
HAL Id: hal-00992283
https://hal.science/hal-00992283

Submitted on 21 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ahead of Time Static Analysis for Automatic
Generation of Debugging Interfaces to the Linux Kernel

Tegawendé F. Bissyandé, Laurent Réveillère, Julia Lawall, Gilles Muller

To cite this version:
Tegawendé F. Bissyandé, Laurent Réveillère, Julia Lawall, Gilles Muller. Ahead of Time Static Anal-
ysis for Automatic Generation of Debugging Interfaces to the Linux Kernel. Automated Software
Engineering, 2014, pp.1-39. �10.1007/s10515-014-0152-4�. �hal-00992283�

https://hal.science/hal-00992283
https://hal.archives-ouvertes.fr

Journal of Automated Software Engineering manuscript No.
(will be inserted by the editor)

Ahead of Time Static Analysis for Automatic Generation of

Debugging Interfaces to the Linux Kernel

Tegawendé F. Bissyandé · Laurent Réveillère ·

Julia L. Lawall · Gilles Muller

Received: 2013 / Accepted: 21 April 2014

Abstract The Linux kernel does not export a stable, well-defined kernel interface, complicating
the development of kernel-level services, such as device drivers and file systems. While there does
exist a set of functions that are exported to external modules, this set of functions frequently
changes, and the functions have implicit, ill-documented preconditions. No specific debugging
support is provided.

We present Diagnosys, an approach to automatically constructing a debugging interface for
the Linux kernel. First, a designated kernel maintainer uses Diagnosys to identify constraints on
the use of the exported functions. Based on this information, developers of kernel services can
then use Diagnosys to generate a debugging interface specialized to their code. When a service
including this interface is tested, it records information about potential problems. This information
is preserved following a kernel crash or hang. Our experiments show that the generated debugging
interface provides useful log information and incurs a low performance penalty.

Keywords Diagnosys · Debugging · Wrappers · Linux · Device Drivers, Plugin · Reliability ·

Testing.

1 Introduction

Debugging is difficult. And debugging an operating system kernel-level service, such as a device
driver, file system, or network protocol, is particularly difficult. When a service crashes, the service
developer is presented with a backtrace, containing the location of the instruction that caused
the crash and the pending return pointers on the stack. This information may be unreliable or
incomplete. And even when the backtrace information is present and correct, it does not capture
context information such as the values of local variables and the effect of recent decisions that

This is an extended version of a paper presented at the 2012 International Conference on Automated Software
Engineering, Essen - Germany [7]

T.F. Bissyandé
SnT, University of Luxembourg
4, rue Alphonse Weicker - L-2721 Luxembourg
E-mail: tegawende.bissyande@uni.lu

L. Réveillère
LaBRI, University of Bordeaux - 351, Cours de la Libération
33400 Talence
E-mail: laurent.reveillere@labri.fr

J.L. Lawall & G. Muller
Inria/LIP6/UPMC/Sorbonne University Regal - 4, Place Jussieu
75252 Paris
E-mail: Julia.Lawall, Gilles.Muller@lip6.fr

2 Tegawendé F. Bissyandé et al.

are often essential to identify the problem. Indeed, kernel service code contains many execution
paths, taking conditions from the operating environment into account, and is difficult to test
deterministically. Support is needed for providing more information at the time of a crash, without
introducing a substantial performance penalty or imposing an additional burden on the developer.

As Linux is becoming more and more widely used, in platforms ranging from embedded sys-
tems to supercomputers, there is an increasing interest from third-party developers, having little
expertise in Linux internals, in developing new Linux kernel services. Such services must integrate
with the Linux kernel via the various kernel-level APIs. Developing code at this level is challenging.
Indeed, the Linux kernel is designed around the assumption that the source code of all kernel-level
services is available within the publicly available kernel source tree, and thus kernel APIs are, for
efficiency, only as robust as required by their internal client services. Furthermore, kernel develop-
ers can freely adjust the kernel APIs, as long as they are willing to update all of the affected service
code. The kernel implementation is thus, by design, maximally efficient and evolvable, enabling
it to rapidly meet new performance requirements, address security issues, and accommodate new
functionalities. But these assumptions complicate the task of the developers of new services who
require more safety and help in debugging, and whose code is not yet integrated into the mainline
kernel. Advances in bug-finding tools [3,32,33], specialized testing techniques [31,35], and code
generation from specifications [47] have eased but not yet fully solved these difficulties. Current
approaches put substantial demands on the developer, both to learn how to use the approach and
to effectively integrate it into his development process.

We concretize the difficulty confronting a Linux service developer in interacting with the Linux
kernel as the notion of a safety hole. We define a safety hole as a fragment of code that introduces
the potential for a fault to occur in the interaction between a kernel-level service and the rest
of the kernel. For example, code in the definition of a kernel API function that dereferences a
parameter without testing its value represents a safety hole, because a service could invoke the
function with NULL as the corresponding argument. Likewise, code in the definition of a kernel
API function that returns NULL as the result represents a safety hole, because a calling service
could dereference this result without checking its value. We stress, however, that a safety hole is
not a fault. It constitutes an implementation choice for a function that poses a risk to the safety
of other functions that call that function. Unfortunately, such a risk is often undocumented.

To address the problem of safety holes in Linux kernel internal API functions, we propose an
approach, namedDiagnosys, that automatically generates a debugging interface to the Linux kernel
tailored for a particular kernel-level service under development. The generation of the interface
is automatic, based on a prior static analysis of the Linux kernel source code, that is performed
only once, for each release. The generated debugging interface amounts to a wrapper on the kernel
exported functions, that logs information about potentially dangerous uses of these functions.
Localizing the interface in this way, at the boundary of the interaction between the service and
the OS kernel, ensures that the feedback provided by the interface is in terms of the code that
the developer has written, and is thus expected to be familiar with. Because the interface is only
visible to the service, it has no impact on the performance of code within the kernel, even code
that uses functions that contain safety holes. When the service executes, the interface generates
log messages whenever service code invokes a kernel API function containing a safety hole in a
potentially risky way. Such a debugging interface requires no manual intervention from the service
developer until there is a crash or hang, and is thus well-suited to intensive service development,
when the developer is modifying the code frequently, and bugs are likewise frequent. Because the
debugging interface is generated automatically, it can be regenerated for each new version of the
Linux kernel, as the properties of the kernel APIs change.

Diagnosys is composed of two tools: SHAna (Safety Hole Analyzer), which statically analyzes
the kernel source code to identify safety holes in the definitions of the kernel exported functions,
and DIGen (Debugging Interface Generator), which uses the information about the identified
safety holes to construct a debugging interface tailored to a given service. Diagnosys also includes
a runtime system, provided as a kernel patch. SHAna is run by a Linux kernel maintainer once for
each Linux version, to take into account the current definitions of the Linux kernel API functions.
The service developer does not interact with SHAna. DIGen is run by a service developer as

Ahead of Time Static Analysis for Automatic Generation of Debugging Interfaces to the Linux Kernel 3

part of the service compilation process, using a Diagnosys-specific variant of the standard make
command. During the execution of the resulting service, the debugging interface uses the runtime
system to log information about any unsafe uses of functions containing safety holes in a buffer
that is preserved across reboots. On a kernel crash or hang, the service developer can consult the
buffer after reboot to obtain the logged information.

The main contributions of this paper are as follows:

– We identify the interface of kernel exported functions as a sweet spot at which it is possible to
interpose the generation of debugging information, in a way that improves debuggability but
does not introduce an excessive runtime overhead.

– We identify safety holes as a significant problem in the interface between a service and the
kernel. Indeed, after carefully analysing all 703 commits of Linux 2.6 that explicitly refer, in
their log message, to a function exported in Linux 2.6.32, we have found that 38% of these
commits corrected faults that are related to one of our identified safety holes.

– We propose an approach to allow a service developer to seamlessly generate, integrate, and
exploit a kernel debugging interface specialized to the service code. This approach has a low
learning curve, and in particular does not require any particular Linux kernel expertise.

– Using fault-injection experiments on 10 Linux kernel services, we demonstrate the improvement
in debuggability provided by our approach. We find that in 90% of the cases in which a crash
occurs, the log contains information relevant to the origin of the defect, and in 95% of these
cases, a message relevant to the crash is the last piece of logged information. We also find that
in 93% of the cases in which a crash or hang occurs, the log information reduces the number
of files that have to be consulted to find the cause of the bug.

– We show that the generated debugging interface incurs only a minimal runtime overhead on
service execution, allowing it to be used up through early deployment.

The rest of this paper is organized as follows. Section 2 illustrates problems in kernel develop-
ment that have been related to safety holes and gives an overview of kinds of safety holes that we
take into account. Section 3 discusses the challenges in kernel debugging, focusing on crashes and
hangs derived from safety holes. Section 4 presents Diagnosys, including the process of collecting
information about the occurrences of safety holes and the associated preconditions, and the pro-
cess of generating a debugging interface. We also describe the runtime logging system and discuss
how, in practice, Diagnosys supports debugging tasks. Section 5 evaluates our approach. Finally,
Section 6 discusses related work, and Section 7 concludes.

2 Characterization of Safety Holes

In kernel programming, we consider a safety hole to be a fragment of kernel code that can cause
the kernel to crash or hang if the code is executed in a context that does not respect some implicit
preconditions. To understand the challenges posed by safety holes, we first consider some typical
examples in Linux kernel internal API functions and the problems that these examples have
caused, as reflected by Linux patches. Then, we present a methodology for identifying kinds of
safety holes, and use this methodology to enumerate the kinds of safety holes considered in the
rest of the paper.

2.1 Examples of safety holes

Because the Linux kernel does not define a precise internal API, we focus on the set of functions
that are made available to dynamically loadable kernel modules using either EXPORT SYMBOL

or EXPORT SYMBOL GPL. Dynamically loadable kernel modules provide a convenient means to
develop new services, as they allow the service to be loaded into and removed from a running
kernel for the testing of new service versions. We refer to kernel functions that are made available
to such modules as kernel API functions.

4 Tegawendé F. Bissyandé et al.

Figure 1a shows an excerpt of the definition of the kernel API function skb put, which deref-
erences its first argument without first checking its value. Many kernel functions are written in
this way, assuming that all arguments are valid. This code represents a safety hole, because the
dereference is invalid if the corresponding argument is NULL. Since kernel code runs in a single
protection domain, dereferencing an invalid pointer will crash the entire system. Such a fault oc-
curred in Linux 2.6.18 in the file drivers/net/forcedepth.c. In the function nv loopback test,
skb put is called with its skb argument being the result of calling dev alloc skb, which can
be NULL. The fix, as implemented by the patch shown in Figure 1b, is to avoid calling skb put

in this case. skb put remains unchanged.

1 unsigned char *skb put(struct sk buff *skb, . . .)
2 { unsigned char *tmp = skb tail pointer(skb);
3 SKB LINEAR ASSERT(skb);
4 skb−>tail += len; . . .
5 }

a) Excerpt of the definition of skb put

1 commit 46798c897e235e71e1e9c46a5e6e9adfffd8b85d

2
3 tx skb = dev alloc skb(pkt len);
4 + if (!tx skb) { . . . goto out; }
5 pkt data = skb put(tx skb, pkt len);

b) Excerpt of the bug fix patch

Fig. 1: Bug fix of the usage of skb put

Figure 2a shows an excerpt of the definition of the kernel exported function open bdev ex-

clusive, which returns a value constructed using the kernel function ERR PTR when an error
is detected. Dereferencing such a value will crash the kernel. Thus, this return statement also
represents a safety hole. Indeed, many allocation, initialization and copy functions may fail and
return such a value, and leaving these values unchecked is a common fault. In Linux 2.6.32, in the
file fs/btrfs/volumes.c, the function btrfs init new device called open bdev exclusive

and compared the result to NULL before dereferencing the value. This test, however, does not
prevent a kernel crash, because an ERR PTR value is different from NULL. Figure 2b shows the
patch that was used to fix the fault.

1 struct block device *open bdev exclusive(
2 const char *path, fmode t mode, void *holder)
3 {
4 . . .
5 return ERR PTR(error);
6 }

a) Excerpt of the definition of open bdev exclusive

1 commit 7f59203abeaf18bf3497b308891f95a4489810ad

2
3 bdev = open bdev exclusive(. . .);
4 − if (!bdev) return −EIO;
5 + if (IS ERR(bdev)) return PTR ERR(bdev);

b) Excerpt of the bug fix patch

Fig. 2: Bug fix of error handling code

In the previous cases, the safety hole is apparent in the definition of a kernel exported function.
A safety hole, however, may also be interprocedural, making the danger that it poses more difficult
to spot. For example, as shown in Figure 3(a,b), the kernel exported function kmap, defined
in arch/x86/mm/highmem 32.c, passes its argument to the function page zone via the macro
PageHighMem, which in turn forwards the pointer, again without ensuring its validity, to the
function page to nid. This function then dereferences it, unchecked. This safety hole resulted in
a fault, which was fixed by the patch shown in Figure 3c.

Safety holes can also be found in the implementations of critical sections with locks. For
example, between Linux 2.6.32 and 2.6.33, a bug was first introduced and then fixed in the
nouveau drm driver for nVidia R© cards, in which the ttm bo wait exported function was called
by nouveau gem ioctl cpu prep without holding the bo lock. Since ttm bo wait attempts
to release and then re-acquire that lock, as depicted in Figure 4(a), a subsequent call to another
function, nouveau bo busy, which acquires the lock, hanged the machine. This bug was fixed by
ensuring that the bo lock is held when invoking the ttm bo wait API function (cf. Figure 4(b)).

Ahead of Time Static Analysis for Automatic Generation of Debugging Interfaces to the Linux Kernel 5

1 void *kmap(struct page *page)
2 { might sleep();
3 if (!PageHighMem(page))
4 . . .
5 }

a) Excerpt of kmap

1 static inline int page to nid
2 (struct page *page) {
3 return (page–>flags >> . . .)
4 & NODES MASK;
5 }

b) Excerpt of page to nid

1 commit 649f1ee6c705aab644035a7998d7b574193a598a

2
3 page = read mapping page(. . .);
4 + if (IS ERR(page)) { . . . goto out; }
5 pptr = kmap (page);

c) Excerpt of the bug fix patch

Fig. 3: Bug fix of a use of kmap

1 // drivers/gpu/drm/ttm/ttm bo.c
2 int ttm bo wait(struct ttm buffer object *bo, . . .){ . . .
3 spin unlock(&bo−>lock);
4 driver−>sync obj unref(&tmp obj);
5 spin lock(&bo−>lock); . . .
6 }

a) Excerpt of the definition of ttm bo wait

1 commit f0fbe3eb5f65fe5948219f4ceac68f8a665b1fc6

2 if (req−>flags & NOUVEAU GEM CPU PREP NOBLOCK) {
3 + spin lock(&nvbo−>bo.lock);
4 ret = ttm bo wait(&nvbo−>bo, false, false, no wait);
5 + spin unlock(&nvbo−>bo.lock);
6 }

b) Excerpt of the bug fix patch

Fig. 4: Bug fix of critical section code

ED
��

entry safety hole

⊥

BC
oo

exit safety hole

⊥

Fig. 5: Schematisation of the two families of safety holes

2.2 Taxonomy of safety holes

The examples described above show (1) how safety holes lead to bugs that reach the mainline
kernel, and (2) how safety holes involve various types of bugs. We now describe a methodology,
based on our observations in these examples, for identifying types of safety holes systematically,
by recasting a type of code fault as a collection of one or more types of safety holes. We then use
this methodology to enumerate the types of safety holes considered in this paper.

2.2.1 Methodology

As illustrated by the bug fixes in Section 2.1, some fragments of code executed by kernel API
functions, while themselves being correct, can provoke kernel crashes or hangs when the API
function is used incorrectly. In the most obvious case, the service code passes to the API function
some bad arguments or calls it from an inappropriate context (e.g., with a lock held or with
interrupts disabled) causing an execution error in the core kernel: we refer to this kind of safety
hole as an entry safety hole. In other cases, the kernel API function may return a value or return
from a context that might not meet the expectations of the service code: we refer to this kind of
safety hole as an exit safety hole. Such exit safety holes appear when, for example, the API function
may return NULL rather than a pointer to a valid region of memory, or returns with a lock held
or with interrupts turned off. In these cases the crash or hang may happen in the service code,
with the API function that caused the problem no longer on the call stack. Figure 5 schematically
represents the two families of entry and exit safety holes, by indicating where, in each case, the
execution error occurs. In the figure, the box represents the definition of an API function, while
the symbol ⊥ indicates the point of crash.

6 Tegawendé F. Bissyandé et al.

... exit safety hole

Lock

Bug ...

Unlock

... entry safety hole

Fig. 6: Derivation of safety hole kinds from the elements of a Lock bug type

In general, we observe that any bug type that involves multiple disjoint core fragments can
lead to an entry or exit safety hole. An an example, consider Figure 6, based on the example of a
bug involving a lock/unlock combination for defining a critical section. The middle of the figure
represents correct code, with Lock followed by a corresponding Unlock. The left side of the figure
represents the potential bug case. Within a known block of code, represented by the pair of right
angles, a bug may occur if both elements of code are expected to be present, but one is missing,
i.e., a Lock missing a subsequent Unlock, or an Unlock with no previous lock. On the right side
of the figure, we consider how the relevant fragments of code can be intended to be split across
an API function, represented by either of the shown right angles, and the service code that uses
the API. The API function may end with a Lock, expecting the calling service to perform the
corresponding Unlock, representing an exit safety hole, or it may begin with an Unlock, conversely
representing an entry safety hole. Thus, a single possible bug type gives rise to as many kinds of
entry and exit safety holes as there are ways to split the elements of code relevant to the bug type
across the boundary between the API function and the service code.

2.2.2 Taxonomy

Safety hole kinds. Following our methodology, we can, in principle, derive entry and exit safety
hole types from any fault type involving multiple fragments of code. As a first source of fault types,
we consider those identified by Chou et al. in their 2001 empirical study of Linux code [12]. We
also refer to a more recent study by Palix et al. who revisited the study of Chou et al. in 2011 [41].

Table 1 details the different kinds of safety holes that were derived from these fault types,
following the terminology of Palix et al. [41]. For each fault type, we split the possible fault code
fragment into two parts and characterize the part that may be located inside the implementation
of an API function f , thus identifying the possible entry and exit safety holes. We have enhanced
some of the categories to take into account new kernel features. For example, in Linux kernel 2.6,
ERR PTR, in addition to NULL, is widely used as an invalid pointer indicating errors. Thus, in the
Null and INull categories, we have added ERR PTR as an invalid pointer.

For some categories of faults, however, we have not been able to derive interesting safety holes:

– NullRef (A pointer is dereferenced and then tested for being NULL.) seems meaningless as a
safety hole. If the dereference fails, then the machine has crashed. If the dereference succeeds,
this value will not cause the machine to crash.

– Float (Do not use floating point in the kernel.) is a purely local property. Thus, it is not
relevant to the interface between a service code and the kernel API functions.

– Real (Do not leak memory by updating pointers with potentially NULL realloc return values.),
in practice, only manifests itself as a direct assignment of the pre-existing pointer to the result
of realloc, and thus it is also a purely local property.

– Size (Allocate enough memory to hold the type for which you are allocating), in practice, is
local to the definition of a function, as sizes are typically expressed in terms of sizeof, which
is evaluated according to type information as defined in the current context. Thus, it is not

Ahead of Time Static Analysis for Automatic Generation of Debugging Interfaces to the Linux Kernel 7

Block To avoid deadlock, do not call blocking functions with interrupts disabled or a spinlock held.

Entry safety hole f possibly/certainly calls a blocking function
Exit safety hole f returns after disabling interrupts or while holding a lock

Null/INull Check potentially NULL pointers returned from routines.
Do not make inconsistent assumptions about whether a pointer is NULL/ERR PTR.

Entry safety hole f possibly/certainly dereferences an argument without checking its validity
Exit safety hole f returns NULL/ERR PTR pointer

Var Do not allocate large stack variables (> 1K) on the fixed-size kernel stack.

Entry safety hole f possibly/certainly allocates an array whose size depends on a parameter
Exit safety hole f returns a large value

Range Always check bounds of array indices and loop bounds derived from user data.

Entry safety hole f possibly/certainly uses an unchecked parameter to compute an array index
Exit safety hole f returns value obtained from user level

Lock Release acquired locks; Do not double-acquire locks

LockIntr Entry safety hole f possibly/certainly acquires a lock derived from a parameter
Exit safety hole f returns without releasing an acquired lock

Intr Restore disabled interrupts.

LockIntr Entry safety hole f possibly/certainly calls a blocking function
Exit safety hole f returns with interrupts disabled

Free Do not use freed memory.

Entry safety hole f possibly/certainly dereferences a pointer-typed parameter value
Exit safety hole f frees memory derived from a parameter

Param Do not dereference user pointers.

Entry safety hole f possibly/certainly dereferences a pointer-typed parameter
Exit safety hole f returns a pointer-typed value obtained from user level

Table 1: Recasting common faults in Linux into safety hole categories. f refers to an API function

interprocedural between service code, where the call might be, and kernel code, where the fault
might be activated.

Possible vs. certain safety holes. As a safety hole involves a fragment of code inside the definition
of an API function, it belongs to one or more potential execution paths through that function.
Such an execution path may be possibly followed during a call to the API function, if the code
involved in the safety hole is only executed on certain inputs or calling contexts, or it may be
certainly followed, implying that the code involved in the safety hole is always reached when the
function is called.

Figure 7 illustrates a combination of execution paths from an entry point (noted as) of an
API function to any of the different potential exit points (noted as). The execution paths pass
through different program points (noted as) and split at some of these points (noted as). This
graph contains two safety-hole related potential crash points, indicated by colored boxes. The
topmost one (orange/light grey) is labelled as possible, because only a portion of the execution
paths through the function reach this code. The lower one (red/dark grey) is labelled as certain,
because every execution of the function reaches this code. Of course, whether a crash occurs,
depends on whether the implicit preconditions of the safety hole are satisfied. In the case of an
exit safety hole, the potential crash depends on how the service uses the result of the API function.
As this cannot be determined from analyzing the definition of the API function, we consider all
exit safety holes to be possible. For more implementation details, we refer the reader to the thesis
in [4].

8 Tegawendé F. Bissyandé et al.

certain

possible

Fig. 7: Localization of possible and certain safety holes in the execution paths of an API function

3 Kernel Debugging

To further understand the difficulties that can be caused by safety holes, we consider the problem of
kernel debugging. Each of the examples presented in Section 2.1 could crash the kernel. When the
kernel crashes, it generates an oops report, consisting of the reason for the crash, the values of some
registers and a backtrace, listing the function calls pending on the stack. Using this information
in debugging raises two issues: 1) the reliability of the provided information, and 2) the relevance
of the provided information to the actual fault. Debugging kernel hangs raises further issues; if
the hang is due to an infinite loop, the point at which an oops is finally generated may not be the
same as the point that causes the loop not to terminate.

Reliability of kernel oops reports. Linux kernel backtraces suffer from the problem of stale pointers,
either because the base pointer register is corrupted or because function return pointers appear on
the stack, e.g., as function arguments or as meaningless data in the space allocated to uninitialized
stack-allocated local variables. To illustrate this problem, we consider a crash occurring in the
function btrfs init new device previously shown in Figure 2. The crash occurred because the
kernel exported function open bdev exclusive returns an ERR PTR value in case of an error,
while btrfs init new device expects that the value will be NULL. This caused a subsequent
invalid pointer dereference.

To replay the crash, we installed a version of the btrfsmodule from just before the application
of the patch. To cause open bdev exclusive to fail we first created and mounted a btrfs

volume and then attempted to add to this volume a new device that was not yet created. This
operation is handled by the btrfs ioctl add dev ioctl which calls btrfs init new device

with the device path as an argument. This path value is then passed to open bdev exclusive

which fails to locate the device and returns an ERR PTR value. Figure 8 shows an extract of
the resulting oops report. Line 1 shows that the crash is due to an attempt to access an invalid
memory address. Line 5 shows that the faulty operation occurred in the function btrfs init-

new device, ostensibly during a call to btrfs ioctl add dev (line 8). Source files and line
numbers can be obtained by applying the standard debugger gdb to the compiled module and to
the compiled kernel.

This backtrace contains possibly stale pointers, as indicated by the ? symbol on lines 8 and
9. While btrfs ioctl add dev really does call btrfs init new device, so this seems likely
to be a legitimate stack entry, this is not the case for memdup user. Since it cannot be known a
priori whether a function annotated with ? is really stale, the service developer has to find and
study the definitions of all of the functions starting from the top of the backtrace, until finding
the reason for the crash, including the definitions of functions that may be completely unrelated

Ahead of Time Static Analysis for Automatic Generation of Debugging Interfaces to the Linux Kernel 9

1 [847.353202] BUG: unable to handle kernel paging request at ffffffee
2 [847.353205] IP: [<fbc722d9>] btrfs init new device+0xcf/0x5c5 [btrfs]
3 [847.353229] *pdpt = 00000000007ee001 *pde = 00000000007ff067
4 [847.353233] Oops: 0000 [#1] . . .
5 [847.353291] EIP is at btrfs init new device+0xcf/0x5c5 [btrfs] . . .
6 [847.353298] Process btrfs−vol (pid: 3699, . . .
7 [847.353312] Call Trace:
8 [847.353327] [<fbc7b84e>] ? btrfs ioctl add dev+0x33/0x74 [btrfs]
9 [847.353334] [<c01c52a8>] ? memdup user+0x38/0x70 . . .

10 [847.353451] −−−[end trace 69edaf4b4d3762ce]−−−

Fig. 8: Oops report following a btrfs ERR PTR pointer dereference crash.

to the problem. A goal of the kernel debugger kdb,1 which was merged into the mainline in Linux
2.6.35, was to improve the quality of backtraces. Nevertheless, some stale pointers remain.2

Relevance of kernel oops reports. A kernel oops backtrace only contains the instruction causing
the crash and the sequence of function calls considered to be on the stack. The actual reason for
a crash, however, may occur in previously executed code that is not represented. For the fault
shown in Figure 2, the oops report mentions a dereference of the variable bdev in the function
btrfs init new device, but the real source of the problem is at the initialization of bdev, to
the result of calling open bdev exclusive. This call has returned and thus no longer appears
on the stack. Such situations make debugging more difficult as the developer must thoroughly
consult kernel and service source code to locate possibly relevant initialization code sites.

Kernel hangs. By default, the Linux kernel gives no feedback in the case of a kernel hang. It is
possible, however, to configure the kernel such that it generates a panic when it detects no progress
over a certain period of time. When the hang is due to an infinite loop, the backtrace resulting
from the panic can occur anywhere within this loop, and thus the point of the panic may thus
have no relation to the actual source of the problem.

4 Diagnosys

The goal of Diagnosys is to improve the quality of the information available when a crash or hang
occurs as the result of a safety hole in a kernel internal API function. To this end, the Diagnosys
approach involves three phases, as illustrated in Figure 9:

1. Identification of safety holes in kernel internal API functions and inference of the associated
usage preconditions, using the static analysis tool SHAna. This phase is carried out only once
by a kernel maintainer, for each new version of the mainline Linux kernel.

2. Automatic generation of a debugging interface using DIGen based on the inferred preconditions.
This phase is carried out by each service developer for each specific service under development.
It is transparently encapsulated in a script dmake that replaces the standard make command.

3. Testing service code with the support of the debugging interface and of the Diagnosys crash
resilient logging system, CRELSys, that preserves runtime logs across boots. This phase is
also carried out by the service developer. To get a benefit from Diagnosys, a small amount of
investment is needed here from the developer, to learn how to interpret the log messages.

In this section we succinctly describe the design of SHAna, DIGen and CRELSys. Some im-
plementation details are also provided.

1 https://kgdb.wiki.kernel.org/
2 https://lkml.org/lkml/2012/2/10/129

10 Tegawendé F. Bissyandé et al.

Fig. 9: The steps in using Diagnosys

4.1 SHAna: Safety Hole Analyzer

SHAna is a tool built on top of Coccinelle for identifying safety holes in kernel API functions and
inferring their usage preconditions. Based on the safety hole descriptions, SHAna first searches
the kernel code for occurrences of safety holes in the implementations of API functions and then
computes the preconditions that must be satisfied for these safety holes to cause a kernel crash or
hang. The analysis focuses on unsafe operations that occur in code that is in, or is reachable from,
an API function. For each such occurrence, a backward analysis amounting to a simple version of
Hoare logic [27] produces the weakest liberal precondition to be satisfied such that the safety hole
may cause a crash. This weakest precondition is computed for the entry point of the function, for
entry safety holes, and for the exit points of the function, for exit safety holes.

4.1.1 Theory of precondition inference

Hoare logic [26] is a formal system for reasoning about the correctness of computer programs. In
particular this logic introduces the Hoare triple to describe how the execution of statements of an
imperative program changes the state of the computation.

A Hoare triple (1) consists of two assertions, the precondition P and the postcondition Q, and
a program S. Hoare logic states that: If the execution starts in a state where the precondition P

is met, at the end of the program execution the postcondition is realized [23]. Consider the simple
Hoare triple below (2) where the precondition x = y is true before the execution of the program.
Once the program is executed, the post-condition is true; the value of y has not been changed,
and is still equal to the initial value of x, but the value of x is 3 greater than it was previously.

{P}S{Q} (1)

{x = y}x := x+ 3{x = y + 3} (2)

This logic can be used to express function specifications, i.e., the contract between the im-
plementation of a core API function and the client plug-in (the service code). In this case, the
precondition represents the predicate that describes the condition on which the API function relies
for correct operation. The postcondition on the other hand describes the condition that the API
function establishes after correctly running. If some service code calls the API function after ful-
filling the function’s precondition, the function will execute to completion and when it terminates,
the postcondition will be true.

Starting with a postcondition, the weakest precondition wp(S,Q) of S with respect to Q is
defined by Equation 3, where the program S is allowed to be invoked in the most general condition
P that would still lead to the realization of the postcondition Q.

Ahead of Time Static Analysis for Automatic Generation of Debugging Interfaces to the Linux Kernel 11

P = wp(S,Q) ⇔ {P}S{Q} ∧ ∀P ′,{P ′}S{Q} ⇒ (P ′
⇒ P) (3)

Using a simplified version of this logic we infer the weakest preconditions of API functions
that can trigger faults in the different kinds of safety holes. For ease of prototyping, we use the
program matching tool Coccinelle [39] to implement an interprocedural static analyzer3 that finds
the safety holes and constructs the preconditions.

In our analysis, the postcondition is satisfied when the execution of the API function completes
without leading to an execution error for entry safety holes and without returning invalid values
or leaving a context that is unsafe for the execution of service code. As previously defined in
Section 2.2, a precondition associated with an entry safety hole is classified as:

– certain, if satisfaction of the precondition is guaranteed to result in a crash or hang within the
execution of the kernel API function

– possible, if satisfaction of the precondition may cause a crash or hang on at least one possible
execution path

The preconditions of exit safety holes are always classified as possible. The result of SHAna is
a list mapping each kernel API function identified as containing safety holes to the associated
preconditions.

4.1.2 Analysis process

The starting point of the analysis for identifying safety holes and inferring their preconditions
is the definition of an API function. The analysis recognizes a kernel API function as one that
is declared using EXPORT SYMBOL or EXPORT SYMBOL GPL. Table 2 provides a complete
summary of the description of the safety holes for all categories of faults. The table also indicates
for each category of safety hole, whether intraprocedural, interprocedural or no analysis is used.

In search scenarios that only require intraprocedural analysis, the analyzer scans the definition
of the API function to identify code fragments that represent safety holes. For example, in searching
for the various Lock and Intr entry safety holes, SHAna only looks for interrupt disabling operations
in the kernel API function itself, because interrupt state flags should not be passed from one
function to another [46]. Performing only an intraprocedural analysis reduces the cost in cases
where it is known in advance, due to specific properties of the code, that a more precise analysis
will not give any further information.

In the case of interprocedural analysis, SHAna starts from the definition of an API function
and iteratively analyzes all called functions. For example, in searching for Null entry safety holes,
SHAna searches through both the kernel API function itself and all called functions that receive
a parameter of the kernel API function as an argument to find unchecked dereferences.

In a few cases, we do not collect safety holes, because the condition seems too common and an
error seems relatively unlikely. For example, according to Table 2, collecting Free entry safety holes
would entail collecting every function that dereferences a pointer argument, as there is no way
to check whether a value has been freed. This does not seem useful in practice, and thus SHAna
does not collect safety holes in this case. In other cases, however, we augment the scope of the
categories of safety holes by considering new fault kinds that may arise at the boundary of kernel
API functions. For example, the fault types considered by Chou et al. [12] and later by Palix et
al. [41] only include double-locks and deadlocks in the Lock category. Nevertheless, we have seen
in mainline bug fixes that attempting to unlock a lock that has not been acquired, or that has
been released (double-unlock), is a damaging fault (cf. Figure 4). Thus, we also implement an
analysis to search for this kind of safety hole. Finally, for the Null category of safety holes, SHAna
furthermore includes unchecked dereferences of values that in some way depend on the value of an
unchecked parameter, and for which the failure caused by the dereference may be hard to diagnose
by the service developer.

3 The implementation of the analysis can be found at http://diagnosys.labri.fr

12 Tegawendé F. Bissyandé et al.

Category Actions to avoid faults safety hole safety hole description Analysis type

Block
To avoid deadlock, do not call blocking
functions with interrupts disabled or a

entry f calls a blocking function (function referencing
GFP KERNEL)

interprocedural

spinlock held exit f returns after disabling interrupts or while holding a lock intra/interprocedural

INull
Do not make inconsistent assumptions about

entry f dereferences an argument without checking its validity interprocedural
whether a pointer is NULL/ERR PTR

Null
Check potentially NULL pointers

exit f returns a NULL/ERR PTR pointer interprocedural
returned from routines

Var
Do not allocate large stack variables (> 1K) entry f allocates an array whose size depend on a parameter intraprocedural
on the fixed-size kernel stack exit f returns a large value interprocedural

Range
Always check bounds of array indices entry f uses an unchecked parameter to compute an array index intraprocedural
and loop bounds derived from user data exit f returns a value obtained from user level interprocedural

Lock
Released acquired locks; entry f acquires a lock derived from a parameter interprocedural
do not double-acquire locks exit f returns without releasing an acquired lock interprocedural

Intr Restore disabled interrupts
entry f calls a blocking function interprocedural
exit f returns with interrupts disabled intraprocedural

Free Do not use freed memory
entry f dereferences a pointer-typed parameter value none
exit f frees memory derived from a parameter interprocedural

Float Do not use floating point in the kernel These fault kinds depends on local properties and are none

Real
Do not leak memory by updating pointers therefore not relevant to the interface between a none
with potentially NULL realloc return values service and the kernel API functions

Param Do not dereference user pointers
entry f dereferences a pointer-typed parameter none
exit f returns a pointer-typed value obtained from user level interprocedural

Size Allocate enough memory to hold the not relevant; none
type for which you are allocating not interprocedural between service and kernel code

Table 2: Categorization of common faults in Linux [12,41]. f refers to the API function. The
“analysis type” column indicates whether the analysis is interprocedural or intraprocedural

We now discuss the specific strategies that we have implemented for searching for occurrences
of the various categories of safety holes. Table 3 summarizes examples of conditions that enable
the safety holes to manifest themselves into faults. SHAna bases its analysis on such enabling
conditions.

Block: To identify API functions that contain Block entry safety holes, SHAna performs an
interprocedural analysis, searching for functions that may block. We focus on the common case
of functions that are allowed to block during memory allocations. We recognize such functions as
those that contain a function call having GFP KERNEL as an argument, as this argument allows the
basic kernel memory functions to block, if needed, to wait for more memory to become available.

A Block exit safety hole amounts to taking a lock before exiting the API function. This con-
dition is the same as the one indicating a Lock/Intr/LockIntr exit safety hole. The associated
analysis is described in the Lock/Intr/LockIntr section below.

IsNull/Null: To identify API functions with IsNull/Null safety holes, SHAna performs an in-
terprocedural analysis that detects unsafe dereferences of pointer-typed parameters. The search
identifies dereferences that are performed prior to any validity check in one or all of the control-flow
paths. We have also augmented this search strategy by detecting, in the implementation of API

Category Entry safety hole Enabling condition

Block f calls a blocking function service code takes a lock or disables interrupts

Null f dereferences an argument without checking its validity service code passes a NULL argument to f

Var f allocates an array whose size depends on a parameter service code calls f with a large value for that parameter

INull f dereferences an argument without checking its validity service code passes a NULL argument to f

Range f uses an unchecked parameter to compute an array index service code obtains a value from user level

Lock f acquires lock derived from a parameter service code re-acquires a lock from an argument to f

Intr f disables interrupts service code disables interrupts

Free f dereferences a pointer-typed parameter value service code calls or has called a function that may free a value

Param f dereferences a pointer-typed parameter value service code forwards a value obtained from user level

Table 3: Enabling conditions for triggering API function safety holes

Ahead of Time Static Analysis for Automatic Generation of Debugging Interfaces to the Linux Kernel 13

functions, unsafe dereferences of other pointer values, such as ERR PTR values,4 whose validity
is directly or indirectly related to the validity of an API function’s unchecked parameter.

To collect API functions that exhibit an IsNull/Null exit safety hole, SHAna interprocedurally
searches for functions that may return an invalid pointer. We recognize both NULL values and
ERR PTR values as invalid pointers.

Var: To identify API functions that implement Var entry safety holes, SHAna performs an in-
traprocedural analysis for detecting array allocations with sizes depending on a parameter value,
whether it is an integer parameter value or an integer derived from a parameter.

To collect API functions with a Var exit safety hole, SHAna searches for functions that return
large constant values. We parameterize SHAna to report constant integer values larger than 128.

Range: To identify API functions that exhibit Range entry safety holes, SHAna performs an
intraprocedural analysis that follows the use of API function parameters to identify places where
one unchecked parameter is used to compute an array index.

To collect API functions with a Range exit safety hole, SHAna performs an interprocedural
analysis for identifying functions that return a value obtained from user-level. The search strategy
relies on a list of names of Linux kernel primitives, namely getuser, memcpy fromfs, and
copy from user, that give access to user data.

Lock/Intr/LockIntr: To identify API functions that implement a Lock/Intr/LockIntr entry
safety hole, SHAna performs an intraprocedural analysis, searching for functions that disable
interrupts or acquire locks that are derived from parameters. The search strategy relies on a set of
commonly used functions for locking and interrupt management.5 We have furthermore augmented
this category of safety holes by identifying API functions that attempt to release locks that they
have not acquired themselves. This accounts for a type of real-world usage bug6 that was not
considered by Chou et al. Indeed, while many Linux critical sections both begin and end within
the body of a single function, some span function boundaries, implying that some functions expect
to be called within a critical section. When the calling code fails to respect this condition, deadlock
may ensue.

To collect API functions that expose a Lock/Intr/LockIntr exit safety hole, SHAna follows the
same search strategy as for Lock/Intr/LockIntr entry safety hole, relying on the same locking and
interrupt management functions, but inverting the roles of the locking and unlocking functions.

Free: To identify API functions that exhibit a Free entry safety hole, we consider that any
pointer-valued argument to an API function may refer to a freed memory block, thus making
any dereference of a pointer-typed parameter a risky operation. Nonetheless, because practically
all API functions dereference their parameters, we do not perform precondition inference for this
sub-category.

To collect API functions that implement the Free exit safety hole, SHAna performs an inter-
procedural analysis for identifying code places where an API function argument is passed to the
kernel memory release function kfree.

4.1.3 Certification Process

As is standard in static analysis, SHAna makes some approximations [15] to ensure termination
and scalability. These approximations may result in false positives, i.e., reported safety holes that
cannot actually lead to a crash or hang. Using such false positives in the inference of API function
usage preconditions may cause two important issues:

1. Inferring unnecessary usage preconditions can lead to excessive checking at runtime in the
Diagnosys approach, which, in turn, will degrade the performance.

4 We refer to a value constructed with the function ERR PTR as just an ERR PTR value.
5 {mutex,spin,read,write} lock, {mutex,spin,read,write} trylock local irq disable, {read,write,spin} lock irq,

{read,write,spin} lock irqsave, local irq save, save and cli.
6 Linux kernel commit: f0fbe3eb5f65fe5948219f4ceac68f8a665b1fc6

14 Tegawendé F. Bissyandé et al.

2. False positives may also lead to the generation of useless runtime warnings, that will clutter
the debug log with messages that are not relevant to any encountered crash or hang.

To address the problem of false positives, our approach requires that a kernel maintainer study
the inferred safety holes to discard those that represent false positives. This step is referred to as
certification and is performed by a kernel maintainer, who is expected to be knowledgeable about
the internals of core kernel code. The certification process is only necessary once for each version
of the kernel.

To reduce the workload, SHAna maintains in a database information about safety holes across
OS versions, so that the kernel maintainer need only validate reported safety holes in those func-
tions, including functions called by API functions, whose definitions have changed. To ease the
management of this information, we have built a certification helper utility that, given data from
a static analysis, automatically selects the analysis results related to functions whose definitions
have changed, and thus need to be checked. When no certification has been performed the utility
shows all results and records the result of manual checking. In a subsequent certification process,
e.g., for a later release of the kernel, the certification utility first checks whether manually checked
analysis results need to be revisited.

4.2 DIGen: Debugging Interface Generator

DIGen is a tool that builds on the results of SHAna to introduce runtime checks and monitor-
ing into the execution of kernel-level services. The goal of DIGen is to create log messages that
reflect the usage preconditions of kernel API functions, to keep track of any violation of these
preconditions by service code.

Based on the results of SHAna, DIGen generates a debugging interface as a collection of
wrapper functions that augment the definitions of kernel API functions with the necessary checks
and calls to logging primitives, to detect and record violations of safety hole preconditions. Ideally,
the kernel maintainer who runs SHAna could also generate a single debugging interface for the
entire kernel that could be used by all service developers. Unfortunately, many kernel source files
target specific hardware platforms, and thus have mutually incompatible header file dependencies,
making it impossible to compile such a debugging interface. Accordingly, we put the interface
generation process into the hands of the service developers, who generate an interface specific
to their service. Because the functions invoked by a single service can necessarily be compiled
together, this approach avoids all compilation difficulties, while producing a debugging interface
that is sufficient for an individual service’s needs. We now describe the generation of a debugging
interface and how it is integrated into a service under development.

4.2.1 Generating a debugging interface

The first step in the generation of a debugging interface for a given kernel-level service (e.g., a
device driver) is to determine the API functions that are actually called by the service code. A
reliable way to identify such functions is to analyze the object code of the kernel-level service to
look for references to functions whose implementation is not included in the object code. DIGen
thus disassembles the object code, using the GNU user-level command objdump, and recovers
information about the symbol table entries of the compiled loadable kernel module (.ko file).
Figure 10(a) provides an example of a toy Linux kernel module that tests the latency of a primitive
from the Ftrace library [45]. Figure 10(b) shows an excerpt of the symbol table entries obtained
from the object code of the module.

In each row of the symbol table,7 the first field is a number representing the symbol value (i.e.,
an address). The next field is a set of characters and spaces indicating the flag bits that are set on
the symbol (e.g., l represents local, g represents global, u represents global unique, etc.). Next, is

7 More information on the format used by GNU objdump can be found at http://www.gnu.org/software/
binutils/.

Ahead of Time Static Analysis for Automatic Generation of Debugging Interfaces to the Linux Kernel 15

#include <linux/init.h>
#include <linux/ftrace.h>
[. . .]
MODULE LICENSE("Dual BSD/GPL");
void testing ftrace () {

printk (KERN EMERG "Testing Ftrace\n");
int i=0;
for (i=0; i<100000; i++) {

start = rdtsc();
trace printk ("TRACE\n");
end = rdtsc ();
latency[i]=end−start;

}
}
[. . .]

static int driver init (void) {
testing ftrace (); return 0;

}
static void driver exit (void) { }
module init(driver init);
module exit(driver exit);

a) Linux toy module for testing Ftrace

1 test ftrace.ko: file format elf32−i386
2
3 SYMBOL TABLE:
4 [. . .]
5 00000000 l d mcount loc 00000000 mcount loc
6 00000000 l d versions 00000000 versions
7 00000000 l d .data 00000000 .data
8 [. . .]
9 00000000 l df *ABS* 00000000 test ftrace.c

10 00000000 l F .text 00000025 driver exit
11 00000030 l F .text 00000030 driver init
12 [. . .]
13 00000000 l O .modinfo 00000023 mod description10
14 00000023 l O .modinfo 00000015 mod license9
15 00000040 l O .modinfo 00000034 mod author8
16 00000000 l df *ABS* 00000000 test ftrace.mod.c
17 [. . .]
18 00000000 g F .text 00000025 cleanup module
19 00000000 *UND* 00000000 trace bprintk
20 00000030 g F .text 00000030 init module
21 00000000 *UND* 00000000 mcount
22 00000000 *UND* 00000000 printk

b) Excerpt of the symbol table entries

Fig. 10: Identification of core kernel primitives in module object code with GNU objdump

the section with which the symbol is associated. When this section is not connected to any other
section, i.e., is absolute, the field contains instead *ABS*. However, if the section is referenced in
the object file but not defined there, the field contains *UND* (undefined). In our example, the
symbols printk, mcount and trace bprintk, which are defined in the core kernel and used in the
tested module, are marked as undefined (lines 11, 13-14.).

Overall, the symbols listed by disassembling the object code not only include symbols that are
apparent in the service code (e.g., printk), but also include symbols that are called from inside
core kernel header files (e.g., cleanup module) or that were integrated by macro expansion (e.g.,
trace bprintk is in the expansion of trace printk). The list of undefined symbols is then checked

against the list of kernel API functions. All “undefined” functions in the service code, that are
known to be kernel API functions, are listed by DIGen for the next step in the generation of a
debugging interface.

For each kernel API function that is used in the service and for which SHAna identified at
least one safety hole, DIGen generates a wrapper function. The general structure of such a wrapper
function is shown in Figure 11. Based on the argument values, the wrapper first checks each entry
safety-hole precondition (line 4) and then, if the precondition is not satisfied, logs a message
indicating the violation. This message includes the safety hole category, which specifies the kind of
safety hole and an annotation expressing whether the violation is CERTAIN or POSSIBLE (line 5),
as defined in Section 2.2. The wrapper then calls the original function. If the original function has
a return value, this value is stored in a local variable, __ret, and then the preconditions on any
exit safety holes are checked based on this information and on the context (lines 9-10). As exit
safety holes are always possible, exit safety hole log messages are simply annotated with EXIT.
Finally, the return value, if any, of the original function is returned as the result (line 12).

For performance reasons, Diagnosys does not log formatted strings in kernel memory. Instead,
it logs integers representing unique information identifiers that are decoded and translated on-
the-fly during log retrieval. Once formatted, a typical Diagnosys log line contains the timestamp
of the log, the source file and line number where the unsafe call was performed, the name of the
API function, the category of the safety hole, and possibly the name of a relevant argument or an
unsafe return value.

4.2.2 Integrating a debugging interface into a service

For each generated wrapper function, DIGen also generates a #define macro (Figure 11, line 14)
that, upon expansion, will replace in the service code all calls to the kernel API function with

16 Tegawendé F. Bissyandé et al.

1 static inline 〈rtype〉 debug 〈kernel function〉 (. . .) {
2 〈rtype〉 ret;
3 /* Check preconditions for entry safety holes */
4 if 〈an entry safety−hole precondition is violated〉
5 diagnosys log(〈EF id〉, 〈SH cat〉, 〈info (e.g., arg number)〉);
6 /* Invocation of the intended kernel function */
7 ret = 〈call to kernel function〉;
8 /* Check preconditions for exit safety holes */
9 if 〈an exit safety−hole precondition is violated〉

10 diagnosys log(〈EF id〉, 〈SH cat〉, 〈info (e.g., err ret type)〉);
11 /* Forward the return value */
12 return ret;
13 }
14 #define 〈kernel function〉 debug 〈kernel function〉

Fig. 11: Structure of a wrapper for a non-void function

its debugging counterpart. Thus, once compiled with the interface included, the service uses the
wrapper functions instead of the corresponding kernel API functions directly.

To facilitate the integration of a debugging interface into a kernel-level service under test, Di-
agnosys provides an automated script, dmake. This script manages the generation of the interface
in four steps: dmake (1) compiles the original service code, (2) identifies the kernel API functions
referenced by the resulting object files, (3) generates an interface dedicated to these functions,
and (4) recompiles the service with the interface included. The resulting compiled kernel module
object thus produced is ready for loading into a running kernel for execution tests.

4.3 CRELSys: Crash-Resilient & Efficient Logging System

To be able to use Diagnosys, the service developer must use a version of the Linux kernel that
includes the Diagnosys runtime system, CRELSys. CRELSys is implemented as a kernel patch,
that we have implemented for Linux 2.6.32, that extends the kernel with a crash resilient logging
system. The patch additionally configures the kernel to send all crashes and hangs (Linux soft
and hard lockups) to the kernel panic function, which the patch extends to reboot into a special
crash kernel. Finally, Diagnosys provides a tool that can be run from user space to install a copy
of the CRELSys patched kernel as a crash kernel, initialize the reserved log buffer, and retrieve
and format the logs. We describe first how the logs are stored in the kernel memory and then how
they are preserved upon a crash.

4.3.1 Storing logs in kernel memory

When using a Diagnosys-enabled kernel, the service developers test their code as usual. During
service execution, if a wrapper function detects a safety hole for which the precondition is violated,
the wrapper logs information about the safety hole in a reserved area of memory, annotated with
a timestamp and including the memory address of the call site.

To reserve memory for Diagnosys runtime logs, we leverage the kernel memmap boot parame-
ters,8 which instruct the kernel to completely ignore an area of memory during its own allocations
and use. Thus, CRELSys, which is aware of the location of this memory area, can use it without
any risk of conflict with other parts of the kernel. CRELSys manages this reserved area of memory
through a fixed-size ring buffer. When the ring buffer fills up, adding another log element over-
writes the first one. The use of this reserved area of memory allows information to be maintained
without involving the file system, which is slow and is not intended to be used by kernel-level
code [30]. The use of a ring buffer limits the amount of memory consumed, even if many log

8 For more details, see https://www.kernel.org/doc/Documentation/kernel-parameters.txt.

Ahead of Time Static Analysis for Automatic Generation of Debugging Interfaces to the Linux Kernel 17

messages are generated. Indeed, our experience in using Diagnosys shows that debugging tasks
usually only need to take into account recent events, so the information retained in the ring buffer
is sufficient.

4.3.2 Preserving logs across a system reboot

On a kernel crash or hang, CRELSys redirects the execution into a panic state where, using a
Kexec-based mechanism [38], the system is rebooted into a new instance of the Diagnosys-enabled
kernel. Kexec is a mechanism of the Linux kernel that allows booting of a new kernel over the
currently running one without resetting hardware (including RAM memory) and by skipping the
bootloader phase to gain speed. The use of Kexec allows the new kernel to sit in the same place
in memory as the currently running one. Because the reboot is performed without reinitializing
memory, and the same memmap boot parameters are provided, the Kexec mechanism ensures that
the accumulated Diagnosys log is still available. The service developer may then access the log
messages after the reboot.

To allow the service developer to access the log messages from user space, we have implemented
a character device driver that transfers data directly to and from a user process. The driver sets
up a pseudo device to accept user commands (e.g., cat /dev/crelsys) and produce the log messages
that were stored in kernel memory. The messages are made available in the order in which they
were generated. When a crash occurs, the Diagnosys runtime system also inserts the kernel stack
trace into the Diagnosys log before rebooting.

5 Assessment

In designing Diagnosys, we have chosen to focus on the interface between the service code and
the kernel. We first study the effect of this choice qualitatively, by considering the process of
debugging some of the real-life bug examples presented in Section 2.1. We then assess the number
of safety holes in this interface and study their past impact on kernel robustness, as evidenced
by commits to the Linux kernel. Then, we assess the coverage of Diagnosys with respect to the
possible crashes and hangs that are triggered by misuse of the interface between the service code
and the kernel, and show that the Diagnosys log messages allow the service developer to find the
cause of a crash or hang more rapidly than when relying on a kernel backtrace alone. Then, we
show that Diagnosys incurs a sufficiently low runtime overhead to be embedded in a service, up
to the early deployment phase. Finally, we show that the certification of static analysis results is
affordable.

Our experiments use code from Linux 2.6.32, which is used in the 10.04 Long Term Support
version of Ubuntu R©, in Red Hat Enterprise Linux 6, in Oracle Linux, etc. Our performance
experiments are carried out on a Dell 2.40 GHz Intel R© CoreTM 2 Duo with 3.9 GB of RAM.
Unless otherwise indicated, the OS is running a Linux 2.6.32 kernel that has been modified to
support CRELSys. 1MB is reserved for CRELSys’ crash-resilient log buffer.

5.1 Kernel Debugging with Diagnosys

We now describe some debugging experiments that we have performed to highlight the benefits of
the Diagnosys approach. In particular, we investigate how Diagnosys solves the issues of unreliable
backtraces and the questionable relevance of the information found in crash reports that make
kernel debugging difficult. To this end, we replay a kernel crash from the btrfs file system,
previously presented in Figure 2. To account for other common failures, we also replay a hang
reported in the kernel commit logs, previously presented in Figure 4.

18 Tegawendé F. Bissyandé et al.

5.1.1 Replaying a kernel crash

Kernel crashes are the most common type of OS failures. When they occur, developers must
identify the origin and the cause of the failure based on any generated oops reports that they
manage to capture. As an example of a kernel crash, we again consider the btrfs example used
for illustration in Section 2.1. Figure 12 shows the bug fix patch that was introduced in mainline
code to fix the usage of the open bdev exclusive API function.

1 commit 7f59203abeaf18bf3497b308891f95a4489810ad

2 bdev = open bdev exclusive(. . .);
3 − if (!bdev)
4 − return −EIO;
5 + if (IS ERR(bdev))
6 + return PTR ERR(bdev);

Fig. 12: Excerpt of a bug fix patch in btrfs file system

For the purpose of this experiment, we have recovered and installed a version of the btrfs file
system, from right before the relevant patch was applied. The goal of the experiment was then to
execute the code so that a fault would manifest itself to reflect the need for this patch. To cause
open bdev exclusive to fail, we first created and mounted a btrfs volume and then attempted
to add to this volume a new device that was not yet created. As discussed in Section 2.1, the
open bdev exclusive API function then returns ERR PTR, after failing to locate the device to open.

Figure 13 shows the crash report that we have collected from the kernel console at the end of
the above experiment. Our previous study of this report, in Section 3, in the context of debugging,
showed that the source of the problem was not readily available in the backtrace. Specifically, the
backtrace contains only stale pointers, making it challenging to pinpoint the origin of the crash,
and the backtrace does not contain information about the root cause of the crash.

We have replayed the same execution scenario when using Diagnosys. Figure 14 shows the last
line added to the Diagnosys log before the crash, which is the line that the developer is likely to
consult first. This line shows that the function open bdev exclusive activated an INull exit safety
hole by returning ERR PTR. It also reports the runtime timestamp and the call site where the safety
hole was violated. Combining this information with the information about the crash site in the
oops report and the service source code shows that the problem is the inadequate error handling
code after open bdev exclusive. Using Diagnosys, service developers can focus on their own code,
and do not have to probe the kernel source or object code to obtain the needed information.

5.1.2 Replaying a kernel hang

Kernel hangs are notoriously hard to debug9 as they can simply freeze the computer leaving
the developer without any information on the ongoing failure. Alternatively, the kernel can be
configured to panic after a certain delay. Nevertheless, this panic may occur long after the actual
fault, and thus may produce a backtrace that is hard to correlate to the actual source of the
problem. In such situations, Diagnosys, which records information about previous potentially
dangerous operations, can aid service developers. To illustrate the benefits of Diagnosys, we replay
a bug in the the nouveau drm nVidia R© graphics card driver that was discussed in Section 2.1.

Just before the release of Linux 2.6.33, the nouveau drm nVidia R© graphics card driver con-
tained a hang resulting from the use of the kernel API function ttm bo wait. This function exhibits
a Lock entry safety hole and a Lock exit safety hole, as it first unlocks and then relocks a lock
received via its first argument. The nouveau drm driver called this function without holding this
lock, hanging the kernel.

9 See an article at http://www.linuxjournal.com/article/5749

Ahead of Time Static Analysis for Automatic Generation of Debugging Interfaces to the Linux Kernel 19

1 [847.353202] BUG: unable to handle kernel paging request at ffffffee
2 [847.353205] IP: [<fbc722d9>] btrfs init new device+0xcf/0x5c5 [btrfs]
3 [847.353229] *pdpt = 00000000007ee001 *pde = 00000000007ff067 *pte = 0000000000000000
4 [847.353233] Oops: 0000 [#1]
5 [847.353235] last sysfs file: /sys/devices/system/cpu/cpu0/cpufreq/scaling cur freq
6 [847.353238] Modules linked in: btrfs zlib deflate crc32c libcrc32c ib iser rdma cm ib cm iw cm ib sa [. . .]
7 [847.353271]
8 [847.353274] Pid: 3699, comm: btrfs−vol Not tainted (2.6.32−diagnosis−btrfs #32) Latitude E4300
9 [847.353276] EIP: 0060:[<fbc722d9>] EFLAGS: 00010246 CPU: 0

10 [847.353291] EIP is at btrfs init new device+0xcf/0x5c5 [btrfs]
11 [847.353293] EAX: ffffffea EBX: fbc7cc0d ECX: f716ea80 EDX: fbc9cdc0
12 [847.353294] ESI: fbc972a0 EDI: 00000004 EBP: f0a61eb8 ESP: f0a61e70
13 [847.353296] DS: 007b ES: 007b FS: 0000 GS: 00e0 SS: 0068
14 [847.353298] Process btrfs−vol (pid: 3699, ti=f0a60000 task=ed840ca0 task.ti=f0a60000)
15 [847.353299] Stack:
16 [847.353301] fbc98044 ee28e008 ee24bc00 ee31c630 f0a61ebc 00001000 fbc7b84e 00000246
17 [847.353304] <0> f0a61ea4 00000000 00000000 f1f62c00 bff0e12c ffffffea c01c52a8 fbc7cc0d
18 [847.353308] <0> fbc7cc0d fbc972a0 f0a61ed0 fbc7b87f bff0e12c ee24bc00 ca048334 ee28e000
19 [847.353312] Call Trace:
20 [847.353327] [<fbc7b84e>] ? btrfs ioctl add dev+0x33/0x74 [btrfs]
21 [847.353334] [<c01c52a8>] ? memdup user+0x38/0x70
22 [847.353349] [<fbc7cc0d>] ? btrfs ioctl+0x0/0x243 [btrfs]
23 [847.353363] [<fbc7cc0d>] ? btrfs ioctl+0x0/0x243 [btrfs]
24 [847.353378] [<fbc7b87f>] ? btrfs ioctl add dev+0x64/0x74 [btrfs]
25 [847.353393] [<fbc7cdaa>] ? btrfs ioctl+0x19d/0x243 [btrfs]
26 [847.353396] [<c01f7031>] ? vfs ioctl+0x21/0x70
27 [847.353398] [<c01f7672>] ? do vfs ioctl+0x72/0x580
28 [847.353401] [<c01cbe6e>] ? handle mm fault+0x23e/0x9d0
29 [847.353404] [<c01ce635>] ? unmap region+0xe5/0x100
30 [847.353409] [<c0543a40>] ? do page fault+0x160/0x390
31 [847.353411] [<c01f7be7>] ? sys ioctl+0x67/0x80
32 [847.353414] [<c0108583>] ? sysenter do call+0x12/0x28
33 [847.353416] Code: 80 b0 1b 00 00 8b 40 6c 85 c0 74 1c c7 45 e0 01 00 00 00 8b 45 e4 83 c0 3c e8 54 [. . .]
34 [847.353433] EIP: [<fbc722d9>] btrfs init new device+0xcf/0x5c5 [btrfs] SS:ESP 0068:f0a61e70
35 [847.353449] CR2: 00000000ffffffee
36 [847.353451] −−−[end trace 69edaf4b4d3762ce]−−−

Fig. 13: Oops report following a btrfs ERR PTR crash in Linux 2.6.32

[4294934950]|@/var/diagnosys/tests/my btrfs/volumes.c:1441|open bdev exclusive|INULL(EXITED)|ERR PTR|

Fig. 14: Last Diagnosys log line in the execution of btrfs

When we do not use the Diagnosys debugging interface, the hang leaves the developer with
little information. Using Diagnosys, when the hang is detected, it causes a kernel panic, which in
turn causes a reboot with CRELSys that preserves the log messages. In Figure 15, the last line of
the Diagnosys log shows that ttm bo wait has been called without the expected lock held. The log
message indicates the type of safety hole, the place of the offending call to the API function and
the lock that needs to acquired to avoid the failure.

[437126]|@/var/diagnosys/tests/nouveau/nouveau gem.c:929|ttm bo wait|LOCK/ACQUIRE(POSSIBLE)|bo−>lock|

Fig. 15: Last Diagnosys log line in the execution of nouveau drm

Correlating the information provided by the Diagnosys log message with the source code sug-
gests taking the lock before the call and releasing it after the call, as shown in the Linux patch in
Figure 16. This patch reflects the fix that was ultimately made in the mainline code.

20 Tegawendé F. Bissyandé et al.

1 commit f0fbe3eb5f65fe5948219f4ceac68f8a665b1fc6

2 if (req−>flags & NOUVEAU GEM CPU PREP NOBLOCK) {
3 + spin lock(&nvbo−>bo.lock);
4 ret = ttm bo wait(&nvbo−>bo, false, false, no wait);
5 + spin unlock(&nvbo−>bo.lock);
6 }

Fig. 16: Patch to avoid a fault involving a Lock safety hole in nouveau drm

5.2 Opportunities for Diagnosys

To understand the degree of opportunity for Diagnosys, we first investigate the properties of the
stability of the Linux kernel-module interface, and then we consider the prevalence of safety holes in
the API functions of this interface. Finally, we estimate the likely relevance of the APIs containing
safety holes to potential kernel services.

We first study the evolution of the kernel API of exported functions to highlight how safety
holes can be easily pass under the radar of service developers. Figure 17 presents the number of API
functions exported by versions of the Linux kernel released over the course of three years (December
2008-January 2011). The graph distinguishes between the API functions already exported in the
first considered version, Linux 2.6.28, and the API functions added or modified since then. The
results show that the number of exported API functions has been steadily increasing. For example,
Linux 2.6.37 exports 224 more API functions than Linux 2.6.36. The results also show that the set
of exported API functions continuously changes [29]. Indeed, over 3,000 (25% of all) API functions
present in 2.6.37 were not available in 2.6.28, while over 1,000 (10% of all) API functions present
in 2.6.28 have disappeared. In addition, over 3,000 (33% of all) API functions present in 2.6.28
have been modified in 2.6.32. These changes make it difficult for service developers to keep up.
Furthermore, we have found that only a small number (15%) of API functions exported by the
Linux kernel are documented (Section 9 of the Linux “man” pages), and we have found that the
amount of documentation of the API functions of a given release does not significantly improve
over time.

0

5000

10000

15000

 n
u

m
b

er
 o

f
ex

p
o

rt
ed

 f
u

n
ct

io
n

s

new exported functions

modified exported functions

old exported functions

2.6.28

(D
ec. 2008)

2.6.29

2.6.30

2.6.31

2.6.32

2.6.33

2.6.34

2.6.35

2.6.36

2.6.37

 1060
 functions

 3359
 functions

 3160
 functions

(Jan. 2011)

Fig. 17: Evolution in the number of Linux kernel exported API functions (baseline Linux 2.6.28)

We now investigate how widespread are the safety hole types presented in Section 2.2 (p. 5).
Table 4 summarizes, for each kind of safety hole, the number of API functions exported in Linux
2.6.32 that SHAna identifies as containing at least one occurrence of that kind of safety hole.
In all, SHAna reports 22,932 safety holes in 7,497 API functions. The most frequently occurring
kinds are IsNull/Null , Lock/Intr/LockIntr and Block . Over 7,000 API functions process pointer-
typed parameters without checking their validity. More than 94% of these functions perform unsafe
dereferences directly within the body of their definition, while 5% forward the parameter value

Ahead of Time Static Analysis for Automatic Generation of Debugging Interfaces to the Linux Kernel 21

to other functions that unsafely use the value with no prior check. In the Lock/Intr/LockIntr
entry sub-category, 98% of the over 800 collected functions try to acquire a lock that has been
transmitted to them via a parameter, without first making sure that they do not already hold
it. The remaining 2% assume that the transmitted mutexes or spinlocks are already held in the
calling context and unsafely attempt to release them.

Safety hole
Number of exported functions collected in the

entry sub-category exit sub-category

Block 367 815
IsNull/Null 7,220 1,124
Var 5 11
Lock/Intr/LockIntr 815 23
Free - 11
Range - 8

Table 4: Prevalence of safety holes in Linux 2.6.32

Finally, we estimate the utility of the kernel API functions to new services, by considering the
number of calls to these functions within the kernel code itself. In the 147,403 call sites across
the entire kernel source code where API functions are used, half invoke a function containing a
known safety hole. We have grouped all functions by category of safety hole that they contain,
and computed the median number of calls to functions in each category. Depending on the kind of
safety hole, the median number of calls to functions containing an entry safety hole ranges from
3 to 9, while the median number of calls to functions containing an exit safety hole ranges from 8
to 20. This suggests that the kernel API functions containing safety holes are likely to be useful
to new services.

5.3 Impact of safety holes on code quality

We next investigate whether API function safety holes are effectively dangerous in kernel pro-
gramming, i.e., (1) if programmers write programs with bugs that are related to the presence of
safety holes in API functions, and (2) if the percentage of those bugs is significant, as compared
to the overall set of bugs related to the usage of API functions.

To assess the impact of the identified safety holes over the course of the development of Linux,
we have searched through the commit logs of the history of Linux 2.610 to identify patches where
the commit log mentions the kernel API functions exported in Linux 2.6.32, omitting those commits
in which the function name is used as a common word (e.g., “sort”, “panic”, etc.), to limit the
number of false positives during manual processing. We have then manually reviewed these patches
to identify those that are actually related to the usage of API functions, and exclude, e.g., those
that affect only an API function’s definition. Finally, from these relevant patches, we identify
those for which the bug fix was made to account for a usage precondition as defined by SHAna.
As shown in Table 5, 267 out of 703, i.e., 38%, of the usage defects are related to our categories
of safety holes.

5.4 Quantitative improvement in debuggability

To be useful, Diagnosys must cover a high percentage of the misuses of kernel API functions.
We first evaluate this, by artificially creating and activating misuses of API functions in kernel
services and measuring how many are trapped by Diagnosys. Additionally, Diagnosys must be
able to produce log messages that ease the debugging process. We then evaluate the debugging

10 git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git - history back to 2.6.12.

22 Tegawendé F. Bissyandé et al.

Total number of commits in Linux 2.6 278,078

Commits in any way related to exported functions 11,294

Commits related to the usage of exported functions 703

Commits related to the categorized safety holes 267

Table 5: Linux kernel bug fix commits

effort, in terms of the number of files and functions that have to be studied to identify the cause
of a crash, with and without Diagnosys.

Our experiments involve a number of commonly used kinds of services: networking code, USB
drivers, multimedia drivers, and file systems. Services of these kinds make up over a third of the
Linux 2.6.32 source code. We have selected a range of services that run on our test hardware.
Table 6 presents those services along with the number of API functions exhibiting safety holes
that they use.

Category Service module Description
of used functions
with safety holes

Networking
e1000e Ethernet adapter 57
iwlagn Intel WiFi Next Gen AGN 57
btusb Bluetooth generic driver 26

USB drivers
usb-storage Mass storage device driver 51
ftdi sio USB to serial converter 31

Multimedia uvcvideo Webcam device driver 28
device drivers snd-intel8x0 ALSA driver 35

File systems
isofs ISO 9660 file system 26
nfs Network file system 198
fuse File system in userspace 86

Table 6: Tested Linux 2.6.32 services

Coverage of Diagnosys
To determine the coverage of Diagnosys, we assess the number of false negatives of SHAna, i.e.,
the set of safety holes that can lead to faults in practice but are not identified by SHAna. For this,
we first mutate existing services so as to artificially create bugs. Then, we inject faults at run-time
to cause the mutation to trigger actual crashes across the execution of our test services.

Fault model. The largest percentage of our identified safety holes are related to NULL and ERR PTR

dereferences, and so we focus on these safety holes in our fault injection study. To devise a fault
model, we consider how it can happen that such values are manipulated by kernel code. One
prominent source of NULL and ERR PTR values is to indicate the failure of some sort of allocation.
Robust kernel code checks for these values and aborts the ongoing computation. Nevertheless,
omission of these tests is common. For example, in Linux 2.6.32, for the standard kernel memory
allocation functions kmalloc, kzalloc, and kcalloc, over 8% of the calls that may fail11 do not test the
result before dereferencing the returned value or passing the returned value to another function.

Based on these observations, our fault injection experiments focus on missing NULL and
ERR PTR tests in the service code. Our mutations remove such tests from the service code, one
by one, and use the failslab feature of the Linux fault injection infrastructure [13] within the ini-
tialization of the tested value to inject failures into the execution of any call to a basic memory
allocation function that this initialization involves. Because the initialization can invoke basic

11 Kernel allocation functions use flags to indicate whether the process can afford to have a failed allocation. Calls
that are not allowed to fail have flag information containing GFP NOFAIL or GFP RETRY.

Ahead of Time Static Analysis for Automatic Generation of Debugging Interfaces to the Linux Kernel 23

memory allocation functions multiple times, a single mutation experiment may involve multiple
injected faults.

Results. Our fault-injection experiments have a number of possible results. One is that there is
no observable effect. This can occur when the code initializing the tested variable does not involve
a memory allocation, when the effect of the failure of the memory allocation is confined within
the kernel code and does not affect the service, or when the safety hole is possible and is not
encountered in the actual execution. Another possible result is that there is a crash, but there
is no information relevant to the cause of the crash in the Diagnosys log. In this case, either the
information has been overwritten in the ring buffer or SHAna has not detected the safety hole,
representing a false negative. The final possible result is that there is a crash and information
related to the crash is found in the Diagnosys log, representing a success for Diagnosys. In this
latter case, we can further consider the position of the information relevant to the crash in the
Diagnosys log. It is most helpful for the developer if this information is in the most recent entry
before the crash occurred, as this position is easily identifiable.

Table 7 presents the fault injection results for 10 services implemented as kernel modules.
Overall, we have performed 555 mutations. For each mutation, we have exercised the various
execution paths of the affected module. 56% of the experiments have resulted in a service crash.
After reboot, in 90% of the crash cases, the log contained information relevant to the origin of the
defect. The table also distinguishes between cases where this information is at the last position
in the log buffer and the cases where other information that is irrelevant to the crash was logged
subsequently. As a metric of debuggability we use the ratio between the number of crashes for which
the log contained information in the last position, and the total number of crashes. On average,
Diagnosys has improved the debuggability of the service by 86%. In one case, the improvement is
as low as 66%, but there are very few mutation sites in this code.

Category
Kernel
module

of
mutations

of crashes with
% improved
debuggability

no log
log is

not last
log is
last

Networking
e1000e 57 0 0 20 100%
iwlagn 18 1 0 8 88.9%
btusb 9 1 0 7 87.5%

USB drivers
usb-storage 11 0 0 3 100%
ftdi sio 9 0 0 6 100%

Multimedia snd-intel8x0 3 1 0 2 66.7%
device drivers uvcvideo 34 3 3 17 73.9%

File systems
isofs 28 3 0 9 75.0%
nfs 309 13 9 157 87.7%
fuse 77 3 1 41 91.1%

Table 7: Results of fault injection campaigns

Ease of debugging
In a traditional Linux kernel debugging context, a developer, provided with an oops report con-
taining a backtrace and debugging tools that can translate stack entries into file names and line
numbers, typically starts from the point of the crash, visiting all files and caller functions until
the origin of the crash is localized. When the reason for the crash is in the service, but the actual
crash occurs deep within the kernel, the number of functions and files to visit can be large.

To study ease of debugging quantitatively, we have considered 199 of the mutations performed
in our coverage tests that lead to crashes, from btusb, nfs, and isofs. We also consider 31
mutations in nfs code that add statements for arbitrarily acquiring and releasing locks in services
in order to provoke kernel hangs, focusing on locks that are passed between functions, as they can
trigger safety holes in core kernel code. This results in 230 oops reports.

24 Tegawendé F. Bissyandé et al.

We have compared the 230 oops reports with the corresponding Diagnosys logs. In 92% of
these crashes, the Diagnosys log contains information on the origin of the fault. For those cases,
debugging with the oops report alone required consulting 1 to 14 functions, including on average
one possibly stale pointer, in up to 4 different files distributed across kernel and service code. In
73% of the cases for which the Diagnosys log contains relevant information, we find that using
Diagnosys reduces by at least 50% the number of files and functions to consult. In 19% of the
cases for which the Diagnosys log contains relevant information, the crash occurred in the same
file as the mutation, but the Diagnosys log made it possible to more readily pinpoint the fault by
providing line numbers that are closer to the mutation site.

Finally, we consider the impact of stale pointers on the debugging process. The considered
backtraces contain an average of 5 entries that are marked as possibly stale, of which on average
one appears between the entry indicating the point of crash and the entry of the function where
the mutation was performed. We have furthermore assessed the improvement brought by kdb,
and established that its backtraces contain fewer unreliable entries, but still include 2 on average.

Our assessment has also shown that kernel backtraces can miss functions, which can be at-
tributed, in some cases, to tail call optimizations. Such corrupted stack traces can then adversely
affect debugging.

5.5 Service execution overhead

The testing of preconditions and logging introduced by a Diagnosys wrapper incurs a performance
overhead on the execution of a kernel-level service. This overhead must be sufficiently small to avoid
interfering with the normal service execution. In this section, we evaluate the overheads introduced
by the primitives used by Diagnosys to test preconditions, and investigate at a macroscopic level
the impact of Diagnosys on service performance.

Penalties introduced by Diagnosys primitives
To measure the execution time of the Diagnosys precondition checking and logging operations,
we have used the Klogger framework [19],12 a state-of-the-art tool for performing fine grained
logging of kernel operations. We also compare the execution time of a call to an exported API
function having an empty body to that of a call to an exported API function containing a single
precondition test. Each experimental test is run 10 times, and we compute the median value
and standard deviation. Table 8 summarizes the overhead for one instance of each of the types of
validity tests performed by a Diagnosys debugging interface. The observed overhead varies between
1.35% and 11.04%.

Check Primitive
Performance Overhead

(processor clock ticks) (%)

Pointer validity IS ERR OR NULL 248.13± 121.24 3.12%

Spin lock state spin is locked 267.19± 121.24 11.04%

Mutex state mutex is locked 243.88± 109.13 1.35%

Interrupt state irqs disabled 260.66± 91.34 8.32%

Performance of a call to an exported function with an empty body 240.62± 95.19

Table 8: Checking overhead ± standard deviation

Table 9 compares the execution time of Diagnosys’ logging primitive with that of other logging
mechanisms used in the kernel. printk is the most commonly used logging function. Ftrace [45]

12 Klogger kernel patch for Linux 2.6.31.4

Ahead of Time Static Analysis for Automatic Generation of Debugging Interfaces to the Linux Kernel 25

optimizes the logging process by deferring formatting from tracing time to output time. In Di-
agnosys, string formatting is not needed as the log message is generated at compile-time and is
encoded as a series of integers that uniquely identify an API function, a safety hole type, etc. Di-
agnosys’ logging primitive is thus 1.3x faster than Ftrace’s trace printk, and 5x faster than printk.
In Diagnosys, the time-consuming processing tasks are performed in user space, after a reboot
when the service developer attempts to display the log messages.

Logger printk Ftrace (trace printk) Diagnosys

Execution time
3280.05± 82.52 884.16± 578.124 673.15± 129.26

(processor clock ticks)

Table 9: Performance of the Diagnosys logging primitive

Impact of Diagnosys on service performance
To understand the global performance overhead induced by the Diagnosys approach, we tested
various real-world kernel services with and without a generated debugging interface.

Network driver performance. Our first test scenario involves a Gigabit Ethernet device that re-
quires both low latency and high throughput to guarantee high performance. We evaluated the
impact of a Diagnosys debugging interface by exercising the e1000e Linux device driver using the
TCP STREAM, UDP STREAM and UDP RR tests from the netperf benchmark [28]. For these exper-
iments, the netperf utility was configured to report results accurate to 5% with 99% confidence.
Table 10 summarizes the performance and CPU overhead for the e1000e driver when it is run
without and with a debugging interface. The debugging interface only reduces the throughput by
between 0.4% and 6.4%, and increases the CPU utilization by between 0.4% and 10%. Neverthe-
less, while small, the existence of this overhead suggests why kernel developers would not want to
systematically implement API functions such that they always perform all of these checks. This
shows the need for a pluggable debugging interface dedicated to a service under development, as
provided by Diagnosys.

Test Without Diagnosys With Diagnosys Overhead

TCP STREAM
Throughput 907.91 Mb/s 904.32 Mb/s 0.39%
CPU 52.57% 58.48% 10.10%

UDP STREAM
Throughput 951.00 Mb/s 947.73 Mb/s 0.34%
CPU 58.92% 65.45% 9.98%

UDP RR
Throughput 7371.69 Tx/s 6902.81 Tx/s 6.36%
CPU 55.19% 55.37% 0.33%

Table 10: Performance of the e1000e driver

File system performance. Our second test scenario involves the NFS file system, whose imple-
mentation uses about 200 exported functions exhibiting safety holes. The experiment consists of
sequential read, sequential write/rewrite and random seek phases based on patterns generated by
the Bonnie benchmark [10]. For this experiment, the client and server run on the same machine,
connected using a network loopback interface, to eliminate the network transmission time. During
a run of this benchmark with a debugging interface integrated into the NFS file system, we have
recorded over 48,000,000 calls to the interface wrapper functions to write and read 8G of data.
As shown in Table 11, for data transfers of only one character, amounting to 1 byte, the overhead
can be significant, of up to 67%. For block reads and writes, however, the overhead is only up to
17%, and for random seeks and sequential rewrites it is under 3%.

26 Tegawendé F. Bissyandé et al.

Test
Without Diagnosys With Diagnosys

Overhead
(Access rate - K/sec) (Access rate - K/sec)

Sequential reads
per char 930 642 30.9%
per block 28795 23811 17.3%

Sequential writes
per char 494 162 67.2%
per block 42467 38329 9.7%

Sequential rewrites 13647 13327 2.3%

Random seeks 2145 2143 0.9%

Table 11: Performance of the NFS file system

5.6 Certification overhead of analysis results

Although SHAna only needs to be run once per kernel release, the number of results that it
returns still makes certification of its results potentially very expensive. Diagnosys includes several
techniques to reduce the amount of certification needed.

Highlighting likely false positives. In practice, a major source of false positives is when multiple
definitions are provided for a given function, selectable by different, incompatible configuration
options. In this case, interprocedural analysis can detect a safety hole that involves the interaction
between two definitions that cannot coexist in an actual kernel. When SHAna detects that this
is a possibility, due to the existence of multiple definitions of a called function, it annotates the
derived safety holes as potential false positives. SHAna also provides information about the file in
which the function instance inducing the safety hole is defined.

Of the 22,940 safety holes reported by SHAna for Linux 2.6.32, SHAna itself annotated 465 (2%)
as potential false positives, because of the ambiguity of the identification of called functions during
interprocedural analysis. Since the Linux kernel provides different definitions of some functions for
different architectures, these different definitions may exhibit different safety holes, and therefore
results with respect to such functions require thorough validation. At a rate of about 5 minutes
per safety hole, we estimate that this certification requires about a week of work (38 hours). Of
the 465 potential safety holes, we have found that 405 (87%) are actual false positives.

We have also manually reviewed all of the other safety holes reported by SHAna for Linux
2.6.32. Among the reported safety holes that were not annotated as potential false positives during
the analysis, we have identified some cases for which misuse seems very unlikely. For example, some
lock-related exported functions such as unlock rename clearly indicate their purpose in their name.
Similarly, clk get rate may return a large integer, but it seems unlikely that a developer would use
this integer to declare the size of an array. We have found 9 such false positives in Linux 2.6.32.
Most of the associated functions are called fewer than 5 times, with the most frequently used,
clk get rate, being called 144 times. Thus, given the small rate of these safety holes and the low
usage of the associated functions, we consider that it is sufficient for the kernel maintainer to
manually check only the safety holes that are actually annotated as potential false positives by
SHAna.

Preserving certification information across kernel versions. To further reduce the certification
overhead, SHAna maintains information about safety holes across OS versions, so that the kernel
maintainer need only check reported safety holes in those functions whose definitions have changed.
To demonstrate the potential benefit of this information, we have also checked the safety holes
that SHAna has annotated as potential false positives in 5 versions that were released after Linux
2.6.32. As shown in Figure 18, the burden on the maintainer is significantly reduced when data
from a previous certification are available. Between two certification processes, the workload can
drop by 50 to 95%, often to around a day or less, depending on the amount of time elapsed since
the release of the previously certified version.

It may be the case that the maintainer is not available to run SHAna and perform the certifica-
tion for every release. The blue dashed line in Figure 18 shows that even performing a certification

Ahead of Time Static Analysis for Automatic Generation of Debugging Interfaces to the Linux Kernel 27

0

20

40

60

80

100

 %
 o

f
sa

fe
ty

 h
o
le

s

to

 m
a
n

u
a
ll

y
 a

ss
es

s Certification based on results of Linux 2.6.32

Certification based on results of the previous version

2.6.32

2.6.33

2.6.34

2.6.38

2.6.39
3.0

skipping 3 versions

Fig. 18: Certification overhead

based on a previous, but not preceding, version can still substantially reduce the maintainer work-
load.

In assessing the certification overhead, we have only considered the costs of certifying the
results from the mainline kernel. In practice, most users do not use the mainline kernel, but
instead one prepared for a particular Linux distribution, such as Debian or Fedora. While such
a kernel may diverge slightly from the mainline, the differences are unlikely to affect the kernel
API. Furthermore, a service that should ultimately be integrated into the mainline kernel must
be developed against the mainline kernel’s API.

6 Related work

In the last decade, studies have shown that kernel-level services, in particular device drivers, are
responsible for the majority of OS crashes. Ganapathi et al. have found that 65% of all Windows
XP crashes are due to device drivers [24]. Ten years ago, Chou et al. found that the fault rate
in Linux drivers was 3–7 times higher than that of other parts of the kernel [12]. Palix et al.
have shown that while this error rate is decreasing, Linux drivers still contain many defects [40].
They have also found that file systems have recently had a high fault rate, indeed even higher
than that of drivers. More generally on software code, empirical studies show that software bugs
are becoming pervasive, specially in large projects with large code base and large development
teams [5], for all programming languages [9].

System robustness testing. Fault injection has been applied to the Linux kernel to evaluate the
impact of various fault classes [1,14]. Our work identifies the safety holes in kernel interfaces that
explain their observations. Marinescu and Candea [35] focus on the returns of error codes from
userspace library functions. These are analogous to our Null exit safety holes. Their approach,
however, is not applicable to other types of safety holes.

Static bug finding. Model checking, theorem proving, and program analysis have been used to
analyze OS code to find thousands of bugs [3,17,32,43]. Nevertheless, these tools take time to
run and the results require time and expertise to interpret. Thus, these tools are not well suited
to the frequent modifications and tests that are typical of initial code development. Numerous
approaches have proposed to statically infer so-called protocols, describing expected sequences of
function calls [17,32,33,44]. These approaches have focused on sequences of function calls that are
expected to appear within a single function, rather than the specific interaction between a service
and the rest of the kernel.

Some of our kinds of safety holes could be eliminated by the use of advanced type systems.
For example, Bugrara and Aiken propose an analysis to differentiate between safe and unsafe
userspace pointers in kernel code [11]. They focus, however, on the entire kernel, and thus may
inform service developers about faults in code other than their own.

28 Tegawendé F. Bissyandé et al.

Logging. Runtime logs are frequently insufficient for failure diagnosis especially in case of unex-
pected crashes [49]. LogEnhancer [50] enriches log messages with extra information, but does not
create new messages. Diagnosys creates new log messages along the kernel-service boundary, where
they can be most helpful to service developers.

Robust interfaces. LXFI [34] isolates kernel modules and includes the concept of API integrity,
which allows developers to define the usage contract of kernel interfaces by annotating the source
code. LXFI, however, aims at limiting the security threat posed by the privileges granted to kernel
modules, while Diagnosys focuses on various categories of common faults encountered in kernel
code.

Healers automatically generates a robust interface to a user-level library without access to the
source code [20]. It relies on fault injection to identify the set of assumptions that a library function
makes about its arguments. Healers can obtain information about runtime values, such as array
bounds, that may be difficult to detect using static analysis. However, Healers does not address
safety hole kinds such as Lock that require calling-context information. Supporting Lock would
require testing the state of all available locks, which would be expensive and are likely unknown.

Programming with contracts. A software contract represents the agreement between the developer
of a component and its user on the component’s functional behavior [22,25,36,37]. Contracts
include pre- and post-conditions, as well as invariants. A safety hole is essentially the dual of a
contract, in that a contract describes properties that the context should have, while a safety hole
describes properties that it should not have.

Contract inference is analogous to the execution of SHAna. Arnout and Meyer infer contracts
based on exceptions found in .NET code [2]. Daikon infers invariants dynamically by running the
program with multiple inputs and generalizing the observations [18]. Diagnosys targets situations
that lead to unhandled exceptions, either in the kernel or the service code. Linux kernel execution is
highly dependent on the particular architecture and devices involved, and thus service developers
would have to actively use Daikon in their own environment. SHAna, in contrast, allows the
collection of safety holes to be centralized. Finally, only one of the invariants in the Daikon invariant
list,13 NonZero, may correspond to one of our safety hole kinds, namely INull. Daikon does not
handle common safety hole kinds such as Free, or kernel-specific safety hole kinds such as Param,
for user/pointer bugs.

The Extended Static Checker for Java (ESC/Java) [22] relies on programmer annotations to
check method contracts. Annotation assistants such as Houdini [21] automate the inference of an-
notations. Houdini supports various exceptions involving arguments, such as NullPointerException
and IndexOutOfBoundsException, but does not provide tests for the validity of allocated memory.

Finally, Parnin and Orso have presented a user study involving actual developers to investigate
whether automated debugging tools really help developers [42]. They found, for instance, that
expert developers were faster when using the tool, although the tool did not help perform harder
tasks. In our assessment, we sought to demonstrate that Diagnosys provides debugging information
that is useful even for a novice programmer, and that it helps in pinpointing the root cause even
in cases where the root cause is hidden in the stack trace of a crash.

Programming using DSLs Domain-Specific languages provide concise syntax and rich semantics for
allowing domain experts, who may not be traditional programmers, to write programs for a given
domain. There are claims in the literature that DSL programs are easy to use and maintain [48].
Our own experience in designing DSLs [6] has led us to note that the maintainability issues are
shifted in the implementation of the DSL compiler. We have then proposed to use transformation
rules to implement embedded compilers so as to improve maintainability [8]. However, a more
general study by Donahue found that easy maintainability is not an intrinsic property of DSLs [16].

13 http://groups.csail.mit.edu/pag/daikon, Documentation, Sec. 5.5

Ahead of Time Static Analysis for Automatic Generation of Debugging Interfaces to the Linux Kernel 29

7 Conclusion

Defects in kernel-level services can cause the demise of the entire operating system, often leaving
developers without any information about what went wrong. In the Linux kernel, for example, one
significant difficulty in developing drivers is that the kernel does not export a debugging interface
to its internal functionalities [29]. Many of the functions that are exported to external modules
have implicit ill-documented preconditions, which, if not satisfied, can cause the entire system to
crash or hang.

In this paper, we have presented a new approach for supporting kernel-level service developers
in the early stages of service development. Diagnosys was designed and implemented as an approach
to automatically constructing a debugging interface for the Linux kernel. The tool detects safety
holes in Linux kernel-level API functions and supports the generation of a debugging interface,
tailored for a particular service, according to this information. At runtime Diagnosys provides
a crash-resilient logging system for recording information about risky uses of kernel functions
containing safety holes.

Using fault injection tests on 10 Linux kernel-level services, we have shown that our interface
alerts the developers to the critical defects in their code. Using a driver for a Gigabit Ethernet
device and a NFS file system, we have shown that the performance impact of our approach is
within the limits of what is acceptable when testing a kernel-level service in the initial stages of
development, and can even be used up to the phase of initial deployment.

Availability: Materials for this paper, including more detailed information on the analysis spec-
ifications, the Diagnosys tool, and the certified versions of the kernel can be found on the project
webpage - http://diagnosys.labri.fr.

Acknowledgements: This work was supported in part by the ANR Blanc grant ABL.

References

1. Albinet, A., Arlat, J., Fabre, J.C.: Characterization of the impact of faulty drivers on the robustness of the Linux
kernel. In: DSN’04: Proceedings of the 2004 International Conference on Dependable Systems and Networks,
pp. 867–876. Florence, Italy (2004)

2. Arnout, K., Meyer, B.: Uncovering hidden contracts: The .NET example. Computer 36, 48–55 (2003)
3. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., Ondrusek, B., Rajamani, S.K.,

Ustuner, A.: Thorough static analysis of device drivers. In: EuroSys’06: Proceedings of the 2006 ACM
SIGOPS/EuroSys European Conference on Computer Systems, pp. 73–85. Leuven, Belgium (2006)

4. Bissyandé, T.F.: Contributions for improving debugging of kernel-level services in a monolithic operating sys-
tem. Ph.D. thesis, Université Sciences et Technologies-Bordeaux I (2013)

5. Bissyandé, T.F., Lo, D., Jiang, L., Réveillère, L., Klein, J., Le Traon, Y.: Got issues? who cares about it? a
large scale investigation of issue trackers from github. In: IEEE 24th International Symposium on Software
Reliability Engineering, ISSRE

6. Bissyandé, T.F., Réveillère, L., Bromberg, Y.D., Lawall, J.L., Muller, G.: Bridging the gap between legacy
services and web services. In: Proceedings of the ACM/IFIP/USENIX 11th International Conference on Mid-
dleware, Middleware ’10, pp. 273–292. Springer-Verlag, Bangalore, India (2010)

7. Bissyandé, T.F., Réveillère, L., Lawall, J.L., Muller, G.: Diagnosys: automatic generation of a debugging inter-
face to the linux kernel. In: ASE’12: Proceedings of 27th IEEE/ACM International Conference on Automated
Software Engineering, pp. 60–69. Essen, Germany (2012)

8. Bissyandé, T.F., Rv́eillère, L., Lawall, J.L., Bromberg, Y.D., Muller, G.: Implementing an embedded compiler
using program transformation rules. Software: Practice and Experience pp. n/a–n/a (2013)

9. Bissyandé, T.F., Thung, F., Lo, D., Jiang, L., Réveillère, L.: Popularity, interoperability, and impact of pro-
gramming languages in 100,000 open source projects. In: Proceedings of the 37th IEEE Annual Computer
Software and Applications Conference, COMPSAC ’13, pp. 303–312. Washington, DC, USA (2013)

10. Bray, T.: The Bonnie file system benchmark. http://www.textuality.com/bonnie/
11. Bugrara, S., Aiken, A.: Verifying the safety of user pointer dereferences. In: IEEE Symposium on Security and

Privacy, pp. 325–338. Oakland, CA, USA (2008)
12. Chou, A., Yang, J., Chelf, B., Hallem, S., Engler, D.: An empirical study of operating systems errors. In:

SOSP’01: Proceedings of the 18th ACM Symposium on Operating System Principles, pp. 73–88. Banff, Canada
(2001)

13. Corbet, J.: Injecting faults into the kernel. http://lwn.net/Articles/209257/ (2004)
14. Cotroneo, D., Natella, R., Russo, S.: Assessment and improvement of hang detection in the Linux operating

system. In: SRDS’09: Proceedings of the 28th IEEE International Symposium on Reliable Distributed Systems,
pp. 288–294. Niagara Falls, NY, USA (2009)

30 Tegawendé F. Bissyandé et al.

15. Dillig, I., Dillig, T., Aiken, A.: Reasoning about the unknown in static analysis. Communications of the ACM
53(8), 115–123 (2010)

16. Donahue, A.: Debugging domain-specific languages. Master’s thesis, University of Toronto (2010)
17. Engler, D., Chen, D.Y., Hallem, S., Chou, A., Chelf, B.: Bugs as deviant behavior: a general approach to

inferring errors in systems code. In: SOSP ’01: Proceedings of the eighteenth ACM symposium on Operating
systems principles, pp. 57–72. Banff, Alberta, Canada (2001)

18. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S., Xiao, C.: The Daikon system
for dynamic detection of likely invariants. Sci. Comput. Program. 69, 35–45 (2007)

19. Etsion, Y., Tsafrir, D., Kirkpatrick, S., Feitelson, D.G.: Fine grained kernel logging with KLogger: experience
and insights. In: EuroSys, pp. 259–272. Lisbon, Portugal (2007)

20. Fetzer, C., Xiao, Z.: Healers: a toolkit for enhancing the robustness and security of existing applications. In:
DSN’03: Proceedings of the 2003 International Conference on Dependable Systems and Networks, pp. 317–322.
San Francisco, CA, USA (2003)

21. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In: FME, pp. 500–517. London,
UK (2001)

22. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended static checking for
Java. In: PLDI’02: Proceedings of the ACM SIGPLAN 2002 Conference on Programming language design and
implementation, pp. 234–245. Berlin, Germany (2002)

23. Frade, M.J., Pinto, J.S.: Verification conditions for source-level imperative programs. Computer Science Review
5(3), 252–277 (2011)

24. Ganapathi, A., Ganapathi, V., Patterson, D.: Windows XP kernel crash analysis. In: LISA’06, pp. 49–159.
Washington, DC, USA (2006)

25. Hirschfeld, R., Perscheid, M., Schubert, C., Appeltauer, M.: Dynamic contract layers. In: SAC’10: Proceedings
of the 2010 Symposium on Applied Computing, pp. 2169–2175. Sierre, Switzerland (2010)

26. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–580 (1969)
27. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and reasoning about systems. Cambridge University

Press (2000)
28. Jones, R.: Netperf: A network performance benchmark, version 2.4.5. http://www.netperf.org
29. Kroah-Hartman, G.: The Linux kernel driver interface (all your questions answered and then some). http:

//www.kernel.org/doc/Documentation/stable_api_nonsense.txt

30. Kroah-Hartman, G.: Driving me nuts - things you should never do in the kernel. Linux Journal (133), 9 (2005).
URL http://www.linuxjournal.com/article/8110

31. Kuznetsov, V., Chipounov, V., Candea, G.: Testing closed-source binary device drivers with DDT. In: ATC’10:
USENIX Annual Technical Conference. Boston, MA, USA (2010)

32. Lawall, J.L., Brunel, J., Palix, N., Hansen, R.R., Stuart, H., Muller, G.: WYSIWIB: A declarative approach to
finding API protocols and bugs in Linux code. In: DSN’09: Proceedings of the 2009 International Conference
on Dependable Systems and Networks, pp. 43–52. Lisbon, Portugal (2009)

33. Li, Z., Zhou, Y.: Pr-miner: automatically extracting implicit programming rules and detecting violations in
large software code. In: ESEC/FSE-13: Proceedings of the 10th European software engineering conference
held jointly with 13th ACM SIGSOFT international symposium on Foundations of software engineering, pp.
306–315. Lisbon, Portugal (2005)

34. Mao, Y., Chen, H., Zhou, D., Wang, X., Zeldovich, N., Kaashoek, M.F.: Software fault isolation with API
integrity and multi-principal modules. In: SOSP, pp. 115–128. Cascais, Portugal (2011)

35. Marinescu, P., Candea, G.: Efficient testing of recovery code using fault injection. ACM Transactions on
Computer Systems (TOCS) 29(3) (2011)

36. Meyer, B.: Object-Oriented Software Construction, 1st edn. Prentice-Hall, Inc. (1988)
37. Mills, C.: Using Design by Contract in C, 1st edn. OnLamp.com, O’Reilly (2004)
38. Nellitheertha, H.: Reboot Linux faster using kexec. http://www.ibm.com/developerworks/linux/

library/l-kexec/index.html (2004)
39. Padioleau, Y., Lawall, J.L., Hansen, R.R., Muller, G.: Documenting and automating collateral evolutions in

Linux device drivers. In: EuroSys’08: Proceedings of the 2008 ACM SIGOPS/EuroSys European Conference
on Computer Systems, pp. 247–260. Glasgow, Scotland (2008)

40. Palix, N., Lawall, J., Muller, G.: Tracking code patterns over multiple software versions with herodotos. In:
AOSD’10: Proceedings of the 2010 International Conference on Aspect-Oriented Software Development, pp.
169–180. Rennes and Saint-Malo, France (2010)

41. Palix, N., Saha, S., Thomas, G., Calvès, C., Lawall, J.L., Muller, G.: Faults in Linux: Ten years later. In:
ASPLOS’11: Proceedings of the 2011 International Conference on Architectural Support for Programming
Languages and Operating Systems. Newport Beach, CA, USA (2011)

42. Parnin, C., Orso, A.: Are automated debugging techniques actually helping programmers? In: Proceedings of
the 2011 International Symposium on Software Testing and Analysis, pp. 199–209. ACM (2011)

43. Post, H., Küchlin, W.: Integrated static analysis for Linux device driver verification. In: IFM’07: Proceedings
of the 6th international conference on Integrated formal methods, pp. 518–537. Oxford, UK (2007)

44. Ramanathan, M.K., Grama, A., Jagannathan, S.: Path-sensitive inference of function precedence protocols. In:
ICSE ’07: Proceedings of the 29th international conference on Software Engineering, pp. 240–250. Minneapolis,
MN, USA (2007)

45. Rostedt, S.: Debugging the kernel using ftrace. http://lwn.net/Articles/365835/ (2009)
46. Rubini, A., Corbet, J.: Linux Device Drivers, second edn., p. 109. O’Reilly Media (2001)

Ahead of Time Static Analysis for Automatic Generation of Debugging Interfaces to the Linux Kernel 31

47. Ryzhyk, L., Chubb, P., Kuz, I., Heiser, G.: Dingo: Taming device drivers. In: EuroSys’09: Proceedings of the
2009 ACM SIGOPS/EuroSys European Conference on Computer Systems, pp. 275–288. Nuremberg, Germany
(2009)

48. Strembeck, M., Zdun, U.: An approach for the systematic development of domain-specific languages. Softw.
Pract. Exper. 39(15), 1253–1292 (2009)

49. Yuan, D., Mai, H., Xiong, W., Tan, L., Zhou, Y., Pasupath, S.: Sherlog: Error diagnosis by connecting clues
from run-time logs. In: ASPLOS’10: Proceedings of the 2010 International Conference on Architectural Support
for Programming Languages and Operating Systems, pp. 143–154. Pittsburgh, PA, USA (2010)

50. Yuan, D., Zheng, J., Park, S., Zhou, Y., Savage, S.: Improving software diagnosability via log enhancement.
In: ASPLOS, pp. 3–14. Newport Beach, CA, USA (2011)

