t > 0,
U(t,b(t)) =0, (3.2)

the initial condition (2.7), and the entropy condition (2.11). Moreover, if the source term is
chosen constant and uniform as in (2.8), i.e.,

S(t,Z) =5 :=gcosf(tand — tand) > 0, (3.3)

with ps = tand, 6 < §, then we can infer an analytical solution. Specifically, the solution to
(3.1), (3.2), (2.7) is given by

U(t,Z) = maX(UO(Z) St 0) for all Z € [0, h). (3.4)

Equation (3.4) shows that the velocity profile (at all times when a flowing layer exists) has
the same shape as the initial velocity profile: it is just shifted towards decreasing velocities
with a constant speed S, and clipped below the value 0. Note that the velocity profile only
depends on g, 6, ¢ through S in (3.3). If S = 0, the solution is steady, while if S > 0,



the velocity decreases with time, until the stopping of the flow. Furthermore, the interface
position b(t) results from the following implicit equation:

U%(b(t)) = St. (3.5)

This equation has a unique solution in [6°, k] for all times t < t5*°P_ with ¢5%°P the time when
the whole mass stops, defined by

U°(h) _ U°(h)
S gcosf(tané — tanf)’

tstop —

(3.6)

The complete stopping of the flow occurs at ¢ = t5*°P. For all times t > t5t°P, the velocity U
can be extended by setting U(t, Z) = 0 for all Z € [0, h], and b(t) = h.

3.2 Choice of the parameters and initial conditions

In order to compare the analytical solution to the results presented in Figures 2 and 3
extracted from the experiments performed by [12], we have to prescribe the friction angle §,
the slope angle 6, the thickness of the granular layer h, the thickness of the initially static
layer b°, and the initial velocity profile U°(Z). Glass beads of diameter d = 0.7mm were used,
with repose and avalanche angles of about 23° and 25°, respectively. Because wall effects are
known to increase the effective friction for granular flows in channels as those of [12], we use
here a friction angle of § = 26° [35, 20, 16]. We perform different tests by varying the slope
angle 6 from 19° to 24°, while we prescribe b = 5mm, which is the initial static width in the
experiments, and h = 0.02m, corresponding to the mean thickness at the position X = 90cm
where the measurements have been performed, see Figure 3. Thus unless specified, we always
take

§ = 26°, b = 0.005m, h = 0.02m. (3.7)

The objective here is only to compare the order of magnitude and the general trend of the
analytical solution to the experimental results, since the experiments are more complicated
than the uniform granular layer and the initial conditions prescribed in the model. In par-
ticular, the thickness of the granular layer in the experiments may vary by up to 20% during
the flow and slightly depends on the inclination angle (see Figure 3). Furthermore, the initial
velocity profiles and the maximum velocity also depend on the inclination angle, while we
impose here the same velocity profile for all the tests.

Velocity profiles in experimental granular flows have been extensively measured in very
different regimes, see e.g., [14]. For free surface flows over rigid inclined beds, the velocity
profiles vary with inclination, thickness of the flow, and time. Essentially, the velocity profiles
may vary from a linear profile for thin layers over small slope angles to Bagnold-like profiles
for higher inclinations. The same general trend is observed for thicker flows (see Figure 5
of [14]). For surface flows over a pile of static grains, the velocity profiles roughly exhibit
an upper linear part in the flowing layer and a lower exponential tail near the static/flowing
interface (see Figure 6 of [14]). This is consistent with the measurements shown in Figure 3.
Furthermore, experimental results suggest that the shear rate dzU is almost constant and
equal to 0.5\/g (see e.g., equation (11) of [14]). As a result, for a linear profile of slope ay
(see case (a) below), we choose a1 = 70s~!, which is consistent with the velocity profiles
measured at ¢ = Os in Figure 3.

In order to investigate the different possible profiles of the velocity, we choose three initial
velocity profiles defined, for all Z € [b°, h], as:

(a) linear profile U°(Z) = a1 (Z — b°), with a3 = 70571,
(b) exponential profile U%(Z) = as(efZ — ¢#*"), with oy = 0.1ms~! and 3 = 130m ",

(¢) Bagnold profile U%(Z) = as((h — )% — (h — Z)%), with a3 = 545m /21,



In each case, the maximum velocity is U%(h) ~ 1ms~!. For each profile, equation (2.15)
provides explicitly the time evolution of the static/flowing interface position as follows:
S

(a) b(t) = ot Y,

s .
(b) b(t) = %log (a—2t+eﬁb >

(©) blt) = h — ((h— 0)2/2 - a%t)w.

These formulae are valid as long as t < t5%°P = UY(h)/S, i.e., b(t) < h.

10
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Figure 5: Static/flowing interface position b as a function of time ¢ in the inviscid case, for different
slope angles and for an initially static granular layer of thickness ° = 5mm, using (a) a
linear, (b) an exponential, and (c) a Bagnold initial velocity profile.
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Figure 7: Velocity profiles U(Z) at different times in the inviscid case, with an initially static granular
layer of thickness b° = 5mm over an inclined plane of slope (a,b) § = 19° and (c,d) § = 24°,
using (a,c) an exponential and (b,d) a Bagnold initial velocity profile.

3.3 Results and comparison with experiments

The b(t) curves are plotted in Figure 5 and the U(Z) profiles in Figures 6 and 7. The evolution
of the static/flowing interface position b(¢) obtained from the analytical solution (Figure 5)
reproduces to a certain extend the experimental observations (Figure 2). The shape of b(¢) is
directly related to the velocity profile, as demonstrated by equation (2.15). For the analytical
solution, depending on the initial velocity profile, the stopping time is in the range 2.75-3s for
0 = 24°, 1.35-1.5s for = 22°, and 0.75-0.85s for # = 19°, while t5t°P ~ 3.4s, t5t°P ~ 1.4s, and
t3toP ~ ().9s in the experiments, respectively. As a result, the stopping time is well reproduced
by the analytical solution, even though its strong increase for § = 24° is underestimated in the
analytical solution. On the other hand, the penetration of the static/flowing interface within
the initially static bed is not reproduced by the analytical solution that instead predicts a
static/flowing interface rising towards the free surface at all times.

The decrease of the velocity with time is relatively well reproduced up to about 0.8s. With
the analytical solution, the velocity profiles maintain the same shape while the maximum
velocity decreases, as observed in the experiments. The decrease of the maximum velocity
in the experiments and with the analytical solution are very similar (Figures 3 and 7). At
later times (¢ > 1s) and at 8 = 22° and 6 = 24°, the experiments show a clear change in the
velocity profile (see Figure 3c at t = 1s and ¢ = 2s) that is not reproduced by the constant
shape of the velocity profiles predicted by the analytical solution. Furthermore, the maximum
velocity decreases much faster in the experiments. In the experiments, the velocity profiles
seem to be closer to linear for smaller slopes (0 = 19° and 6 = 22°) and more exponential
for 6 = 24°. Referring to equation (3.5) and Figure 5, this may explain why b(t) measured
experimentally (Figure 2) has an exponential shape at § = 24°, while it is closer to linear for
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smaller slope angles.

4 Numerical solution to the viscous model

In this section, we compare a numerical solution for our simplified model (2.5), (2.6), (2.7)
with viscosity v > 0 and constant and uniform source term .S given by (3.3), to the experi-
mental data.

Our model being formulated under an unusual form, we introduce two numerical methods.
They both involve quite elementary tools, but are effective and give very similar results.
Note that our several tries to use the differential equation (2.14) in a numerical method led
to instabilities (not presented), thus the two methods described here avoid doing that. We
describe the main features of the transient regime by a scale analysis. The comparison to
experiments is finally performed, first with constant viscosity, then with variable viscosity
deduced from the u(I) viscoplastic rheology.

4.1 Discretization by moving interface

The first numerical method hinges on the rewriting of (2.5), (2.6), (2.7) in a normalized
coordinate 0 <Y < 1. We perform the change of variables

t=r, Z =b(1)+ (h—b(1))Y, (4.1)

that leads to the differential relations 8, = 8;+b(7)(1—Y)dz and dy = (h—b(7))dz. Here, &,
and 0, denote the differentiation with respect to time at constant Z and Y, respectively. The
change of variables (4.1), and hence the discretization method presented in this subsection,
is appropriate as long as there is a flowing layer. Another discretization method dealing with
the stopping phase when b(t) reaches the total height h, is presented in Subsection 4.2. The
discretization method considered in this subsection has the advantage of tracking explicitly
the position of the static/flowing interface, while the method of Subsection 4.2 requires a
post-processing to evaluate the interface position.
Using the change of variables (4.1), equation (2.5) is transformed into

-1-Y v 9
aTU—bh_bayU+S—mayyU:0 forall Y € (0,1), (42)
and the boundary conditions (2.6) into
U=0 atY =0, (4.3a)
voyU=0 atY =0, (4.3b)
voyU=0 atY =1. (4.3c)

We split the space domain (0,1) in ny cells of length AY with ny AY = 1, and denote by
Y; = (j —1/2)AY, for all j = 1...ny the center of the cells. The discrete times ¢, for
n > 0 are related by "1 = " + At", where At" is the time step (chosen according to the
CFL condition (4.7) below) and t° = 0. We write a finite difference scheme for the discrete
unknowns UT' ~ U (", Y;) and b" >~ b(t"), for all j = 1...ny and all n > 1, using the initial

conditions on U? (and b°) to initialize the scheme. For all n > 0, given (U}")1<j<n, and b",

the equations to compute (UJT’“)lSanY and b7+ are

UM —Ur (1-Y)) pyt urtt Uttt —2urtt

j Jj ( J)a_JréJrS(tn,Yj)i v J+1 j—1 J =0, (44)
Atn h—bm 7 (h—bn)2 AY?
for all j =1...ny, with
. Ur=Ur N
a1 prts L1 if bt <0, N prtl _ pn

a; *= Un AY U with 6”72 = ———— (4.5)

e e > A

AY -
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together with the boundary conditions

Ugtt = —uptt, (4.6a)
Ugtt = uptt, (4.6b)
Uprti, =untt, (4.6¢)

Equations (4.6a) and (4.6¢c) are used to provide the ghost values Uy and Ugj}rl involved

in (4.4) for j = 1 and j = ny, while equation (4.6b) is used to determine b"*! as described
below. We observe that in (4.4), the diffusive term is treated implicitly in time, while the
first-order derivative of U is treated explicitly using upwinding. As a result, we impose the
CFL condition

At"| pnts |

< AY. 4.
h—bn = (4.7)

This CFL condition is evaluated approximately using the value b"~2 from the previous time
step, since b"*2 is unknown at the beginning of the time step; for n = 0, the value 0 is
used (hence, no CFL condition is initially enforced, but the time step is taken small enough).
Typical values are At = 10~%s for the initial time step, and AY = 10~%.

The solution to (4.4), (4.5), (4.6) is obtained as follows. We can solve the system (4.4)
together with the boundary conditions (4.6a), (4.6¢), for any value of b"*! to evaluate the
right-hand side (recall that the advective derivative is treated explicitly). This leads to a
tridiagonal linear system whose system matrix results only from the time derivative and the
diffusive terms. This matrix, which is diagonally dominant, has an inverse with nonnega-
tive entries. Thus, the solution (U f“) 1<j<ny can be expressed linearly with nonnegative
coefficients in terms of the coeflicients (a?H/ 2)1§j§ny which appear on the right-hand side
and which depend on the still unknown interface position 6" 1. According to (4.5) and since
U} is nondecreasing with respect to j, U;-H'l is thus, for all j = 1...ny, a nondecreasing
continuous and piecewise linear function of b"*!, with two different formulae corresponding
to whether b” 1! is greater or smaller than b". In particular, the remaining boundary condi-
tion (4.6b), which is equivalent to U™ = 0 owing to (4.6a), determines a unique solution
b1, see Figure 8. The value of " *! can be computed explicitly by solving twice the linear
system with two different right-hand sides and using linear interpolation. The first solve uses
the right-hand side evaluated with the temporary value b" for b”t!, yielding a temporary
value for U™, if the obtained value is negative (left panel of Figure 8), the second solve
is performed using the value h for b"*!, otherwise, the value 0 is used (right panel of Fig-
ure 8). Once b"*! is known, we recover the entire profile U]”H for all 7 = 1...ny by linear
interpolation.

1 1
uprtt, upt

O 1 T
L h

Figure 8: Velocity U™ versus b"T!. The chosen value for "' is determined by the intersection of
the curve with the horizontal axis.
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4.2 Discretization by optimality condition

The second numerical method for solving (2.5), (2.6), (2.7) with positive viscosity v > 0 uses
a formulation as an optimal problem set on the whole interval (0, k), valid under assumption
(2.9),

min(0;U + S — vd%,U,U) =0 for all Z € (0,h),

ozU =0 at Z = h, (4.8)

U=0 at Z =0,

where we consider a no-slip boundary condition at the bottom. Note that this condition
becomes relevant whenever the static/flowing interface reaches the bottom, a situation en-
countered in our simulations as reflected in Figure 10c. In (4.8), the static/flowing interface
position b(t) no longer appears explicitly, but has to be deduced from the velocity profile as

b(t) = sup {Zp € [0, h] such that U(¢,Z) = 0 for all Z € [0, Zy]} . (4.9)

We split the space domain (0,h) in ny cells of length AZ with nzAZ = h, and denote by
Z; = (j —1/2)AZ, for all j = 1...nz, the center of the cells. The discrete times ¢", for
all n > 0 are related by "1 = t" + At", where At" is the time step (chosen according to
the CFL condition (4.12) below) and t* = 0. We discretize the problem (4.8) using a finite
difference scheme by writing for the discrete unknowns UJ' ~ U (t", Zj)

urtt —un ur, +Ur, —207
min (JT’H,] + S(tn, Z_]) — UV g+l AJZ; J ,U;l+1 = 0 (410)

for all j = 1...nz. The boundary conditions, which are discretized as U}, = U} at the
free surface (Z = h) and as U}' = —U7" at the bottom (Z = 0), are used to provide the ghost
values involved in the discretization of the diffusive term. The problem (4.10) is solved in

two steps as

yrti2 _gn Ur,. 4+ U —2U"n
J J n j+1 j—1 J _ ntl _ n+1/2
T+S(t ,Zj)—l/ AZ2 —0, Uj —maX(Uj ,0).
(4.11)
Owing to the explicit discretization of the diffusive term, we use the CFL condition
At"
2v——> < 1. 4.12
"Az2 = (412)

We could also consider an implicit discretization to avoid any CFL condition, but each time
step would be more computationally demanding. Finally, the thickness of the static layer is
evaluated as

b" =max{j € {l...nz} such that U =0forall k€ {1...5}} x AZ. (4.13)
However, in order to avoid that b™ is influenced by small values of U, we prefer to use
" = (k" —1)AZ, k™ =min {j € {1,...,nz} such that U;‘ECOAZQ}, (4.14)

where Cy is an appropriate constant of the order of S/v, see (2.13).

4.3 Scales in the transient regime

We assume that the source term S is constant. Then, the solution to the viscous model (2.5),
(2.6), (2.7) depends on the constant S, the total width h, the viscosity v, the initial width
of the static layer b°, and the initial velocity profile U°(Z). We introduce non-dimensional
quantities, denoted by hats, as

. b=, U=ul, (4.15)



with 7 a time scale, [ a space scale, and u = la; where a7 is the order of magnitude of the
initial shear rate. In order to write (2.5) in non-dimensional form, we take

(4.16)

The dimensionless equation is then

o~

U +1-09%.U =0 forall Z e (b,h),

with boundary conditions U= 826 =0at Z = B, and 826 =0at Z = h. If we take a
linear initial velocity profile, this non-dimensional solution U depends only on h = h/l and
B0 = b9/1. Actually, since the problem is invariant by translation in Z, the solution depends
only on (h — b°)/I.

Numerical investigations for constant source S using the scheme described in Subsection
4.1 show the behavior illustrated in Figure 9. The static/flowing interface position b(t) first
decreases until a time t¢ and attains a minimal value ™" (starting phase). Then, b(t)
increases, and (if h is sufficiently large) reaches an asymptotic regime with upward velocity
b> (stopping phase), before fully stopping at attaining h.

b
h L

starting ;phase

stopping phas

bO

bmin

te t
Figure 9: Evolution of the thickness of the static/flowing interface as a function of time.

According to the above scaling analysis, if the velocity profile is initially linear with shear

a1, and if

h—b0 h—b9)8
= ( ) > 1, (4.17)
l vogq

the quantities ¢, b0 — p™in, b> are proportional to 7, I, I /7, respectively. We obtain the
proportionality factors from the numerical simulation as

U e 952 (4.18)

2
o= 045 g0 pmin _ g 43,00
S aq

5’2

Note the dependency in the ratio a;/S, which is due to the homogeneity of the problem
(2.5), (2.6) with respect to (U,S) (multiplying (U, S) by a positive constant gives again a
solution, with b unmodified).

4.4 Results and comparison with experiments for constant viscosity

We consider the case of a constant and uniform source term of the form (3.3). The case of
a linear initial velocity profile is simulated using different values of the viscosity v (taken
constant) and slope angles 6. The results obtained with both methods of Subsections 4.1
and 4.2 are always identical, thus we shall not specify which one is used. As discussed
in Subsection 4.3, the static/flowing interface always penetrates the initially static layer, in
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contrast to what has been observed for the inviscid case, within a length 4% —b™" proportional
to v, according to (4.18). In other words, the flow excavates the static bed. However, for
v < 107°m?s™!, the penetrating length is too small to be observable. For v = 107 °m?s™!
(Figure 10a), b° — b™i® = 8.10~4m for § = 24° (with t¢ = 5-1072s), and b° —b™* = 2.10~*m
for = 19° (with t¢ = 4 - 1073s). Thus, the static/flowing interface penetrates only slightly
within the initially static layer. As the viscosity increases (Figure 10b), the static/flowing
interface penetrates deeper into the initially static layer and even reaches the bottom for
v=10"*m?s7! at § = 24° (Figure 10c). The results that better reproduce the experimental
observation for the penetration of b(t) within the initially static layer are obtained with
v ~5-10"°m?s~!. In good agreement with the experiments, the simulations with viscosity
predict that the static/flowing interface sinks deeper within the initially static layer and for
a longer time t¢ when the slope angle increases. Furthermore, the values of b(¢) and t¢ are in
reasonable agreement with those observed experimentally (Figures 2 and 10b and Figure 17
of [12]).

Qualitatively similar results are obtained using different initial velocity profiles (Figure
12). However, the shape of b(t) is affected by the choice for the initial velocity profile. As
an example, for an exponential initial velocity profile with § = 24° and v = 5 - 10™°m?s ™!,
the static/flowing interface position b(t) stagnates at an almost constant position for the first
0.5s, contrary to the case of a linear initial velocity profile (Figures 10b and 12b).

The convex shape of b(t) during the migration of the static/flowing interface up to the
free surface obtained in the viscous case is very different from the observation and from
that obtained in the inviscid case, which predicted a linear shape related to the linear initial
velocity profile. In the viscous case, the time evolution of b(t) and the velocity profile U(¢, Z)
are not so obviously related to the shape of the initial velocity profile, as shown for example
in Figure 12 for # = 24°. The velocity profiles in the viscous case are also very different from
those in the inviscid case. Whatever the shape of the initial velocity profile, at later time, the
velocity profiles exhibit an exponential-like tail near the static/flowing interface, similar to
that observed experimentally. They also exhibit a convex shape near the free surface which
can be observed in some experimental velocity profiles, but not always and not as marked
(e.g., Figure 3c). While the maximum velocity decreases too fast at t = 0.5s and 6 = 24°
compared to the experiments and to the inviscid case, the velocity is much closer to the
experiments at ¢t = 1s than in the inviscid case (Figure 3c and Figure 11c). For § = 19° and
6 = 22°, the viscous case overestimates the decrease in velocity at time ¢ = 0.7s.

Finally, the stopping time of the whole granular layer is smaller for viscous than for inviscid
flow, whatever the shape of the initial velocity profile. Recalling that the stopping time in
the inviscid case is given by 5°0 = U%(h)/S, we can study numerically the difference (£5°5 —
5%°P)  where t5%°P denotes the stopping time in the viscous case. Our numerical simulations
show that this difference depends rather mildly on the viscosity (Figure 13 where the slope of
the curves suggests a behavior of this difference close to v*/4 for the present parameters). In
any case, the presence of viscosity diminishes the stopping time. Furthermore, the stopping
time in the viscous case is significantly smaller than in the experiments.
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4.5 Variable viscosity

The viscoplastic description of granular materials involves fundamentally a Drucker-Prager
yield stress proportional to the pressure, the coefficient being the static friction coefficient
s = tand. A full rheological law including this yield stress (i.e., defined for all values of the
strain rate and not only close to zero) has been proposed in [21], the so called p(I) rheology.
As described in [16], this rheology can be interpreted as a decomposition (i.e., (2.1)) of the
deviatoric stress tensor in a rate independent pure plastic part proportional to us, and a
viscous part with pressure and rate dependent dynamic viscosity n given by

n=(ul)— MS)flldgH’ (4.19)

where pay, is the dynamic pressure, D is the strain rate tensor, | D[|* = 1 > i D% and [ is

75
the inertial number defined by
2| Djjd

V pdyn/ps ,

with d the grain diameter as before, and ps the grain density. The kinematic pressure p is
related to payn by P = Payn/p, With p = ¢p, the density of the granular material, ¢ being the
volume fraction. If we consider a slope aligned velocity field depending only on the normal
variable Z, the same computation as in [6] shows that the system (2.5), (2.6), (2.7) is modified
only by the definition of viscosity, namely it becomes

I= (4.20)

QU Z)+ S —0z(vo,U(t,Z)) =0 for all Z € (b(t), h), (4.21)

with the same boundary and initial conditions (2.6), (2.7), the constant and uniform source
term S given by (3.3), and v = n/p. In such flow one has hydrostatic pressure p = g cos6(h —
Z), and shear rate |D| = 0zU/2. Thus with (4.19), the kinematic viscosity becomes

v= () - ) 220 =2, (422)
with
I= 9zUd . (4.23)
VbgcosO(h— Z)
Then the term appearing in (4.21) is
vOzU = (u(I) — ps)gcosO(h — Z), (4.24)

and the part of this term proportional to s indeed balances in (4.21) the corresponding part
in S from (3.3). The nonlinearity is given according to [21] as

1

—_— 4.2
T (4:25)

u(I) = ps + (p2 — ps)
with ps > ps the friction at large strain rate, and Iy = 0.279. We note that the boundary
condition (2.6¢) is automatically satisfied, we can thus just skip it.

For the discretization we use the method of Subsection 4.2 with the discrete unknowns
Uj’-’ ~Ut", Z;), Z; = (j—1/2)AZ for j =1...nz, nzAZ = h. The equations (4.21), (4.24)
with (4.25), (4.23) are discretized with finite differences under conservative form

n+1/2 " n n
% +S(t", Z;) — W =0, (4.26)
forall j =1...nz, with
" d (U, —Uj)/AZ
T2 = (Wjy1y2) — ps)geosO(h — Zjiaye),  Ljtaye = Jgcos0h —Z113) (4.27)

22



for j =0...nz, with Z; 1/, = Z; + AZ/2 = jAZ, and then

Ut = max(U]?,0). (4.28)

= 0, there is no need to define U} ., in accordance with the loss of the free

Since CIDZZ_H/Q
surface boundary condition (2.6¢). On the left boundary (bottom) we use as before the no-
slip condition, Uy = —UJ*. We use the CFL condition 2vyax At™ < AZ? with vyay defined
as the maximum value of v computed with (4.22). The interface position b™ is computed

according to (4.14).

As previously we take ps = tan(26°), h = 0.02m, b° = 0.005m, d = 7 - 10~*m, and
following [12] ¢ = 0.62. We choose pz = tan(28°), that leads to v(Z = b°) ~5- 10" 5m?s ™1,
corresponding to the order of magnitude of v taken in Subsection 4.4. We consider the case
of a linear initial velocity profile, with slope angles § = 19°,22°, 24°. The numerical results
for the static/flowing interface position b(t) and velocity profiles U(Z) are plotted in Figures
14 and 15. In comparison with the constant viscosity numerical results of Figures 10(b) and
11(a~b-c), the shapes are similar, in particular for the initial erosion of the static bed. The
behavior of the interface position b(t) reaching the free surface close to the stopping time is
here closer to the inviscid case of Figure 5(a), but however does not recover the expected
(since v vanishes at the free surface) roughly linear behavior of the experimental results of
Figure 2. For clarity, the static/flowing interfaces and the velocity profiles corresponding to
the different cases are plotted in Figure 16.
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Figure 14: Static/flowing interface position b as a function of time ¢, for variable viscosity associated
with the u(I) law, with linear initial velocity profile and slope angles § = 19°, 6 = 22°,
0 = 24°.
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Figure 15: Velocity profiles U(Z) at different times, for variable viscosity associated with the p(I)
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It is important to explain the behavior of the solution close to the free surface. As said
above, there is no need to impose any boundary condition at the free surface, because the
pressure vanishes there. Nevertheless, the behavior close to the free surface of the solution to
the parabolic problem (4.21) is deduced from the property that 9z (v9zU) is bounded, which
gives that vOzU ~ h — Z. In the case of constant viscosity it leads to dzU ~ h — Z, and U
has a roughly parabolic profile close to the free surface. In the case of p(I) rheology, (4.24)
gives that I tends to a finite value as Z — h, and thus with (4.23) we obtain ;U ~ vh — Z,
and U has a rough Bagnold profile close to the free surface. We conclude that in any case
the Neumann condition 0,U = 0 is recovered at the free surface, even if not imposing it. In
the case of the u(I) rheology, 02U tends to zero more slowly than in the case of constant
viscosity, giving a behavior closer to the inviscid case. Nevertheless, this property dzU = 0
at the free surface, that seems to be consequence of the incompressible viscoplastic model,
prevents a good representation of the experimental stopping phase. It is noticeable that the
() rheology has been introduced exactly in order to represent the Bagnold profile (without
static phase) U(Z) = ¢(h3/? — (h— Z)3/2), where c is determined by the relation u(I) = tan 6.
It is a solution to the system (4.21), (4.24) with (4.25), (4.23), but in the situation when
s < tanf < po, which does not correspond to our framework of progressive stopping, i.e.,
when tanf < ps.

5 Discussion and conclusion

We have proposed here a 1D (in the direction normal to the flow) thin-layer model with
static/flowing dynamics based on the description of a granular material by a yield stress
viscoplastic rheology. In this model, the flow thickness is constant. We have compared
model solutions for both the inviscid and viscous cases to observations from experiments on
granular flow over an inclined static layer of grains. The analytical solution for the inviscid
case and the numerical results for the viscous case reproduce quantitatively some essential
features of the change with time of the velocity, of the static/flowing interface position, and
of the stopping time of the granular mass, even though the flow thickness in the experiments
is not perfectly uniform and the initial velocity profile changes with slope angle and flow
thickness.

The analytical solution for the inviscid case shows that the evolution of the static/flowing
interface position is proportional to the source term and inversely proportional to the shear
rate (equation (2.15)). For the viscous case (with constant viscosity), the analysis of the model
shows that the evolution of the interface is related to the viscosity, the source term, and the
first and third derivative of the source term and the velocity, respectively (equation (2.14)).
Due to the appearance of this third derivative, the dynamics of the static/flowing interface
cannot be reduced to a simple differential equation in terms of depth-averaged quantities.
While the shape of the initial velocity profile is preserved at all times in the inviscid case
according to (3.4), an exponential-like tail near the static/flowing transition and a convex
shape near the free surface develop in the viscous case. The viscous contribution enables
the static/flowing interface to initially penetrate within the static layer (which is eroded), as
observed in the experiments, as opposed to the inviscid case.

The viscoplastic model used here has the great advantage of involving only two parame-
ters, i.e., the friction coefficient s and the viscosity v (or the coefficient po in the case of the
u(I) rheology), while the so-called partial fluidization theory, involving an order parameter
to describe the transition between static and flowing material, also reproduces the erosion of
the static bed and the velocity profiles obtained here in the viscous case [27], but at the cost
of additional empirical equations for the time-change of a state parameter.

One of the important results of the analysis lies in the explicit expressions obtained from
the analytical solution, especially for the time evolution of the static/flowing interface. The
dynamics are controlled by the source term S that is constant when hydrostatic pressure
is assumed and when the slope and thickness are assumed to be constant. In such a case,
S(t,Z) = S = gcosf(tand — tanf). Comparable results have been obtained from the an-
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alytical solution of shallow depth-averaged equations for a granular dam-break (i.e., with
non-constant h) [26, 11]. This analytical solution predicts a granular mass front velocity that
decreases linearly with time

Uy = max (2 kghocos — (g cosf(tand — tan ) ¢, 0) , (5.1)

where k ~ 0.5 (see [28]). Furthermore, the stopping time of the analytical front for the
granular dam-break is

kho 1
gcosftand — tan 6’

ty=2 (5.2)
Equations (5.1), (5.2) for the front velocity and the stopping time of the front for a depth-
averaged model of a granular dam-break are very similar to equations (3.4) and (3.6) respec-
tively, found here for the velocity of the flow and for the stopping time of the granular layer
in the non-averaged case and without viscosity.

Although the initial penetration of the static/flowing interface into the static layer (ero-
sion) can be reproduced by taking into account the viscosity, this leads at the same time to an
underestimation of the stopping time. The viscous model better reproduces the exponential-
like tail of the velocity profile near the static/flowing interface than the inviscid model, but
overestimates the convexity of the velocity profile near the free surface. Furthermore, the
change in shape of the velocity profile observed in the experiments during the stopping phase
is reproduced in the viscous case, as opposed to the inviscid case, but the decrease in maxi-
mum velocity near the surface is too fast in the viscous case. All these results suggest that
(i) viscosity plays an important role near the static/flowing interface at depth and in this
region a reasonable estimate for the viscosity is v ~ 5- 107> m?s™! and (ii) viscous effects in
the experiments seem to be much smaller near the free surface. These observations suggest
a non-constant viscosity, as proposed in the so-called p(I) flow law, e.g., [14, 33, 20, 21].
Following [16], we have used the p(I) flow law to derive the value of the viscosity, which
becomes variable and nonlinear with respect to the shear rate. This flow law reproduces
the value of the viscosity at the static/flowing interface (i.e., v ~ 5-10~°m?s~!) and at the
free surface (vanishing viscosity). However, this modeling does not allow us to significantly
improve the accuracy of the behavior of the static/flowing interface close to stopping. This
is because it imposes a Bagnold behavior close to the free surface, which is in contradiction
with experiments that predict a linear behavior.

It would be of interest to take into account the X-variations of the source S from (2.4),
thereby accounting for topography, propagation and non-hydrostatic effects. The influence
of a Z-dependency of S on the static/flowing interface dynamics and on the erosion process
in the simplified model (2.5), (2.6), (2.7) has been studied in [25]. It would be interesting to
extend the approach proposed here to 2D and possibly 3D, so as to capture the static/flowing
interface in shallow models, as proposed in [6]. The orders of magnitude assumed in [6] are
indeed satisfied in the experiments discussed here, because the typical length is L = 1m,
typical time 7 = 0.33s satisfying L/72 = g, h = 0.02m, v = 5 - 107°m?s~!, leading to
e =h/L =0.02, tand — tanf = O(e), and the normalized viscosity v7/L? ~ 107° is of the
order of €2 or £3. The primary models of [6] lead however to severe nonlinearities, so that
these extensions with flow-aligned variations represent a major challenge to treat numerically.

An important issue is also to summarize the dynamics of the normal velocity profile using
a finite number of parameters (for example interface position b, width h, and shear rate),
in order to keep computational costs low enough to simulate natural situations. This could
lead to a depth-averaged model, which has until now seemed inaccessible because of the
dependency on the third normal derivative in the differential equation (2.14).
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