
HAL Id: hal-00992274
https://hal.science/hal-00992274

Submitted on 16 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Got issues? Who cares about it? A large scale
investigation of issue trackers from GitHub

Tegawendé F. Bissyandé, David Lo, Lingxiao Jiang, Laurent Réveillère,
Jacques Klein, Yves Le Traon

To cite this version:
Tegawendé F. Bissyandé, David Lo, Lingxiao Jiang, Laurent Réveillère, Jacques Klein, et al.. Got
issues? Who cares about it? A large scale investigation of issue trackers from GitHub. Proceedings of
the 24th IEEE International Symposium on Software Reliability Engineering (ISSRE 2013), Jul 2013,
Pasadena, United States. pp.188-197. �hal-00992274�

https://hal.science/hal-00992274
https://hal.archives-ouvertes.fr

Got Issues? Who Cares About It?

A Large Scale Investigation of Issue Trackers from GitHub

Tegawendé F. Bissyandé1, David Lo2, Lingxiao Jiang2, Laurent Réveillère3, Jacques Klein1 and Yves Le Traon1

1SnT, University of Luxembourg, Luxembourg
2Singapore Management University, Singapore

3LaBRI, University of Bordeaux, France

tegawende.bissyande@uni.lu, {davidlo, lxjiang}@smu.edu.sg, reveille@labri.fr, {jacques.klein, yves.letraon}@uni.lu

Abstract—Feedback from software users constitutes a vital
part in the evolution of software projects. By filing issue reports,
users help identify and fix bugs, document software code, and
enhance the software via feature requests. Many studies have
explored issue reports, proposed approaches to enable the submis-
sion of higher-quality reports, and presented techniques to sort,
categorize and leverage issues for software engineering needs.

Who, however, cares about filing issues? What kind of issues
are reported in issue trackers? What kind of correlation exist
between issue reporting and the success of software projects?
In this study, we address the need for answering such questions
by performing an empirical study on a hundred thousands of
open source projects. After filtering relevant trackers, the study
used about 20,000 projects. We investigate and answer various
research questions on the popularity and impact of issue trackers.

I. INTRODUCTION

Developers and users often find issues with software sys-
tems and are encouraged to report them in the available
issue trackers that are set up by development teams. There
exists a variety of issue tracking systems. Popular systems
include Bugzilla, Jira, etc. Other development platforms such
as Google Code, GitHub or Freecode have in-house imple-
mentations of issue tracking systems. Developers thus have
ample opportunities to use issue tracking systems in their
development and maintenance process.

Many research studies have investigated ways to improve
the user experience in issue tracking systems [4], [11], while
others have proposed techniques for helping developers man-
age and address issue reports [1], [24]–[26]. Also, a number
of approaches have linked issue reports to changes in source
code [5], [30]. Despite the numerous studies that propose
techniques for improving the issue reporting process, for
enhancing the management of issues, and for leveraging issues
in other software engineering tools, there have been limited
surveys that investigate the actual adoption of issue trackers
in software development and the impact of their adoption to
project success.

Our goal in this paper is to fill a gap in the research
relevant to software issues by investigating the adoption of
issue trackers in software projects. Such a study could make
practitionners aware of what to expect when they setup issue
trackers for their projects, and would make researchers aware
of the scope and potential bias of issue trackers data. In this
work, we consider software projects where issue trackers are

systematically set up and where there is little barrier to their
usage. We also investigate the impact of the usage of issue
trackers on the ultimate goal of project success. Project success
can be characterized in diverse dimensions: monetary returns,
number of downloads, or popularity. This study focuses on
open source projects, and we only consider popularity as a
measure of project success.

Our study exploits data from GitHub, a super-repository
of software projects containing millions of projects. GitHub
is free for open source projects and implements an in-house
issue tracking system where users can file issues and tag them
into self-defined categories. The issue tracking system is easy
to use and is systematically provided to all projects hosted
in GitHub. We collect a hundred thousands of projects from
GitHub and investigate the adoption of issue trackers as well
as the impact of issue tracking on software success.

Our contributions are as follows:

1) We perform a large scale study on thousands of software
projects.To the best of our knowledge, it is the largest
study conducted on issue trackers.

2) We investigate the adoption of issue trackers in terms of
the projects that utilize them, the people that report issues,
and the kind of issues that are usually reported.

3) We discuss our findings and share some insights on the
correlations between the quantities of issue reports and
various characteristics of software projects.

4) We also compare our findings with a previous study [27]
on Firefox development where the authors have found that
the size of the user community influenced the time-to-fix
rate of bugs. We find that in general this correlation is
small.

The structure of this paper is as follows. In Section II,
we introduce GitHub and its issue tracker. Next, we elaborate
our empirical study methodology in Section III. Section IV
presents the findings of our empirical study; it highlights a
number of research questions and their answers. We discuss
threats to validity in Section V. Section VI describes related
work. We conclude and mention future work in Section VII.

II. PRELIMINARIES & PROBLEM DEFINITION

In this section, we discuss the importance of issue tracking
systems in software development, and briefly describe GitHub,
the source platform of the projects in our dataset.

1

A. Issue trackers

Software development generally produces programs with
two caveats: (1) they are often incomplete with respect to
certain features, and (2) they are usually buggy. Developers
testing the programs and end-users using the programs may
then need to report issues when they believe that the product
is not performing as it should or that it could be better at what
it does. The valuable feedback from the user community is
actually widely accepted as vital information for any software
development [4]. In practice, an issue report is a request
for improving a software system, fixing a bug, adding new
features, or enhancing documentation. Project development
teams may also use issues to flag “TODO” tasks.

Issue tracking systems, also known as issue trackers, are
software products that aim at facilitating the management of is-
sues in a software development project, by providing a feature-
rich interface to ease issue reporting by the user community.
It also enables a better follow-up of user’s concerns by project
developers. Studies have shown that issue trackers can be
beneficial to both open and closed source projects [9], when
they are publicly available for use.

There is a plethora of issue trackers used in software
development projects. A number of them are more commonly
referred to as bug trackers as they focus more on bug reports.
Many development teams, including those at the Apache
Software Foundation or the Linux kernel community, rely on
standalone products such as Bugzilla1, and JIRA2 to track
defects in their code, plan fixes, etc. Project hosting platforms,
on the other hand, often resort to in-house implementations
of issue trackers that are designed specifically to include a
set of features in line with their hosting capabilities. GitHub
belongs to this second category and associates with each hosted
project an issue tracker that provides the usual facilities in issue
tracking, such as filing issue tickets, tagging them accordingly
to the nature of the issue, and labeling them as the state of
resolution evolves. A project development team on GitHub
can choose to enable or disable the in-house issue tracker.
A team can also choose to use GitHub as a mirror for their
project, while hosting their main development and maintenance
activities somewhere else.

B. GitHub

The GitHub project hosting platform was launched in
2008 and has since grown to be one of the premier sites
where over 3,000,000 projects are hosted and managed. The
success of GitHub is largely attributed to the concept of social
coding which has created a developer-friendly environment,
allowing developers to network, collaborate and promote their
projects. It enables forking, which allows to create copies of
repositories, and watching, which allows developers to register
to the events in a given project. It also supports following,
which allows developers to subscribe to the activites of one
another.

GitHub provides an extensive set of REST [8] APIs3 that
we can use to retrieve information on many project repositories
whose contents are publicly accessible.

1 http://bugzilla.org 2 http://atlassian.com/software/jira
3 http://developer.github.com

The projects hosted by GitHub offer the kind of diversity
that is appealing for large empirical studies. Indeed, projects
in GitHub produce software from various application domains,
from web applets, gaming software, to operating systems.
These projects are conducted by teams of developers of varying
sizes—between 1 and several thousands, and include source
code from a myriad of programming languages.

While our study focuses on the issue trackers managed
by the different projects, there is a need to correlate statistical
findings on issues with different characteristics of the projects.
Thus, we are required to (1) collect a huge amount of data from
GitHub and (2) infer important information, such as a project’s
number of lines of code, that is not directly available through
the API, making a large study with GitHub challenging.

Other project hosting platforms, including SourceForge,
GoogleCode and Freecode, also provide issue trackers to
hosted projects. In this paper we focus on GitHub, but we plan
to investigate those issues trackers in future work, to compare
the findings, and draw new insights.

C. This study

A large body of literature has discussed the importance
of issue trackers in the context of software development [15],
[22], [27]. Other studies have also investigated user involve-
ment in issue tracking based on issues reported in a few
software projects [9]. A few other techniques, such as duplicate
bug retrieval techniques [24], [25] and techniques to link code
changes with issue reports [5], [30], have been proposed with
the assumption of the prevalence of issues.

In this study, we consider a hundred thousands open source
projects to investigate the popularity of issue trackers to
provide insights on how issue trackers can be leveraged for
improving software development.

III. METHODOLOGY

For our empirical study, we consider the first 100,000
projects returned by the GitHub API following a search request
on available project repositories. These projects were retrieved
with GitHub API v2 which returned a random list of projects4.

We collect our dataset based on information from those
projects. The obtained dataset is furthermore curated to dis-
tinguish projects that can introduce bias in our analysis from
others: e.g., some projects are hosted in GitHub but maintain
their issue tracking system outside of GitHub. Last but not
least, we statistically characterize the popularity and usage of
issue trackers in several dimensions, relying on well-known
metrics to assess the statistical significance of our findings.

A. Collecting the dataset

For each project in our large set of projects from GitHub,
we collect data related to a number of important software
artefacts that commonly occur in development processes and
are leveraged in this study.

4 The list is available at http://momentum.labri.fr/orion/project list.txt

2

a) Project information: The GitHub social coding site
provides a number of features that enable developers to moni-
tor and track activities in a project repository. In this study, we
focus on two concepts, namely watchers and forks, that can
be used as metrics for evaluating the popularity and thus the
success of a project. The “watchers” metric gives an indication
of the amount of attention that is given to a project by the
developer community. Developers who subscribe as watchers
to a project typically use, report bugs and incidentally promote
the project in their developer social network. Similarly, “Forks”
is a useful metric for measuring the active involvement of the
developer community in the growth of a project’s code base
and the improvement of its quality. Indeed, developers often
create copies (i.e., fork) of project code bases for continuing
the development in parallel, while merging their improvements
from time to time with the mainline repository. Though these
metrics are not absolute, they provide good insights on the
popularity of a project.

b) Issue reports: For each project, we also collect all
(open and closed) issues reported through its tracker. For each
issue, we collect information related to the reporter’s identity,
the labels used by the reporter to categorize the issue, etc.

c) Lines of code: We consider the number of lines of
code (LOC) in each project. Because GitHub uses the git5

software configuration management system (SCM) to store
software revisions, we download the actual git repository for
the project, and rely on the SLOCCount6 utility to compute
the actual lines of code in the latest revision of the project,
ignoring code comments and blank lines.

d) Developer contributions: Finally, we consider for
our study the development team for each project. Because git
records code contributors’ names and email addresses with
each revision in the repository, we are able to accurately
identify all contributors to a project code base, whether they are
registered to GitHub or not. Indeed, the git SCM distinguishes
between revision authors, who are the end-contributors to the
code base, and committers, who have access to the mainline
repository and can forward contributions from revision authors.

B. Curating the dataset

GitHub is a hosting site that is used by different project
teams to get exposure in the developer community. Thus long-
lived projects whose active development has started before
the era of GitHub keep managing their projects on their own
development sites while mirroring their source code repository
in GitHub. Examples of such projects include the numerous
projects developed under the auspices of the Apache Software
Foundation and the Linux kernel mainline tree. These projects
disable the issue tracker provided by GitHub to avoid confu-
sion on which tracker is maintained by the project development
team. Thus, based on this information we remove from our
study the 3,801 projects (out of the 100,000) for which the
issue trackers were disabled.

We further investigate the list of projects, which include
popular projects such as the Linux kernel or the Ruby on Rails
framework, to ensure that most of the projects are non toy
projects of substantial sizes. To this end we count the total

5 http://git-scm.com 6 http://dwheeler.com/sloccount

lines of source code (LOC) in each project. Over 70% of
the projects contain more than 1,000 LOC. Around 35% of
the projects include more than 5,000 LOC, while more than
20% contain more than 10,000 LOC. Finally, over 600 projects
contain more than 1,000,000 LOC. This distribution suggests
that a significant number of the projects in the dataset are of
substantial sizes. To further ensure that most of the projects
are not toy projects typically created by GitHub new users, we
have filtered the data to projects with at least 1,000 LOC.

C. Research questions

Research and practice of software development is per-
formed under various assumptions about issue tracking that
have not been validated through extensive empirical studies.
Thus several hypotheses can be made, and accepted, that we
will attempt to (in)validate in this work:

H1 – Open source projects receive large numbers, e.g., over
1000, of issue reports.

H2 – During a software project lifecyle, developers write
code for which a distinct community of users report
issues. Thus we expect less than 50% of issue reporters
to be among project developers, and vice versa.

H3 – Collaborative coding environment has a positive im-
pact on issue reporting.

H4 – The more people are interested in a project and submit
issue reports, the quicker project developers handle
them.

Given the extent of our dataset, we investigate in this work
the following research questions to explore and assess the
relationship between various aspects of software projects and
the activities in their issue trackers:

RQ1. What is the proportion of projects that receive issue
reports and how can projects be differentiated in that respect?
For this research question, we study the overall adoption of
issue trackers and investigate the characteristics of projects
that receive issue reports.

RQ2. How many issues are tracked in projects whose
trackers are used? With this question, we further investigate
the popularity of issue trackers by quantifying the number of
issues reported in the projects.

RQ3. What is the number of occurences of category tags
in issue reports? What are the most frequently appearing
categories? In this question, we investigate the kinds of issues
that are reported, and we discuss the prevalence of the different
categories.

RQ4. Who enter issues into issue tracking systems? How
many of them are project team members? We study the
user-community that submits issue reports and investigate the
proportion of reporters that contribute to the code base.

RQ5. What is the relationship between utilization of issue
tracking system and project success (i.e., number of forks
and watchers)? We would like to establish and assess the
correlation between the success of a project and the number
of issue reports that it receives.

3

RQ6. Does the size of user communities impact the time-
to-fix rates of bugs? In this research question, we investigate
on a larger dataset of projects a result of previous studies based
on a unique development project, namely Firefox.

D. Statistical measurements

Our empirical study is based on a sample of projects.
Though, to the best of our knowledge, no related study
involving issue trackers has ever exploited that many projects,
there is a need to ensure that, statistically, our findings are
significant. To this end, we resort to common metrics in
statistical analysis for assessing the statistical significance of
our figures, and to confirm the existence of a correlation among
data from compared artefacts.

a) The Mann-Whitney-Wilcoxon (MWW) test: The
MWW test is a non-parametric statistical hypothesis test that
assesses the statistical significance of the difference between
the distributions in two datasets [18]. We adopt this test as it
does not assume any specific distribution, a suitable property
for our experimental setting.

Once the Mann-Whitney U value is computed it is used to
determine the p-value. Given a significance level α = 0.001,
if p-value < α, then the test rejects the null hypothesis,
implying that the two datasets have different distributions at
the significance level of α=0.001: there is one chance in a
thousand that this is due to a coincidence.

b) Spearman’s rho: Spearman’s rho (ρ), also known as
Spearman’s rank correlation coefficient, is used in statistics as
a non-parametric measure of statistical dependence between
two variables X and Y . This measure is used without any
assumption that the data is normally distributed, making it a
good fit for the datasets that we investigate in this study. The
values of ρ are limited to the interval [−1; 1], and a perfect
Spearman correlation of −1 or +1 occurs when each variable
is a perfect monotone function of the other. The closer to 0 ρ
is, the more independent the variables are.

IV. EMPIRICAL EVALUATION

In this section, we report the results of our empirical
study. These results are provided as responses to the research
questions that were formulated in Section III-C.

A. RQ1: Adoption of Issue Trackers

In the first research question we investigate the distributions
of issue trackers across projects. By default, a developer
creating a project in GitHub, is provided with a source control
repository and a corresponding issue tracker for the project.
Nonetheless, the developer can disable the issue tracking
making it inaccessible to users. Issue trackers are disabled
in only 3.8% of the projects. About 30% of the projects
have issue trackers containing some issues, while 66% of the
projects have completely unused issue trackers. In the rest of
our study, we dismiss projects with issue trackers disabled from
our dataset in order to emphasize on the differences between
projects that have no issue reports (albeit their issue trackers
are enabled) and projects having issues.

Thus, 2 projects out of 3 do not have issue reports though
their issue trackers are enabled. We thus investigate why.

To this end, we correlate the presence/absence of issues, in
enabled issue trackers, with different properties of a project,
including its age, the size of its code base, and the number
of people in the development team. We also investigate the
influence of the project’s owner (in general the leader) over
the presence of issues.

a) Project age: We measure the age of a project solely
based on its date of creation on GitHub. For each project, we
count the number of weeks that have passed since it has been
hosted in GitHub until June 2012. Our goal is to investigate
the relationship between the duration of a project’s exposure
in GitHub and the presence/absence of issue reports. Figure 1
shows the distribution of project age for both datasets drawn
as boxplots. The boxplots are drawn using the R statistical
analysis tool. Each boxplot contains 5 main horizontal lines.
From top to bottom, the first line indicates the MAXIMUM,
i.e., the greatest value, excluding outliers (determined by the
tool). All data points above this line are outliers. The second
line indicates the UPPER QUARTILE, i.e., 25% of data points
are above this line. The third line is the MEDIAN, the middle
of the dataset. The fourth line is the LOWER QUARTILE,
i.e, 25 % of data points are below this line. Finally, the fifth
line indicates the MINIMUM, i.e., the least value, excluding
outliers. Data points below this line are outliers (determined
by the tool).

We find that, on average, projects without issues had been
in GitHub for 70.05 weeks, with a median value of 49.57
weeks, while, on average, projects with issues had been in
GitHub for 81.57 weeks with a median value of 70.04 weeks.
Using the Mann-Whitney-Wilcoxon test, we have established
that the difference between the two datasets is statistically
significant at 0.001 significance level.

Fig. 1: Issues and the Age of Projects

This experiment reveals that projects with issues have been
hosted in GitHub, in median over half a year longer than
projects that do not have issue reports.

b) Lines of code: Figure 2 shows the distribution of
LOCs in project code bases. Projects with issues have a median
value of 1,820 LOC, while projects without issues have a
median value of 1,027 LOC. We have tested and confirmed
that the two distributions are significantly different using the
MWW test at 0.001 significance level.

Projects with smaller code bases are less likely to be the
target of issue reports. This finding is in line with the general
expectation.

4

Fig. 2: Issues and Lines of Code

c) Size of development teams: We furthermore investi-
gate the size of project teams. Figure 3 shows the distribution
of the number of contributors in projects with issue reports
and in projects without issue reports. The median number of
developers is 2 for projects without issues (mean=43) while
the number is raised to 5 for projects with issues (mean=49).
We again run the MWW test and find that the difference is
statistically significant at a significance level of 0.001.

Fig. 3: Issues and Project Team Size

The conclusion in this experiment is that single-person
and small-size-team projects are less likely to receive user
feedback.

d) Popularity of project leader: Finally, we investigate
the relationship between the popularity of project leader and
the number of reported issues. We make the assumption that
the project owner, i.e., the developer who created the project
repository in GitHub, is the lead developer and that his/her
popularity can be inferred from the number of developers
that subscribe to his activities by following him. We plot in
Figure 4 the distribution of the number of followers for both
the owners of projects with issue reports and the owners of
projects without issue reports. The median number of followers
is 2 for the owners of projects without issues (mean=21), while
this number is raised up to 15 for the owners of projects
with issues (mean=130). We have done the MWW test and
have found that the difference is statistically significant at the
significance level of 0.001.

Fig. 4: Issues and Popularity of Project Owners

We find that projects owned by developers having few fol-
lowers receive less user feedback than those lead by developers
having more followers.

Although there may be correlations among the various
dimensions that we have used in this section to investigate
the presence/absence of issues in the projects, it leads to the
same conclusion: smaller projects developed by small teams
consisting of unknown developers do not receive much user
feedback, at least not in the form of issue reports. Note that
there are many such projects in the open source community.

Many projects in GitHub do not receive any issue in
their issue tracking systems although these systems
are automatically set up for them. This finding in-
validates H1, our first hypothesis from Section III-C.
Projects with reported issues tend to be older, have
more lines of code, have more number of developers
in them, and have more popular owners. Project
owners should be better “advertised” to other users
of the social coding site GitHub which might help to
cause the other users to report issues in the tracking
system.

B. RQ2: Number of Issues Tracked

In total, for projects with issue reports (20,041 projects), we
have collected 803,840 reports for our analysis. We investigate
in the second research question the distribution of the numbers
of issues reported per project. Table I details this distribution:
86% of the projects have less than 50 issues, while only 1.14%
of the projects have more than 500 issues. Almost 7% of the
projects have between 50 and 100 reports while only 0.01% of
the projects (i.e., 2 projects) have at least 10,000 issue reports.

Also, we investigate the numbers of issues per 1,000
LOC. For each project, we divide the number of issues with
the number of kLOC. Figure 5 shows the distribution of
the numbers of issues per 1,000 lines of code. The median
number of issues per kLOC is 6.32. Nevertheless, the open
source software projects in our dataset deal with a variety
of applications domains with different complexity which can
account for different bug rates. The projects also use different
programming languages with disparate verbosity and a wide
range of technical difficulties. We therefore investigate whether
we can actually establish a correlation between the numbers
of LOC and the numbers of issues.

5

TABLE I: Prevalence of Issues in Trackers

Issues # Projects % of Projects with Issues

0 − 9 11,602 57.89%

10 − 49 5,526 27.57%

50 − 99 1,411 7.04%

100 − 249 976 4.87%

250 − 499 290 1.44%

500 − 999 163 0.81%

1000 − 4999 69 0.34%

5000 − 9999 2 0.01%

≥ 10000 2 0.01%

Fig. 5: Number of Issues per 1,000 LOC

In Figure 6 we provide the scatter plot of the numbers
of issues and the numbers of LOC from the projects in our
dataset. We compute Spearman’s rho which yielded a value
of 0.341. According to Hopkins [12], a Spearman’s rho of
between 0.3 and 0.4 indicates a moderate correlation.

Fig. 6: Scatterplot of # of LOC and # of Issues

Most projects have only a small number of reported
issues. Less than 8% of the projects have more than
100 issues in their issue tracking systems. The amount
of LOC is moderately correlated with the number of
issues reported.

C. RQ3: Tagging in Issue Trackers

We discuss, in the third research question, the categoriza-
tion of issue reports. GitHub issue trackers provide a flexible
feature for tagging issues to categorize them in order to ease
their management by developers. This flexibility, however,
comes with a cost since issue reporters may categorize the

issues with typographical mistakes, or using various idiosyn-
crasies. Among the 803,840 issue reports in our dataset,
218,467 (27.17%) contain tags. Issue reporters have used in
total 6,951 distinct tags to categorize their reports. Table II
presents the top-10 frequent tags.

TABLE II: Top-10 Popular Tags in GitHub Issue Reports

Tag # Tagged Issues % of Tagged Issues

bug 40,112 18.36%

feature 22,477 10.29%

enhancement 11,584 5.30%

Win7 9,736 4.38%

ie8 7,626 3.49%

chrome 6,817 3.12%

other 6,667 3.05%

FireFox 5,669 2.59%

Feature request 5,594 2.56%

wrong-or-unclear 5,464 2.50%

There are two widespread tags, namely bug and feature,
which are observed in 18.36% and 10.29% of the tagged issues
respectively. Issue trackers are then essentially used in software
projects to report bugs and request new features. Unfortunately,
since tags are not predetermined by GitHub, many tags can be
used to refer bug report or feature request. Table III lists sample
tags that are used to refer to a bug report or a feature request.
The variety of terms mainly stems from the preferences of
issue reporters and typographical mistakes.

TABLE III: Bug Report and Feature Request Tags

bug bug; defect; type:bug; Browser Bug; bugfix; etc.

feature feature; request; proposal; featreq; feautre; etc

In order to more accurately quantify the number of issues
belonging to the top-2 categories, we cluster the tags that are
relevant to bug reports and feature requests. We first manually
create two small clusters, of sizes 5 and 7, that correspond to
bug reports and feature requests respectively. Next, we want
to semi-automatically add more tags to these clusters. Rather
than manually checking all of the thousands of tags, we want
to partially automate the process. To this end, we compute
the Levenshtein distance [17] between each tag and the sets
of tags in our predefined clusters. Let Tt be a tag that we
evaluate to include in one of our clusters, and Tc a tag that
already belongs in the cluster and to which Tt is compared. We
compute the Levenshtein distance d between Tt and Tc. Let
the string length of Tc be l. If d < l

2
, then we add the tag Tt to

the cluster. Using this formula, we were able to include more
tags into each cluster. At the end of the process, we manually
check each tag in the clusters. This process has enabled us to
identify 91 tags that belong to the category of feature requests
and 18 tags in the category of bug reports. Table IV details the
results after clustering tags that refer to bug/error reports and
feature/enhancement requests. The updated findings suggest
that bug/error reports and feature/enhancement requests are
equally important for issue reporters.

The second observation from Table II is that there is a
significant number of issues that are tagged with internet

6

TABLE IV: Bug Report and Feature Request Tags

Label # Labeled Issues % of Labeled Issues

bug/error 45,123 20.65%

feature/enhancement 46,402 21.23%

browsers’ names. This suggests that projects related to web
development receive more issue reports than the others. This
in turn may imply either one of two distinct phenomena : (1)
web applications have more implementation issues than other
types of software; (2) users of web applications more readily
report issues than users of other types of software programs.

To assess the reality of the first phenomenon, we assume
that a software application domain can be inferred from the
programming language used in its code base. Though this
assumption cannot be generalized, we can, to some extent,
do this for web programming as many languages targeted at
web development are specialized for web programming. We
then attempt to establish whether projects written in com-
mon languages for web programming, such as Ruby, Python,
JavaScript or PHP, contain more issues than the rest. We use
David A. Wheeler’s SLOCCount [29] utility to count actual
physical source lines of code and their associated language. We
classify the languages according to the number of issues that
are filed in all the projects that are written in each language.
Figure 7 shows the distribution of the number of issues for
the top-10 languages that correspond to the highest number
of issues. We observe that PHP is hidden in the middle with
a median value comparable to that of system-level languages
such as C and C++. Ruby has a slightly higher median value,
while JavaScript does not appear in the top-ranked languages.

●● ●● ●● ●● ●●● ● ●● ●●● ●● ● ●● ●● ●● ●● ● ● ●●●● ●●●● ●● ●● ●●● ● ●● ●● ●● ●● ●● ●●● ● ●● ●● ● ●● ● ●● ●● ●● ● ● ● ●● ● ● ●●●● ● ●● ●● ●● ●● ●●●● ●● ●●● ● ●●● ●● ● ● ● ●●●● ●●● ● ●● ●●●●● ●● ●● ● ●●●● ● ●●●● ●●●● ●● ● ●●●● ●●● ● ●● ●● ●● ● ●●● ● ●●● ● ● ●●● ●●●● ● ●● ●● ●● ●● ● ●●● ●● ●● ● ●● ● ●●● ●● ●●● ●● ● ●●●● ●●●● ● ●●● ● ● ● ●●●● ●● ●● ●●● ● ●● ● ●● ●● ● ●●●● ●● ●● ●●● ●●● ●●● ● ●● ● ● ●●● ●● ● ● ●● ●● ● ●● ● ●● ●● ●● ● ● ●● ● ●● ●● ● ●●●● ●● ●● ●●● ●●● ●● ●● ●● ●● ● ● ●● ● ●● ●● ● ●● ●● ● ● ●● ●● ●● ● ●● ● ● ●● ●●● ●● ●● ● ●●● ● ●● ●●● ●● ●● ● ●● ●●● ●● ● ●●● ● ●● ●●●● ●● ● ●● ●●● ● ●● ●● ●● ●● ● ●● ● ● ● ●●● ●● ●● ● ●● ●● ● ● ●●● ●● ●●● ●● ● ●● ●● ●●●●● ● ●● ●● ●●●● ●● ●● ●●●●● ● ●● ● ●● ●● ●●● ●●● ● ● ●●●● ● ●● ●●● ● ●● ●●● ●● ●

● ●● ●● ● ●● ●● ● ●● ● ●●●● ● ●● ● ●● ● ●●● ●●●●● ●●● ●●● ●● ●● ●● ●●●●● ●● ● ●● ●● ●● ● ● ●● ●●● ●● ●●● ● ● ● ●●● ● ●●● ● ● ● ●● ●● ●● ●●● ●● ●● ●● ●● ● ●●● ● ●● ● ●● ● ●● ●● ●● ●● ●●● ●● ●● ●● ●● ● ●●● ● ●●● ● ●●● ● ●●● ●● ●●● ● ●● ●● ●● ● ●● ● ●●● ●● ● ●● ●● ●● ●● ●●● ● ●●●● ●● ● ●●● ● ●

●● ● ●● ●●● ●●● ●● ●● ● ● ● ●● ● ● ●● ●● ●●●● ●●●● ● ●● ● ●● ● ● ●● ●● ● ●● ● ●●● ●●● ●●●● ●● ●●● ●● ● ●●● ●●●● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ● ●● ●● ● ● ●● ● ●● ● ●● ● ● ●●●● ●● ●● ● ●●●● ●● ●● ●● ●● ●● ● ●● ●● ● ●● ● ● ●●● ●● ●● ● ● ●● ●● ●●● ●● ●● ●● ● ●● ●●● ●● ●● ● ● ●● ●● ●● ●●● ●● ● ●● ● ●●● ● ●● ● ●● ● ●●● ●● ● ●● ●●● ● ●● ●● ●●● ●● ● ●● ●● ●● ●●● ●●● ● ●●●● ●● ●● ● ●● ●● ●● ● ● ●● ●●● ●●● ● ●●●● ● ●●● ●●●●● ●● ●● ●●● ●● ●● ●● ● ● ●●●●●● ●● ● ●●● ● ●● ●● ● ● ●● ●● ●● ●● ● ● ●● ●● ●● ●● ● ●● ● ● ●●●● ●● ● ●●● ●●●

●●● ●● ●●● ●● ● ●●●● ●● ●● ●● ●● ●● ● ●●● ●●● ●● ●● ●● ●● ●● ●● ● ●●● ● ● ●● ● ●●●● ● ●● ● ● ●● ● ●●● ●● ● ●●● ●● ●● ● ●●● ●● ●● ● ●● ●●●●● ●● ● ●● ●●● ●● ●● ●● ●● ●● ●●● ●● ● ●● ●● ● ●● ● ●● ● ●● ● ● ●● ●●●● ●● ● ● ●● ● ●●●●● ●●● ●● ●●● ●● ●●● ●●● ● ● ●● ●● ●●● ●●● ●●● ●●● ● ● ●● ●● ● ● ●●● ● ●● ● ● ●●● ● ● ●●● ●● ●● ● ● ●● ●●● ●● ● ● ●●● ●●● ●● ● ●● ● ●●● ●●●● ●● ● ●●●● ● ● ●●● ● ●●● ●●● ●●●● ●● ● ●● ● ●● ●● ●● ● ●●● ● ●● ● ●● ●● ● ●● ● ●● ●● ●●● ●●● ● ●● ●● ● ●● ● ● ●● ● ●●●● ●●● ● ●● ● ●● ●● ● ●● ● ● ●●● ●●● ● ●● ● ●● ●● ● ●●● ● ●● ●●●● ●●●● ●● ● ●●●●● ●●● ● ● ● ●● ● ●● ●● ●● ● ●● ●● ● ●● ● ●●● ●● ● ●● ●●● ●●●● ●●● ●● ● ● ●● ●● ●●●●●●● ● ● ●●●●● ●● ● ●● ● ●●● ● ● ●● ●● ●● ● ●● ●● ● ●● ● ●●● ● ● ● ●●● ● ● ●● ● ●● ●●● ● ●● ●●●●● ● ●●●● ●● ● ●● ● ●● ●● ● ●● ● ●● ●● ●● ● ●●● ● ● ●● ● ●●● ●●●●● ● ●● ●● ● ●●● ●● ●●● ● ●● ●● ● ●●● ●● ●● ● ●● ● ● ●●●● ●● ●●●●● ● ●●● ●● ● ●●●● ●● ● ●● ●● ●● ●●●●● ●●● ● ●●● ● ● ● ●●● ●● ● ●● ● ●● ● ●●● ●● ● ●●●●● ●● ●● ●● ●● ●● ● ●●●● ● ● ● ●● ●●● ● ●● ●● ● ●● ● ●● ● ● ●● ●● ● ● ●●● ● ●● ● ●● ●● ● ●●● ● ●●●● ● ●●●● ● ●● ●●● ●● ● ●● ● ● ●●● ● ● ●●●●● ●● ●● ●● ●●●●● ●● ● ●● ●● ● ●●●●● ● ●● ●● ● ●●●● ●● ● ●● ●●● ● ● ●● ●● ● ●●●●● ●● ●● ● ●● ● ● ●●● ● ●● ●● ●●● ●● ● ●● ● ●●● ●●● ● ● ●●● ● ●●●● ●● ● ●●●● ● ●●

●● ● ●●● ●●● ● ● ●● ●● ●● ● ●●● ● ●● ●● ●● ●● ●●● ●● ●●● ●●●● ● ●● ●●●● ●● ●●● ●●● ●●● ●●● ●● ●● ●● ●●● ● ●●● ●● ●●●● ●● ●● ●● ●●● ● ●●● ● ●●● ●● ● ● ●● ●● ●●● ●● ●● ●● ●● ● ●● ●● ● ●● ● ●● ● ●●● ● ●●● ●● ●● ●● ●● ● ●●● ●● ●● ●● ●● ●● ● ● ●● ●●● ●● ●● ●● ● ●●● ●● ●●● ● ●● ● ●●● ● ●●●● ● ●● ●●● ●● ● ●● ●● ●●● ●● ●●● ● ●● ●● ●● ● ●●● ●● ● ●●● ●● ●●● ●● ●● ●● ●●● ●● ●● ● ●●● ●●●● ● ● ●● ● ●●● ●● ●●●●● ● ●●● ● ●● ●● ● ●● ● ●●● ●●● ●●● ●● ●● ●●● ● ●● ● ●● ● ●● ●● ●● ●● ● ● ●● ●●● ● ●● ●● ● ●● ●● ●● ● ● ●● ●● ● ●●● ●● ●● ●● ●●● ● ●● ● ●● ● ●● ●● ●● ●● ● ● ● ●● ●● ●● ●● ●●● ●● ●● ●●●●● ● ● ● ●● ●●●● ●●●

●● ●● ● ● ●● ● ●●

●

● ● ●●● ● ● ●● ●●●● ●●● ●● ●● ●● ●● ●● ● ● ● ●●● ● ● ● ●●● ●● ●● ● ●●● ●● ●●● ●● ●● ●● ● ●●●● ●●● ●● ● ●●● ●●●● ●● ● ●● ●● ●●● ● ●● ●●

● ●● ● ●

● ● ●● ● ●●● ●● ●● ●●● ● ● ●●● ● ●● ● ● ●● ● ●● ●● ●● ●● ●● ●●● ● ●●●● ● ● ●●● ●● ●● ●● ●● ● ●● ● ●● ●● ● ● ●● ●●● ●● ●● ● ●●● ●● ●●● ● ●●● ●● ● ●● ● ● ●● ● ● ●●● ● ●● ● ●● ● ●● ● ●●●● ●●● ●● ●●● ● ●● ●● ●● ●● ●● ●●●● ●● ●●● ●

python
ansi c

java
ruby
php

pascal
fortran

c#
ml

c++

1 10 100 1000 10000

of issues

Fig. 7: Prevalence of Issue Reports for Common Languages

Thus, we dismiss the first phenomenon. We conclude that
users of web applications more readily report issues. We
hypothesize that since users of web applications are already
accessing the web when they encounter the issues, they can
directly report them to issue trackers which are online.

Only less than 30% of issue reports in our dataset
are tagged. The two most common tags are bug and
feature.
More than 12% of issues are tagged with labels
related to web browsers and/or web applications

D. RQ4: Who Enter Issues into Issue Trackers

We now discuss the identity of issue reporters. The goal
is to investigate the actual feedback provided by the user

community as compared to the issues reported by development
team members. Thus, for each project with issues, we analyze
the number of developers, the number of issue reporters and
compute the proportion of the project developers that also file
issue reports and vice versa.

Based on developer names, we have identified in total
581,856 distinct developers who have contributed to the code
bases of the projects with issues. Those issues were filed by
239,629 reporters. We have furthermore found that, for each
project, one third of the developers (33%, the median value)
have written some issue reports for the project. On the other
hand, 42% of the issue reporters for a given project do not
contribute to the code base.

Figure 8 shows the distribution of developers and reporters
for all projects. The box plot shows that most developers in a
project do not report issues in their own project. However,
it indicates that a large portion of issue reporters actually
contribute to the code base of the project.

Fig. 8: Proportions of Developers among Issue Reporters and Vice
Versa

Project developers report issues, and issue reporters
also often contribute to the code base. Our second hy-
pothesis H2 is therefore disputed. Development teams
should therefore acknowledge reporters to encourage
them to become active contributors.

E. RQ5: Issue Trackers and Project Success

To provide insights on the fifth research question, we
investigate the relationship between the success of a project
and the number of its reported issues. To this end, we rely on
popularity metrics based on GitHub’s social coding features—
forking and watching—to estimate the level of interest in a
project.

a) Watchers: We first consider that the success of a
project is proportional to the number of developers that watch
the project. The score of the success metric can change as
GitHub allows users to unwatch a project if they lose interest
in it. Figure 9 shows a scatter plot that we use to explore the
correlation between the number of issues and the number of
watchers for each project. The Spearman’s rho for the two
distributions is 0.628, suggesting a large correlation between
the numbers of issues and the numbers of watchers.

7

Fig. 9: Issues and Project success:
Watchers vs. Issue Reports

We proceed to investigate the correlation between the
numbers of watchers and the numbers of issue reporters. The
scatter plot of Figure 10 shows the correlation between the
two datasets. Spearman’s rho amounts to 0.789. This suggests
that there is a very large correlation between the numbers of
issue reporters and the numbers of watchers.

Fig. 10: Issues and Project Success:
Watchers vs. Issue Reporters

b) Forks: Here we measure project success by the
number of forks. Indeed, the number of forks provides a
relatively good indication of the involvement of non-team
developers in the development of a project.

Figure 11 shows the scatter plot of the numbers of issue
reporters and the numbers of forks from the projects in our
dataset. We have computed Spearman’s rho which yielded the
value of 0.829, suggesting a very large correlation between the
number of forks and the number of issue reporters. We also
compute Spearman’s rho to assess the strength of the depen-
dence between the number of forks and the number of issues as
in the previous experiment. In this case, the coefficient drops
to 0.669, suggesting simply a large dependence.

Fig. 11: Issues and Project Success:
Forks vs. Issue Reporters

There is a large correlation between the number
of issues and the number of watchers and forks.
There is also a very large correlation between the
number of issue reporters and the number of watchers
and forks. Thus, distributed programming positively
impacts the amount of feedback (i.e., issue reports) for
a project, suggesting that this software development
style should be promoted more. Our hypothesis H3 is
thus validated.

F. RQ6: Does the number of reporters impact the time-to-
close?

Finally, we investigate the relationship between the number
of reporters and the effort made by developers to quickly
address issues. In previous work based on issue reports, Van
Liere had shown that the large number of Firefox issue
reporters has lead to the reduction of the time-to-close interval
for software defects [27]. We therefore investigate whether this
is a phenomenon common among thousands of projects or
whether it is specific to the development setting of Firefox.

Figure 12 shows a scatter plot of projects with their
respective numbers of issue reporters and the median time-
to-close intervals. A time-to-close interval is computed as
the number of days between the creation date of the issue
report and its close date. The graph does not show any linear
dependence between those two aspects of project development.
We furthermore compute Spearman’s rho which yields a rho
value of 0.161 confirming that there is only a small correlation
among the numbers of issue reporters and the speed in which
the issues are addressed.

The time-to-fix intervals of issues is only slightly im-
pacted by the number of issue reporters. We therefore
note that Hypothesis H4 is disputable.

V. THREATS TO VALIDITY

We have identified the following threats to validity to our
study.

a) External validity: Our sample set of projects, though
sizeable with tens of thousands projects, may not represent
the universe of all real-world projects. Furthermore, we have

8

Fig. 12: Scatterplot of the Number of Issue Reporters and the
Time-to-Close

focused this study on open source projects found on GitHub
which may not perfectly generalize to every software project.
Nonetheless, to the best of our knowledge, GitHub is the
largest database of projects and has no restriction on the
types of project that can be hosted. Moreover, as the study
of Grammel et al. suggests, issue reporting in closed source
projects yields similar data to that in open source projects [9].

b) Internal validity: Second, although we have curated
our datasets to remove projects whose development, in partic-
ular issue management, occurs outside GitHub, some project
owners may not disable the issue trackers even though they
only deal with issues reported from other channels. This can
lead to bias in our survey. Nonetheless, we have manually
checked that for popularly known projects, such as Linux,
that maintain issue trackers in well-known locations outside
GitHub, have disabled their issue trackers on GitHub. Finally,
we believe that, with a sizeable sample of 100,000 projects,
the number of outliers is very small compared to the rest.

In addition, we have filtered our dataset to only consider
projects with more than 10 kLOC. A different threshold may
yield different findings.

c) Construct validity: Finally, we have relied on heuris-
tics for estimating the popularity of a project leader, the success
of a project, and the application domain of a project. As
we have described for each, those are simple proxies to the
ground truth. However, they provide useful metrics and good
indications on the popularity of each project, the popularity of
each project owner, and the domain of a project in GitHub.

VI. RELATED WORK

GitHub, as a social coding site that hosts millions of
software projects, contains a wealth of information about the
practice of software development. In previous works, data from
GitHub was leveraged to conduct large-scale studies on the
popularity of programming languages [6] and the adoption
of software testing [20]. In this paper, we exploit this data
to investigate issue reporting in open source projects. To
stress the importance of issue reporting we highlight in the
following a number of studies related to issue reports in
software development projects.

A. Acknowledging user communities

A significant number of studies have discussed the im-
portance of the feedback provided by user communities in
the life cycle of a software development project. Bagozzi et
al. [3], Iivari [14], Hendry [10] and Singh et al. [22] have
investigated the role of users in open source communities. In
these studies they make the point that users actually drive the
software project and its evolution. Furthermore, they discuss
how users influence the project towards their needs and how
developers acknowledge users’ input.

Unfortunately, while the importance of user communities is
widely accepted, the participation of users in issue tracking is
more controversial in the literature. For example, considering
the case of the Firefox web browser, Van Liere has concluded
that large number of bug reporters reduces the time-to-fix
interval for software defects [27], while Ko and Chalina
reported for the same system that users file “non-issues that
devolved into technical support, redundant reports with little
new information, or narrow, expert feature requests” [15].
Based on our findings on thousands of open source projects,
it appears that there is only a small correlation between the
number of issue reporters and the time-to-fix rates of bugs.

Recently, Grammel et al. have explored the user involve-
ment in issue tracking with a comparative study between open
source and commercial development [9]. Basing their study on
the open source Eclipse project and the closed source project
IBM Jazz, they show that closed source projects can also
successfully receive user feedback through issue reports as
with any open source project. This suggests that our own study,
which is based on open source projects, could be generalizable
to closed source projects.

B. Exploring issues in software code

A large body of the literature has discussed the correlation
between various properties of software code and software
development processes with the presence of defects. Nagappan
and Ball have shown how churns in code changes correlate
with increases in software failures [19]. Koponen and Tintula,
on the other hand, have investigated on Mozilla and Apache
whether the changes made in project code bases were induced
by defect reports. They found that this was clearly the case for
Mozilla but not for Apache [16]. Posnet et al. have explored
how new features, on the one hand, and improvement tasks,
on the other hand, affect the quality of code [21].

C. Improving issue reporting

Issue reporters may file reports that are incomplete or
even invalid, adding to the challenges that developers face in
software projects. A number of studies have discussed and
proposed approaches to enhance issue reports to make them
more useful [23]. Hooimeijer and Weimer have proposed a de-
scriptive model for measuring the quality of a bug report [11].
To build the model, they assume that the “time until resolved”
is a good indicator for the quality of a bug report. Bettenburg
et al. have later relied on actual developer feedback to train
CUEZILLA [4], their utility for providing bug reporters with
tips to improve the quality of their reports.

9

D. Enhancing issue management

Despite the various guidelines on effective bug reporting
that float around the internet, development teams are flooded
with a considerable number of reports with disparate qual-
ity and usefulness. Researchers have thus been devising ap-
proaches for automating various processes in the management
of issues. Canfora et al. [7] and Anvik et al. [2] have proposed
different approaches for automatically assigning developers to
bug reports. Weiss et al. have proposed to automatically predict
the effort for fixing bug reports and estimate the time it will
take to fix them [28]. Hosseini et al., in their approach for
improving bug assignment, rely on the stated characteristics
of a bug, such as severity, platform or priority, to predict its
time-to-fix [13].

VII. CONCLUSION AND FUTURE WORK

Issue reports are important artefacts in software develop-
ment. Various issue tracking systems have been developed and
widely used, among which, Bugzilla and Jira are well-known.
Hosting platforms such as Freecode, Google Code, and GitHub
implement in-house issue trackers to collect user feedback. The
assumed prevalence of issue reports in software development
projects has led to the development of approaches for various
purposes, such as improving issue reporting, enhancing issue
management, and leveraging issue information for bug fixing.

In this paper, we have investigated the actual adoption
of issue trackers in software projects to shed lights to many
research questions on the involvement of users and developers
in reporting issues. We describe the findings of our empirical
study on tens of thousands of open source projects in GitHub.
We have found the following results:

• issues are almost exclusively reported in large projects
with big development teams led by developers having
the most followers;
[H1 disputed]

• a large proportion of issue reporters are actually in-
volved in the development of the project;
[H2 disputed]

• distributed development, recognized with project
“forking”, contributes to an increase in the number
of issue reporters;
[H3 holds]

• there is only a small correlation between the numbers
of issue reporters and the time-to-close delays.
[H4 disputed]

• there is a moderate correlation between the numbers
of issues tracked and the numbers of lines of code;

• social coding, through the intuitive implementation of
project “watching”, have an influence on the preva-
lence of issue reports;

• issue reporters are equally interested in reporting bugs
as well as requesting new features in a project;

In this paper, we have limited our study to a snapshot of
the projects at a given date: June 2012. In future work, we
would like to investigate other questions involving temporal
information, such as “When do people start reporting issues?”,

and “Do issue reports contribute to attract developers in joining
the development teams?”.

REFERENCES

[1] G. Antoniol, K. Ayari, M. D. Penta, F. Khomh, and Y.-G. Guéhéneuc,
“Is it a bug or an enhancement?: a text-based approach to classify
change requests,” in CASCON, 2008.

[2] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in
ICSE, 2006, pp. 361–370.

[3] R. P. Bagozzi and U. M. Dholakia, “Open source software user
communities: A study of participation in linux user groups,” Manage.
Sci., vol. 52, no. 7, pp. 1099–1115, Jul. 2006.

[4] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zim-
mermann, “What makes a good bug report?” in FSE, 2008, pp. 308–318.

[5] C. Bird, A. Bachmann, F. Rahman, and A. Bernstein, “Linkster:
enabling efficient manual inspection and annotation of mined data,”
in FSE, 2010.

[6] T. F. Bissyandé, F. Thung, D. Lo, L. Jiang, and L. Réveillère, “Popular-
ity, Interoperability, and Impact of Programming Languages in 100,000
Open Source Projects,” in COMPSAC, Kyoto, Japan, 2013, [To appear].

[7] G. Canfora and L. Cerulo, “Supporting change request assignment in
open source development,” in SAC, 2006, pp. 1767–1772.

[8] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[9] L. Grammel, H. Schackmann, A. Schröter, C. Treude, and M.-A.
Storey, “Attracting the community’s many eyes: an exploration of user
involvement in issue tracking,” in HAoSe, 2010, pp. 3:1–3:6.

[10] D. G. Hendry, “Public participation in proprietary software development
through user roles and discourse,” Int. J. Hum.-Comput. Stud., vol. 66,
no. 7, pp. 545–557, Jul. 2008.

[11] P. Hooimeijer and W. Weimer, “Modeling bug report quality,” in ASE,
2007, pp. 34–43.

[12] W. G. Hopkins, A New View of Statistics. Sport Science, 2004.

[13] H. Hosseini, R. Nguyen, and M. W. Godfrey, “A market-based bug
allocation mechanism using predictive bug lifetimes,” in CSMR, 2012,
pp. 149–158.

[14] N. Iivari, “Empowering the users? a critical textual analysis of the role
of users in open source software development,” AI Soc., vol. 23, no. 4,
pp. 511–528, Oct. 2008.

[15] A. J. Ko and P. K. Chilana, “How power users help and hinder open
bug reporting,” in CHI, 2010, pp. 1665–1674.

[16] T. Koponen and H. Lintula, “Are the Changes Induced by the Defect
Reports in the Open Source Software Maintenance?” in SERP, 2006,
pp. 429–435.

[17] V. Levenshtein, “Binary Codes Capable of Correcting Deletions, Inser-
tions and Reversals,” Soviet Physics Doklady, vol. 10, p. 707, 1966.

[18] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The Annals of
Mathematical Statistics, vol. 18, no. 1, pp. 50–60, 1947.

[19] N. Nagappan and T. Ball, “Using software dependencies and churn
metrics to predict field failures: An empirical case study,” in ESEM,
2007, pp. 364–373.

[20] K. Pavneet Singh, T. F. Bissyandé, D. Lo, and L. Jiang, “Adoption of
Software Testing in Open Source Projects - A Preliminary Study on
50,000 Projects,” in CSMR, Genoa, Italy, 2013.

[21] D. Posnett, A. Hindle, and P. T. Devanbu, “Got issues? do new features
and code improvements affect defects?” in WCRE, 2011, pp. 211–215.

[22] V. Singh, M. Twidale, and D. Nichols, “Users of open source software
- how do they get help?” in HICSS, jan. 2009, pp. 1 –10.

[23] J. Spolsky, Joel on Software. APress, 2004.

[24] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards more accurate
retrieval of duplicate bug reports,” in ASE, 2011, pp. 253–262.

[25] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative
model approach for accurate duplicate bug report retrieval,” in ICSE
(1), 2010.

[26] Y. Tian, C. Sun, and D. Lo, “Improved duplicate bug report identifica-
tion,” in CSMR, 2012, pp. 385–390.

[27] D. W. van Liere, “How shallow is a bug? why open source communities
shorten the repair time of software defects.” in ICIS, 2009, p. 195.

[28] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How long will
it take to fix this bug?” in MSR, 2007.

[29] D. A. Wheeler, “SLOCCount: Counting physical Source Lines of Code,”
http://www.dwheeler.com/sloccount/.

[30] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “Relink: recovering links
between bugs and changes,” in FSE, 2011.

10

