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Résumé — Approche problème inverse pour l’alignement de séries en tomographie électronique —

Dans le domaine du raffinage, les mesures morphologiques de particules sont devenues

indispensables pour caractériser les supports de catalyseurs. À travers ces paramètres, on peut

remonter aux spécificités physico-chimiques des matériaux étudiés. Une des techniques

d’acquisition utilisées est la tomographie électronique (ou nanotomographie). Des volumes 3D

sont reconstruits à partir de séries de projections sous différents angles obtenues par

Microscopie Électronique en Transmission (MET). Cette technique permet d’obtenir une réelle

information tridimensionnelle à l’échelle du nanomètre. Un problème majeur dans ce contexte

est le mauvais alignement des projections qui contribuent à la reconstruction. Les techniques

d’alignement actuelles emploient habituellement des marqueurs de réference tels que des

nanoparticules d’or pour un alignement correct des images. Lorsque l’utilisation de marqueurs

n’est pas possible, l’alignement de projections adjacentes est obtenu par corrélation entre ces

projections. Cependant, cette méthode échoue parfois. Dans cet article, nous proposons une

nouvelle méthode basée sur une approche de type problème inverse où un certain critère est

minimisé en utilisant une variante de l’algorithme de Nelder et Mead, qui exploite le concept

de simplexe. Elle est composée de deux étapes. La première étape consiste en un processus

d’alignement initial s’appuyant sur la minimisation d’une fonction de coût basée sur des

statistiques robustes, mesurant la similarité entre une projection et les projections précédentes

de la série. Elle vise à réduire les forts déplacements, résultant de l’acquisition entre les

projections successives. Dans la seconde étape, les projections pré-recalées sont employées

pour initialiser un processus itératif et alterné d’alignement et reconstruction, minimisant

alternativement une fonction de coût basée sur la reconstruction du volume et une fonction

basée sur l’alignement d’une projection avec sa version simulée obtenue à partir du volume

reconstruit. À la fin de ce processus, nous obtenons une reconstruction correcte du volume, les

projections étant correctement alignées. Notre méthode a été testée sur des données simulées et

prouve qu’elle récupère d’une manière précise les changements dans les paramètres de

translation, rotation et mise à l’échelle. Nous avons testé avec succès notre méthode pour les

projections réelles de différents supports de catalyseur.

Abstract— Inverse Problem Approach for the Alignment of Electron Tomographic Series— In the

refining industry, morphological measurements of particles have become an essential part in the
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characterization catalyst supports. Through these parameters, one can infer the specific physico-

chemical properties of the studied materials. One of the main acquisition techniques is electron

tomography (or nanotomography). 3D volumes are reconstructed from sets of projections from dif-

ferent angles made by a Transmission Electron Microscope (TEM). This technique provides a real

three-dimensional information at the nanometric scale. A major issue in this method is the misalign-

ment of the projections that contributes to the reconstruction. The current alignment techniques usu-

ally employ fiducial markers such as gold particles for a correct alignment of the images. When the

use of markers is not possible, the correlation between adjacent projections is used to align them.

However, this method sometimes fails. In this paper, we propose a new method based on the inverse

problem approach where a certain criterion is minimized using a variant of the Nelder andMead sim-

plex algorithm. The proposed approach is composed of two steps. The first step consists of an initial

alignment process, which relies on the minimization of a cost function based on robust statistics mea-

suring the similarity of a projection to its previous projections in the series. It reduces strong shifts

resulting from the acquisition between successive projections. In the second step, the pre-registered

projections are used to initialize an iterative alignment-refinement process which alternates between

(i) volume reconstructions and (ii) registrations of measured projections onto simulated projections

computed from the volume reconstructed in (i). At the end of this process, we have a correct recon-

struction of the volume, the projections being correctly aligned. Our method is tested on simulated

data and shown to estimate accurately the translation, rotation and scale of arbitrary transforms.

We have successfully tested our method with real projections of different catalyst supports.

INTRODUCTION

The term “tomography” refers to all methods of exact

reconstruction or – most often – approached reconstruc-

tion of the interior of an object from its projections; in

other words methods for obtaining information on the

composition of an object from the measurements taken

outside the object.

Electron tomography (EM) [1] is a very powerful char-

acterization technique for the reconstruction of the 3D

nanoscale structure of objects from a series of two-dimen-

sional projections. A series of 2D TEM projections is

acquired by tilting the specimen at various angles (usually

in the range ± 70�, one projection every degree) around

an axis perpendicular to the electron beam (Fig. 1).

The geometry of acquisition is parallel (i.e. the electron

beam which crosses the sample is rectilinear). In such

parallel configurations, simplest reconstruction techniques

recast the volume reconstruction into a series of indepen-

dent 2D reconstructions, each corresponding to a slice

perpendicular to thedetector.Threemainapproacheshave

been developed in tomography: Filtered Back-Projections

(FBP) [2], algebraic reconstruction methods [3-5] and

algorithms based on Fourier transform [6, 7].

These reconstruction methods require a precise align-

ment of the different projections. Because of mechanical

imprecision and magnetic lenses defocus, neighboring

projections may differ by a shift, a slight tilt and a change

in magnification [8]. Currently, the most common align-

ment technique uses markers’ tracking [9-11]. This

method uses gold nanoparticles spread onto the surface

of the specimen prior to imaging; these particles can be

localized very accurately, even at high tilt angles, thanks

to their round shape and their sharp contrast. Alignment

with markers has two advantages. First, since markers

positions measured over the full range of tilt angles are

fit to a single set of projection equations, the alignment

of the series of projections is guaranteed to be globally

consistent. Secondly, the method can be adapted to cor-

rect anisotropic and non-uniform changes of the speci-

men during the tilt series [8]. However, the fiducial

markers method has several practical disadvantages. It

can be difficult to obtain an appropriate distribution of

markers on the specimen, i.e. a distribution as homoge-

neous as possible, a necessary condition for proper

alignment. For high-resolution reconstruction (e.g.

reconstructed volume with voxels <1 nm3), the size of

gold nanoparticles (approximately 5 nm in diameter)

becomes considerable and troublesome by masking an

important part into the body of the reconstruction.

Another disadvantage of markers is the need to track

their positions accurately, which can be a very costly

step. Certain approaches [12-14] are based on points of

interest automatically extracted from the images, these

points are then used to find the alignment parameters.

We deal here with the case where no such markers are

used for alignment. This case can be handled by cross-

correlation methods [15-18]. The principle of these tech-

niques is based on the alignment between two images.

Precisely, the first image of a series of projections is

chosen as the reference image, then each image is

aligned with the previous image in the series, thereby
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sequentially compensating image shifts throughout the

entire series. Moreover, the accumulation of errors in

the estimated parameters is a disadvantage of these

methods based on pairwise alignment of images. To

overcome this defect, a 3D model-based method is pro-

posed by Dengler [19], in which the alignment parame-

ters were refined by alternating a reconstruction step

and an alignment step between the modeled projections

and real projections. This method has been developed

by several authors [20-22]. In cryoEM for the biological

sciences, the 3D model-based method is known as a pro-

jection matching [23, 24], which also yields excellent

results for X-ray tomography [25].

In this paper, we propose a new method for the align-

ment of TEM image series without the need for fiducial

markers, which recovers in an accurate manner the

changes in translation, rotation and scaling parameters.

The alignment procedure consists of two stages:

– first, we use an optimization approach to align the ser-

ies of projections. The aim is to reduce the strong

shifts, resulting from the acquisition between succes-

sive projections, and to facilitate the following step;

– the pre-aligned projections are then used to initialize

an iterative procedure which alternatively restores

the 3-D object and accurately aligns the projections.

1 INITIAL ALIGNMENT

1.1 Alignment Between Two Images

Prior to the general case (global alignment ofM images),

one needs to build an alignment method for 2 images.

Four transformation parameters are required: horizon-

tal and vertical translations, rotation and scaling. These

parameters define how an image I t to be registered is

transformed into a reference image I r. We propose a

method that is more robust than cross-correlation based

approaches (see Appendix 2). This method finds the

parameters of the geometrical transformations by mini-

mizing the Mean Squared Error (MSE) between I r
and I t:

�/� ¼ arg min
�/

E �/ð Þ ð1Þ
with:

Eð�/Þ ¼ 1

N

XN

i¼1

I rðuiÞ � ðR�/ � I tÞðuiÞ
� �2 ð2Þ

The ui are the pixels’ coordinates, R�/ is a linear opera-

tor which interpolates its argument in order to apply a

geometrical transformation of the image specified by

the parameters �/ ¼ ð�ux;�uy;�u;�sÞ corresponding
respectively to the horizontal and vertical shifts of

a translation, the angle of a rotation and the magnifica-

tion scale (Sect. 1.2). N is the number of pixels

in the domain of interest (see Fig. 2), which depends

on �/. In our application, �ux 2 ½�W=2;W=2� and

�uy 2 ½�H=2;H=2� with W, H the width and height of

the image.

The Nelder and Mead simplex algorithm [26], imple-

mented as described in [27], is used to solve (1). This deriv-

ative-free optimization method evaluates iteratively

Eð�/Þ until a minimum is found. By simply changing

the definition of Eð�/Þ, our approach can be readily

adapted to a large class of similar problems. For

instance, we have modified our method to use the SSIM

Parallel electron
beams  

θ = +70° 

θ = −70°

θ = 0° 

Object

Specimen port

Tilt axis 

Detector

Figure 1

Data collection geometry in 3D reconstruction by TEM.

Ir

Domain
of interest

RΔ φ.It

Figure 2

Domain of interest: intersection of two images.
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(Structural SIMilarity) index [28] for finding the best

parameters. We however found that the resulting

algorithm is unstable for some pairs of images; for that

reason, we advocate to use the MSE criterion given in

Equation (2). Nevertheless, as shown by Figure 6, in

section 1.5.3, minimizing the MSE turns out to also

yield a better SSIM than conventional registration

methods.

The initialization step deserves some explanations.

The shifts �ux;�uy are pre-estimated by means of

cross-correlation. The rotation and scale parameters

between two successive TEM images are very small:

�u does not exceed �2� and �s is in the range �0:5%;

therefore, we start the optimization with �u½0� ¼ 0,
�s½0� ¼ 0 (neither rotation nor scaling change).

Note that, since R�/ is an interpolation operator

which continuously depends on the parameters�/, min-

imizing Eð�/Þ achieves sub-pixel accuracy for the shift

parameters.

1.2 Image Transformation

The linear operator R�/ in Equation (2) corresponds to

the change of coordinates given by the matrix:

M�/ ¼
ðsþ�sÞ cos�u ðsþ�sÞ sin�u �ux

�ðsþ�sÞ sin�u ðsþ�sÞ cos�u �uy
0 0 1

2
64

3
75

ð3Þ

which depends on �/ ¼ ð�ux; �uy; �u; �sÞ. The rela-
tion v ¼ M�/ � u changes the coordinates u ¼ ðux; uy; 1ÞT
in the initial image into the coordinates v ¼ ðvx; vy; 1ÞT in

the transformed image. The transform R�/ is an interpo-

lation operator. On the basis of many experiments, we

have found that cubic B-spline interpolation [29] gives

better results than nearest neighbors or linear interpola-

tion methods.

1.3 Alignment of a Series of Projections

We now turn to the case of a series of projections. The

first image is chosen as the reference image. By applying

our alignment method for two images, each image is

aligned with the previous image in the series, thereby

sequentially compensating image shifts throughout the

entire series. This method minimizes the following cost

function:

Eð/Þ ¼
XM�1

t¼1

1

Nt

XNt

i¼1

I tðuiÞ � ðR�/t
� I tþ1ÞðuiÞ

� �2
 !

ð4Þ

where M is the number of images in the sequence, Nt is

the number of pixels in the domain of interest between

I t and I tþ1, / is a set of transformation parameters’s

vectors:

/ ¼ �/tf gM�1
t¼1 ð5Þ

The form of function (4) allows parameters

�/t ¼ ð�ut;x;�ut;y;�ut;�stÞ associated with each

pair of images to be determined in parallel. Figure 3

shows the relation between the transformation parame-

ters in a series of images. ct ¼ ut;x; ut;y;ut; st
� �

;

t ¼ 1; . . . ; M � 1 are the pseudo-transformation param-

eters between images 2; . . . ; M and the first (reference)

image. The components of ct are:

ut;x ¼ Coeff : ð1; 3Þ of At

ut;y ¼ Coeff : ð2; 3Þ of At

ut ¼ Pt

i¼1
�ui

st ¼ Qt

i¼1
�si

8
>>>>>>>>><
>>>>>>>>>:

ð6Þ

with At ¼ R�/t
� R�/t�1

� � �R�/1
.

1.4 Evaluation of the Alignment Accuracy

The SSIM index [28] measures the similarity between

two images; we use it in order to check the efficiency of

our method. The SSIM score, between �1 and 1,

achieves its maximum value SSIM = 1 if and only if

both images are identical. In our application, the SSIM

index gives a degree of similarity in the domain of inter-

est between the reference image and the registered image.

γ M -1

I1 I2 I3 IM -1 IM 

Δφ Δφ
ΔφM -1

γ

γ M -2 

1

2

Figure 3

Correspondence between the transformation parameters of

the image series.
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1.5 Experimental Results

For the following results, we use a series of TEM projec-

tions of a standard zeolite powder (CBV712 from

Zeolyst). Our algorithm has been implemented and

tested with Yorick (http://yorick.sourceforge.net/) on

2.6-GHz Intel Core 2 Duo machine. The computation

time required for registration an image pair varies

depending on the image size and the richness of texture

content in the images.

1.5.1 Case Without Noise

In a first test, a 256� 256 reference image I r of

8-bit grayscale (Fig. 4a) is transformed into a

new image I t by applying a transformation R�/ to

I r with �/ ¼ ð�5; 5;�10�;�3%Þ. The corresponding

SSIM ðI r; I tÞ is 0.85. Ia is the image after registration of

I t on I r using the proposed method. The residual image

between Ia and I r is shown in Figure 4b, with

SSIM ðIr; IaÞ = 0.99.

We return to the case of TEM images:�u and�s are
very small. We generate a series of 140 random transfor-

mations, each consisting of a variation: �ux,
�uy 2 ½�30; 30�, �u 2 ½�0:5; 0:5�, �s 2 ½�0:01; 0:01�.
We apply this transformation to I r to create a series of

test images. We then attempt to register each test image

to I r. The accuracy of the estimated translations

(�u�t;x, �u�t;y) is given by computing the mean shift error:

�shift ¼ 1
M

PM
t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�ut;x ��u�t;xÞ2 þ ð�ut;y ��u�t;yÞ2

q
,

for the estimated rotation (�u�
t ) and scale (�s�t ):

�rotation ¼ 1
M

PM
t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�ut ��u�

t Þ2
q

,

�scale ¼ 1
M

PM
t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�st ��s�t Þ2

q
.

M is the number of images. We show these values in

Table 1.

1.5.2 Noisy Case

In this test, image I t (Fig. 5a) is created by applying

a transformation R�/ to I r (Fig. 4a), with

�/ ¼ ð�5; 5;�10�;�3%Þ and adding Gaussian noise

with zero mean and a standard deviation of r 	 5:0 pix-

els. The corresponding SSIM ðI r; I tÞ is 0.83. Once I r and
I t have been aligned, the residual image is very satisfac-

tory (Fig. 4b, with SSIM ðI r; IaÞ = 0.97).

We now add Gaussian noise (r 	 5:0 pixels) to each

image of the series of test images, which is used in Sec-

tion 1.5.1. The acquired images are then registered to

I r. We show the accuracy of the estimated translations,

rotations and scales in Table 1.

1.5.3 Alignment of a Series of Projection

We have registered a series of TEM projections of size

256� 256 of a zeolite catalyst support with our registra-

tion method (Sect. 1.3). The series contains 142 projec-

tions; the angle of tilt h varies from �71� to þ70� with

a þ1� increment. The projection which corresponds to

h ¼ �71�, is presented in Figure 4a. We have compared

the presented method to a robust standard method [18]

which sequentially performs translation, rotation and

scale registration. The cubic spline method [29] has been

used for all interpolation procedures.

In Figure 6, higher score is better, the symbols (�)

represent SSIM factors for the alignment of each pair

of images using cross-correlation based approach, while

the symbols (
) and the solid line (—) represent the

a) b)

Figure 4

a) Reference image of zeolite catalyst support Ir, b) differ-

ence between reference image Ir and aligned image Ia.

TABLE 1

The accuracy of the estimated translations, rotations and scales

�shift (pixel) �rotation (�) �scale (%)

No noise 0.187 6:7� 10�3 8:8� 10�4

Gaussian noise (r 	 5:0) 0.262 1:9� 10�2 3:4� 10�3
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SSIM factors for our method based on minimizing MSE

or maximizing SSIM respectively. The presented regis-

tration method gives a higher similarity between the ref-

erence image and the registered image than the robust

standard sequential approach.

We show in Figure 7 the MSE factors corresponding

to the alignment of each pair of images by different

methods, it shows clearly that the proposed methods

have less errors with respect to the standard method.

We conclude from Figures 6 and 7 that finding the best

parameters by minimizing MSE or maximizing SSIM

are essentially equivalent, while the accuracy obtained

by a standard robust sequential method is lower.

For each pair of images, our method converges in

70 iterations on average, with total time �6.5 s, while

the other method needs 4 s.

2 JOINT RECONSTRUCTION AND REFINED
REGISTRATION

Typically, the tomography problem is represented by the

relationship between the observed image (projections

measurements) and the object to be reconstructed, which

can be represented by the model:

I t ¼ H/t
� xþ et ð7Þ

where I t 2 Rm corresponds to tomographic projections,

which is observed on the detector (for the tth projection),

x 2 Rn are the so-called voxels describing the object,

H/t
2 Rm�n is a linear projection operator that charac-

terizes how the projections are obtained from the object;

the /t 2 R6 are orientation and position parameters of

50 100

100

200

300

400

Pair index

M
S

E
Figure 7

Values of theMSE index for registrations obtained by stan-

dard robust sequential method (green +) [18] and by the

proposed method based on: maximizing SSIM (blue M),
or minimizing MSE (red –), evidencing a systematic lower

error for our method.

50 100

0.88

0.90

0.92

0.94

Pair index

S
S

IM

Figure 6

Values of the SSIM index for registrations obtained by

standard robust sequential method (green�) [18] and by

the proposed method based on: minimizing MSE (red 
),
or maximizing SSIM (blue –), evidencing a systematic

higher scoring for our method.

a) b)

Figure 5

a) Image to be registered, b) residual image between Ir
and Ia.
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the object with respect to the instrument (sourceþ detec-

tor) for the acquisition of the tth projection (see Appen-

dix 1). In Equation (7), the term et 2 Rm represents the

errors due to the measurement noise and to the approx-

imations of the model.

2.1 Solution of the Inverse Problem

The solution of the inverse problem is obtained by min-

imizing a cost function with respect to all voxels x and to

all orientation parameters # ¼ f/tgMt¼1, where M is the

number of projections:

fx; #g� ¼ arg min
x;#

f ðx; #Þ ð8Þ

For statistically independent measures, the cost function

is given by:

f ðx; #Þ ¼
XM

t¼1

ftðx;/tÞ þ fpriorðxÞ þ
XM

t¼1

ctð/tÞ ð9Þ

with ft the likelihood term of the tth projection. For

example, for a Gaussian noise:

ftðx;/Þ ¼ ðI t � H/ � xÞT �Wt � ðI t � H/ � xÞ ð10Þ

where the weight matrix is the inverse of the covariance

matrix of the noise: Wt ¼ Cov ðetÞ�1. The function

fpriorðxÞ strengthens the priori on the voxels x; the func-

tions ctð/tÞ introduce knowledge (measured or a priori)

on the orientation parameters. A direct resolution of

the problem as given by Equation (8) is impractical

because it depends on many heterogeneous parameters

(voxels, translations and angles). Moreover, the cost

function is multimodal. In principle, a global optimiza-

tion method is necessary. We therefore split this difficult

problem into sub-problems easier to solve and for which

we have effective methods of resolution.

2.2 Hierarchical Optimization

For given positional parameters #, finding the best vox-

els amounts to a reconstruction formally given by:

xþð#Þ ¼ arg min
x

f ðx; #Þ ð11Þ

By plugging this solution into the cost function, we

obtain a criterion depending only on #:

f þð#Þ ¼ f ðxþð#Þ; #Þ ð12Þ

The best positioning parameters are then obtained by

solving an optimization problem of smaller size:

#� ¼ arg min
#

f þð#Þ ð13Þ

The solution of the global problem is then given by:

fx; #g� ¼ fxþð#�Þ; #�g ð14Þ

The reconstruction step, given by Equation (11),

can be performed by an existing algorithm such as

Filtered BackProjection (FBP) or by an algebraic

reconstruction method from the pre-aligned projections

(Sect. 1.3). However, the hierarchical optimization

method is computationally too expensive to be applied

directly. To accelerate the process, we use an alternat-

ing optimization approach (Sect. 2.3) which can how-

ever be sub-optimal compared to a hierarchical

optimization.

2.3 Alternating Optimization

This method alternately estimates the voxels x for given
positioning parameters # and then estimates the param-

eters # for given voxels x. This amounts to alternately

perform volume reconstruction, Equation (11), and reg-

istration. As the voxels are considered fixed during the

registration stage, each image can be registered indepen-

dently (in parallel). In addition (see Appendix 1), the

alignment of a projection can be done in a rather fast

way by a re-interpolation of the projection model.

1. Initialization. Choose initial orientation parameters

#½0� and let k ¼ 0.

2. Reconstruction. Estimate the voxels given the posi-

tioning parameters #½k�:

x½kþ1� ¼ arg min
x

f ðx; #½k�Þ ð15Þ

3. Alignment. For each projection, seek the best position-

ing parameters, with fixed voxels x½kþ1�:

#½kþ1� ¼ arg min
#

f ðx½kþ1�; #Þ

Foraseparable cost function f like the one in Equation (9),

the parameters /t associated with each projection are

determined independently (that is, in parallel):

/½kþ1�
t ¼ arg min

/t

ft x;/tð Þ þ ct /tð Þ ð16Þ

Results are aggregated into:

#½kþ1� ¼ /½kþ1�
t

n oM

t¼1
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4. Convergence test. If the method has converged (e.g.,

the maximum magnitude of the translation alignment

parameters is less than 1.0 pixels for two consecutive

iterations), stop the iterations, otherwise increment k
and return to step 2.

2.4 Results

In this section, we describe experimental results on the

testing of our method using two data sets: a synthetic

generated data and some series of TEM projections of

standard zeolite powder. The computation time required

for alternating optimization process depending sepa-

rately on the time needed by the registration and the time

spent for a reconstruction.

2.4.1 Algorithm Testing with Simulation Data

We suppose that we want to reconstruct one nanoparticle

that has a single composition, embedded in a homoge-

neous support. Figure 8a shows a cross-section of the

sample, orthogonal to the rotation axis of the tilt stage.

The series contains 142 simulated projections

(256� 256 pixels2) are computed from �71� to þ70�,
using angular steps of þ1�. For simulation the misa-

ligned images, due to the displacements of the sample,

each image in the series is randomly transformed: hori-

zontal and vertical shifts amount of at most �30% of

image dimensions, slightly rotations (does not exceed

�0:5�) and small magnification changes (in the range

�1:0%). To make the simulation more realistic,

Gaussian noise with zero mean and a standard deviation

of r 	 5:0 pixels is added to each of the projection

images.

The coarse alignment process (Sect. 1.5.3) is applied

on the simulation projection images. The aim is to

reduce the strong shifts. From these pre-aligned projec-

tions, a first reconstructed volume is obtained by

minimizing Equation (15) with a Quasi-Newton optimi-

zation algorithm: the limited memory Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS) method, combined with

total-variation regularization [30]. We use a numer-

ical model of projection (projector) based on cubic

B-splines [31], which provides much less approximation

errors than the distance driven projector [32].

Figure 8b shows a cross-section of the reconstructed

volume corresponding to the cross-section shown in

Figure 8a. The shape of the reconstructed particle is

clearly distorted, due to the accumulation of errors in

the coarse alignment process. This reconstructed volume

is used to calculate the simulated views, which are then

considered as reference images, that are matched with

each initial projection. This process is repeated, the

quality of the reconstruction has improved considerably

in few iterations. Figure 8c shows the cross-section of the

reconstruction using 2 iterations of refined registration

process. It is already very clear that the quality of the

reconstruction has improved considerably. Only 6 itera-

tions are necessary to archive a good reconstruction

(Fig. 8d), which is nearly perfect with respect to the ori-

ginal phantom. The quality improvement of the recon-

structed volume at different iterations of alignment

process is shown in Figure 9.

In the current implementation of the code, the time

spent for a reconstruction by optimization using

L-BFGS, is about 3 hours for a volume of 256� 256
� 256 voxels. This time can be reduced considerably by

performing the reconstruction step by a standard recon-

struction method as FBP, SIRT, ART, etc.; however,

these methods can not perform regularized reconstruc-

tion, which is necessary to reduce artifacts due to missing

projections (limited angle geometry).

2.4.2 Algorithm Testing with Experimental Data

In order to better understand the porosity of the zeolite

powder (CBV712 from Zeolyst), we used electron

a) b) k = 0

c) k = 2 d) k = 6

Figure 8

a) A cross-section of the original phantom, orthogonal to

the rotation axis of the tilt stage. b-d) A cross-section of

reconstructed volume using different numbers of iterations

of refined registration process.
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tomography to evaluate the full 3D structure of the

material. The tilt-series for the tomographic reconstruc-

tion was acquired on a TEM JEOL 2100F.

The first series of projections contains 142 images of a

zeolite powder, which were acquired semi-automatically

over a tilt range varying from �71� to þ70�. The projec-
tion which corresponds to h ¼ �71�, is shown in

Figure 4a. The series of images were aligned using our

proposed approach.

We show in Figure 10a,b the isosurfaces of the final

reconstruction, which is obtained after 6 iterations of

the joint reconstruction and refined registration process.

Figure 10c shows a cross-section in the yz direction of

the final reconstruction which shows that even small

details are reconstructed accurately.

Our second test used an other series of a zeolite pow-

der, which contains 141 images from �71� to þ69�. The
projections recorded at h ¼ �71�; 20� are shown in

Figure 11a,b. We apply the same process of alignment.

Figure 11c,d illustrate the isosurfaces of the final recon-

struction obtained after 6 steps of iterations of registra-

tion process.

CONCLUSION

An automatic robust registration method using an

inverse problem approach has been presented. Our

experimental results demonstrate that the proposed

method yields accurate translation, rotation and scaling

parameters for electron tomographic series without

needing fiducial markers.

a) b)

c)

Figure 10

a,b) The isosurfaces of the final reconstruction obtained

with the complete procedure with 256 9 256 TEM projec-

tions from different viewing angles. c) One slice in the yz

direction of the reconstruction results.
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Figure 9

Values of the SSIM index and MSE between the original

phantom and the reconstructed volume at different itera-

tions.

a) θ = −71° b) θ = 20°

c) d)

Figure 11

a,b) The real projections. c,d) The isosurfaces of the final

reconstruction obtained after 6 steps of iterations of the

joint reconstruction and refined registration process.
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Weare nowworking on a strategy to copewithmissing

projections by taking into account priors such as having a

piecewise constant object with a very limited number of

phases. This strategy will be integrated in the alternating

optimization process to improve the quality of the recon-

structed object in spite of instrumental jitter.
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APPENDIX

1 Alignment of a Projection

For a given projection, there are 6 orientation parameters /t 2 R6: three translational ones: X t; Y t;Zt and three rota-

tional ones corresponding to three Euler angles bt;wt; at. Since the considered system performs parallel projections, by

an adequate choice of the axes (two axes OX ;OY aligned with the pixels of the detector and the third one, OZ in the

normal direction), 2 terms of translation X t; Y t correspond to a translation of the projection; the third one, Zt, has an

impact on the magnification of the projection; the angle of rotation at (around OZ) corresponds to a simple rotation of

the projection in the detector plane (Fig. A1).

For 4 orientation parameters (X t; Y t; Zt; at), the effects on projection can be obtained by simple interpolation. It

remains two rotational angles bt;wt whose variation respectively around OY ;OZ requires to recalculate the projection

of the voxels. In mathematical terms:

H/tþ�/t
� x � R�/t

� H/t
� x

where R is a linear transformation similar to a 2D interpolation (translation, rotation and magnification) for a var-

iation of parameters�/t 2 Sð/tÞ belonging to some subspace Sð/tÞ 2 R4. This property should be exploited to accel-

erate the calculations. Otherwise, the effects of translation on the projection can be calculated for all possible

translations with a pixel size resolution using a small number of FFT [33].

2 The Relationship Between the Presented Method and the Maximum Correlation

In order to keep things simple, we deal here with the case where two images I1 and I2 are misaligned only along a single

dimension (OX). In such a case, the cost function is reduced to:

Eð�u; aÞ ¼
XN

i¼1

wi � ½I1ðuiÞ � a � I2ðui ��uÞ�2

N is the number of pixels in the domain of interest (see Fig. 2), �u the shift in position, a is a factor taking into account

the attenuation, and w is a weighting function (which may be a function of ui and ui ��u the positions of the pixels

that correspond in the two images). Minimizing Eð�u; aÞ with respect to a:

Z

Specimen port

Y

X

O

α

β

ψ

θ Tilt axis

Detector

α t

Figure A1

Tilt geometry: ðX ;Y ; ZÞ coordinate system fixed. OZ is the optical axis. The OX ;OY axes are parallel to the detector pixel rows and col-

umns. The specimen port tilts about the tilt axis and angle h. Due to mechanical imprecision, the specimen port may be shifted about

X t ;Y t ; Zt and slightly tilted about bt ;wt ; at (along/around OX ;OY ;OZ respectively).
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oEð�u; aÞ
oa

¼ 0

we obtain:

aþð�uÞ ¼
PN

i¼1
wi � I1ðuiÞ � I2ðui ��uÞ
PN

i¼1
wi � I2ðui ��uÞ2

It is a function of �u; by replacing in E �u; að Þ; we obtain a criterion which depends only on �u:

Eþð�uÞ ¼ Eð�u; aþð�uÞÞ ¼
XN

i¼1

wi � I1ðuiÞ2 � Qð�uÞ

with:

Qð�uÞ ¼
PN

i¼1
wi � I1ðuiÞ � I2ðui ��uÞ

� �2

PN

i¼1
wi � I2ðui ��uÞ2

As the first term of Eþð�uÞ does not depend on �u, Eþð�uÞ is minimized with respect to �u if and only if Qð�uÞ is
maximized. Under the following assumptions:

1. the weights are constant (i.e. the noise level is the same for all pixels),
2. the denominator of Qð�uÞ is almost thesame whatever �u,
3. and there is no contrast inversion between the two images (i.e. aþð�uÞ > 0),

the maximization of Qð�uÞ is equivalent to maximizing:

Cð�uÞ ¼
XN

i¼1

I1ðuiÞ � I2ðui ��uÞ

(the numerator of aþð�xÞ under the above assumptions) which is nothing else than the cross-correlation between the

two images. While the 3rd assumption is reasonable, the two others are more obvious: the noise level may depend on

the pixel and, if there are any structures in the images, the denominator ofQð�uÞ depend on�u. Note that, if there are

no such structures, registration is worthless so, at least, the 2nd assumption does not apply.

In fact, Eð�u; aÞ can be seen as the opposite of the log-likelihood of the data given the model assuming Gaussian

noise (not necessarily uniform). Thus, our approach derives from the maximum likelihood method by making less

approximations (in particular the second one) than the maximum correlation method. For this reason, our method

is likely to be superior.
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