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A multilinear direction finding (DF) approach

for a sensor-array with multiple scales of

invariance

Sebastian Miron, Yang Song, David Brie and Kainam Thomas Wong

Abstract

In this paper, we introduce a novel direction finding algorithm for a multi-scale sensor-array, that is, an array

presenting multiple scales of invariance. We show that the collected data can be represented as a Candecomp/Parafac

(CP) model, for which we analyze the identifiability properties. A two-stage algorithm for direction-of-arrival (DOA)

estimation with such an array is also proposed. This approach generalizes the results given in [1] to an array that

presents an arbitrary number of spatial invariances. We illustrate, on a particular array geometry, that our method

outperforms the ESPRIT-based approach introduced in [2]. Moreover, we show that the single-snapshot case can be

handled by our method, provided that the array includes at least three scale-levels.

Index Terms

direction finding, DOA estimation, Candecomp/Parafac decomposition, multi-scale array

I. INTRODUCTION

High-resolution techniques such as MUSIC [3], [4] or ESPRIT [5] introduced in the late ’70s and the ’80s, gave

a new lease of life to sensor-array signal processing. An important number of eigenstucture-based direction finding

(DF) algorithms have been proposed since, for various types of sensors and array configurations. In [1], Sidiropoulos

et al. proposed for the first time a DOA estimation approach based on a CP model of the data, and highlighted the

link between CP and ESPRIT. Over the next years, several other authors came up with CP-based DF algorithms for

scalar-sensor or vector-sensor arrays. Liang et al. [6] proposed a cumulant-based algorithm for 4D near-field source

localization using the CP model. DOA-estimation algorithms for vector sensor arrays were developed in [7] and[8],

based on a three-way CP model, for which an identifiability analysis was provided in [9]. A similar approach,
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exploiting the quadrilinear structure of the data covariance, was proposed in [10], while Gong [11] developed a

trilinear cross-covariance DF method for an array of electric tripoles. Nion and Sidiropoulos established in [12] a CP

approach for source detection and localization in MIMO radar systems. In [13], a regularized CP-based approach is

used to solve the DOA estimation problem with a single six-component electromagnetic antenna. Recently, Zhang

et al. proposed in [14] an algorithm for coherent angle estimation for bistatic MIMO radar based on a CP model

with linear dependences (PARALIND). Orthogonal tensor decompositions (e.g. HOSVD, HOEVD) have also been

used in the last years to build up DF algorithms (see e.g. [15], [16], [17], [18] an the references therein).

The approach proposed in this paper generalizes and extends the philosophy introduced in [1] an array presenting

multiple scales of invariance. The main idea is to use an array geometry for which the source steering vectors can

be expressed as N -way tensor products. A somewhat similar idea, but in a different context, was used in [19].

However, the authors of [19] utilized various tensor decompositions of a 2D array grid with two levels of spatial

invariance, to illustrate their effect on coherent source estimation performance. In this paper, we propose a DF

algorithm for any 3D sensor array with an arbitrary number of scales of invariance and provide an efficient two-

stage DOA estimation algorithm that exploits all the available information on the sources’ DOAs. It is worth noting

that the concept of multi-scale array used in this paper is totally different from that of nested arrays introduced in

[20], where the main idea is to exploit the associated “difference co-array” to resolve more sources than physical

sensors.

The remainder of this paper is organized as follows: section II presents the proposed multi-scale array configu-

ration; the corresponding data model is derived in section III. In section IV, we analyze the identifiability of the

proposed data model and a two-stage algorithm for DOA parameter estimation is introduced in section V. In section

VI, the proposed method is compared in simulations to the ESPRIT-based approach in [2]; conclusions are drawn

in section VII.

II. THE GEOMETRIC CONFIGURATION OF A MULTIPLE SCALE-INVARIANT SENSOR ARRAY

We introduce in this section the configuration of the array for which the data model is to be derived in section III.

Consider an subarray composed of L1 omnidirectional identical sensors indexed by l1 = 1, . . . , L1. Consider then,

L2 identical replicas of this subarray, spatially translated to arbitrary, possibly known locations. The L2 different

copies of the subarray, indexed by l2 = 1, . . . , L2, can now be seen as subarrays of a larger (higher-level) array.

The proposed array structure can be further developed by considering an additional level, composed of L3 translated

replicas of the previous L1L2 sensors array, indexed by l3 = 1, . . . , L3. Let us generalize this scheme to a total

of N such hierarchical levels, the “highest” level consisting of LN subarrays indexed by lN = 1, . . . , LN . It is

worth noting that two different subarrays at a given level n need not be disjoint, i.e. they may have in common

subarrays/sensors of the previous level (n − 1). However, if all subarrays at all levels are disjoint, then the entire

array contains a total number of L = L1L2 . . . LN identical sensors. Fig. 1 illustrates a three-level array with

co-planar sensors.

Consider also a Cartesian coordinate system OXY Z attached to the considered array. An impinging source is
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characterized in this coordinate system by its direction-cosines u, v, w :








u

v

w









=









sin θ cosφ

sin θ sinφ

cos θ









, (1)

where θ ∈ [0, π[ denotes the source elevation angle measured from the vertical Z-axis and φ ∈ [0, 2π[ symbolizes

the azimuth angle measured from the positive X-axis.

Let us consider a single level-1 subarray. In the coordinate system OXY Z , the position of the l1th sensor of this

subarray is given by the vector (x
(1)
l1

, y
(1)
l1

, z
(1)
l1

). Consider next L1 such subarrays. The position of the l1th sensor

of the l2th subarray is given by (x
(1)
l1

+ x
(2)
l2

, y
(1)
l1

+ y
(2)
l2

, z
(1)
l1

+ z
(2)
l2

), where (x
(2)
l2

, y
(2)
l2

, z
(2)
l2

) indicates the spatial

displacement of the l2th subarray with respect to the first subarray. It can be easily shown by induction that, for

a N -level array, the position of one sensor is given by (x
(1)
l1

+ · · · + x
(N)
lN

, y
(1)
l1

+ · · · + y
(N)
lN

, z
(1)
l1

+ · · · + z
(N)
lN

),

where (x
(N)
lN

, y
(N)
lN

, z
(N)
lN

) indicates the spatial displacement of the lN th subarray compared to the first subarray of

the level N (indexed by lN = 1), etc..

The presented array structure is composed by sensor/subarrays “packs” that differ from each others only by a

translation in the three-dimensional Euclidian space. This provides interesting spatial invariance properties for the

data acquired by this array, as shown in the next section.

III. DATA MODEL

Consider first a narrow-band plane wave impinging on the array described in section II. Let us symbolize by

al1l2...lN its phase factor at sensor indexed by l1, l2, . . . , lN at the N different array levels, respectively and denote

k = [u v w]T and d
(n)
ln

= [x
(n)
ln

y
(n)
ln

z
(n)
ln

]T , with n = 1, . . . , n. With the notations introduced above, the phase

factor is given by :

al1l2...lN (k) = exp
{

j
2π

λ

N∑

n=1

k
T
d
(n)
ln

}

=
N∏

n=1

exp
{

j
2π

λ
k
T
d
(n)
ln

}

. (2)

Thus, the array manifold for the entire sensor array is

a(k) = a1(k)⊗ · · · ⊗ aN (k), (3)

with

an(k) =










ej(2π/λ)k
T
d

(n)
1

...

ej(2π/λ)k
T
d

(n)

Ln










(4)

an Ln × 1 vector, n = 1, . . . , N and “⊗ ” the Kronecker product of two matrices.

Next, consider P narrow-band, plane-waves, having traveled through a nonconductive homogeneous isotropic

medium, impinging upon the array from directions kp = [up vp wp]
T , with p = 1, . . . , P . Denote by sp(t) the
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time signal emitted by the pth narrow-band source1. Then, the output at time t of the entire sensor array can be

expressed as an L× 1 vector

z(t) =

P∑

p=1

(

a1(kp)⊗ · · · ⊗ aN (kp)
)

sp(t) + n(t), (5)

where n(t) is a complex-valued zero-mean additive white noise.

Let us assume that we have at our disposal K snapshots at time instants t1, t2, . . . , tK , and define the following

matrices :

A1 =
[

a1(k1), . . . , a1(kP )
]

(L1 × P ) (6)

...

AN =
[

aN (k1), . . . , aN (kP )
]

(LN × P ) (7)

and

S =













s1(t1) s2(t1) . . . sP (t1)

s1(t2) s2(t2) . . . sP (t2)

...
...

. . .
...

s1(tK) s2(tK) . . . sP (tK)













=
[

s1, s2, . . . , sP

]

(K × P ). (8)

The collection of K snapshots of the array can then be organized into an L×K data matrix as

Z = [z(t1), . . . , z(tK)] =
(

A1 ⊙ · · · ⊙AN

)

S
T +N, (9)

where “⊙” denotes the Khatri-Rao (Kronecker column-wise) product of two matrices, and N (L×K) is a complex-

valued matrix modeling the sensor noise on the entire array for all K temporal snapshots. Equation (9) reveals a

(N + 1)-dimensional CP structure (see [21], [22]) of the collected data.

In the case where only one sample is available, i.e. matrix S is a 1 × P vector, the data model given by (9)

becomes

z =
(

A1 ⊙ · · · ⊙AN

)

s+ n, (10)

with z = z(t1), s = s(t1) =
(

S(1, :)
)T

and n = N(:, 1). In the definitions above, we used the Matlab notations

for columns and rows selection operators. Equation (10) is a vectorized representation of a N -dimensional CP data

model (see e.g.[23] for details on the different CP representations). It is worth noting that if only one snapshot of

the array is available, the N + 1 CP model degenerates into a N -dimensional one.

1The incident signals are narrow-band in that their bandwidths are very small compared with the inverse of the wavefronts’ transit time across

the array.
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IV. DATA MODEL IDENTIFIABILITY

Before presenting the proposed algorithm for source DOA estimation, a discussion on data model identifiability

is required. In this paper, the term identifiability refers to the non-ambiguous estimation of the DOA parameters

from the collected data. We will only focus herein on the identifiability conditions for the estimation of matrices

A1, . . . ,AN and S, from the data (equation (9)). A brief discussion on the ambiguity problems when estimating

the direction-cosines from A1, . . . ,AN is provided in section V.

The main advantage of the CP model, compared to other source separation approaches, is its identifiability

under only mild conditions. In [24], Kruskal derived a sufficient condition for the identifiability of the 3-way CP

model. This condition is based on a special notion of matrix rank, called the Kruskal-rank or k-rank2, and has been

generalized later to N -way arrays by Sidiropoulos and Bro [25]. If applied to the data model given by eq. (9), this

condition states that the matrices A1, . . . ,AN and S can be uniquely estimated from Z if

N∑

n=1

kAn
+ kS ≥ 2P +N, (11)

where k(.) denotes the Kruskal-rank of a matrix. This estimation is unique up to two trivial indeterminacies. The

first indeterminacy is an arbitrary simultaneous column permutation of all N + 1 matrices, and signifies that the

order of the sources can not be a priori determined. The second one is an arbitrary column scaling/counterscaling

and can be resolved by normalizing each column of matrices A1, . . . ,AN by the modulus of that column’s first

element.

If the P sources have distinct DOAs and are not fully correlated, the identifiability condition (11) can be

reformulated as
N∑

n=1

min(Ln, P ) + min(K,P ) ≥ 2P +N. (12)

In general, the number of snapshots exceeds the number of sources (K > P ), in which case (12) becomes

N∑

n=1

min(Ln, P ) ≥ P +N. (13)

Furthermore, if Ln > P for n = 1, . . . , N, (this could be the case especially for small values of N ), than the

sufficient condition will always be met for model identifiability if P,N ≥ 2. This means that, for non-collocated

sources with not fully correlated temporal sequences, the CP model identifiability is easily achieved in practical

applications.

Another case of interest is when the array has at least three scales of invariance. In this situation the model can

be identified even under the single-snapshot assumption, and Kruskal’s condition reads:

N∑

n=1

min(Ln, P ) ≥ 2P +N − 1. (14)

Meanwhile, if the condition (11) does not hold, the identifiability of (9) can no longer be ensured. In this case,

partial identifiability may apply, meaning that only a part of the parameters in (9) may be uniquely recovered.

2The Kruskal-rank of a matrix is the maximum number of independent columns that can selected from that matrix in an arbitrary manner.
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Partial identifiability results for the 3-way CP model, similar to Kruskal’s condition, have been derived in [26]. A

generalization of these results to N -way arrays has been proposed in [27]. Specific identifiability conditions for the

case of fully coherent sources and/or collocated sources could be derived from these results. However, this analysis

is beyond the scope of this paper.

V. PARAMETER ESTIMATION

The parameter estimation procedure proposed in the paper can be split into two stages. The first stage consists of

estimating the N steering vectors an(kp) (n = 1, . . . , N) for each of the P sources (p = 1, . . . , P ), by exploiting

the CP structure (9) of the collected data. For the first stage, an Alternating Least Squares (ALS) procedure can

be used to fit the CP model. It consists of recursively estimating one of the N + 1 matrices A1, . . . ,AN ,S, by

fixing the other N of them [21], [22]. ALS is simple to implement but suffers from a slow convergence rate and is

sensitive to over- (and under-) factoring. Improved versions of this algorithm, using data compression and line search

techniques that partly mitigate these deficiencies, have been proposed in [28], [29], [30]. Derivative-based methods

or direct (non-iterative) procedures can likewise be employed to fit the CP model [31]. Such CP decomposition

methods have been implemented in Matlab and are freely available online (see e.g. [32], [33]). This present paper’s

simulations will use the COMFAC approach of [29].

The second stage estimates the source direction-cosines kp, p = 1, . . . , P from the steering vectors obtained at

the previous stage. To this end, we propose a sequential procedure that exploits all the available information from

the source steering vectors of all scale levels.

Define the following cost functions:

Jn(kp) = ‖âpn − an(kp)‖
2, with n = 1, . . . , N, (15)

where â
p
n denotes the nth level estimated steering vector for the pth source. Estimating the DOA parameters for

the pth source comes down to minimizing the following criterion:

IN (kp) =

N∑

n=1

Jn(kp). (16)

This function is non-convex and highly non-linear with respect to the direction-cosines; hence a direct local

optimization procedure would fail in most cases. We propose a sequential strategy to minimize IN (kp), using

an iterative refinement of the direction-cosine estimates. The method is based on the fact that, when noise-free, the

N cost-functions in (15) have the same global minimum.

Assume that the level-1 subarrays’ inter-sensor separations would not exceed half a wavelength. This assumption is

essential to obtaining a set of high-variance but unambiguous direction-cosine estimates. On the contrary, the spatial

displacement between any two subarrays of the highest level is supposed to exceed λ/2, where λ is the wavelength.

This will produce lower variance but cyclically ambiguous estimates for the same set of direction-cosines. Under

the first assumption, the J1(kp) function is unimodal inside the support region of the DOA parameters. Therefore,

any local optimization procedure should converge towards the global minimum for the criterion. Thus, we obtain a
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set of high-variance, but unambiguous, estimates of the DOA parameters, to be denoted by k
∗

p,1 with p = 1, . . . , P .

These values will subsequently be used, in a second step, as the initial point for the minimization of

I2(kp) = J1(kp) + J2(kp). (17)

As no assumption is made on the distances between the level-2 subarrays, I2(kp) may present more than one

local minimum. Hence, a good initial point is crucial for the optimization procedure. The estimates obtained by the

minimization of I2(kp), denoted by k
∗

p,2, are then used for the minimization of I3(kp) =
∑3

n=1 Jn(kp), and so

on, until the final estimates are obtained by the minimization of IN (kp). We emphasize the necessity of sequential

iteration for good results, going from level n to level n + 1. A direct “jump” from a low hierarchical level (e.g.

level 1) to a high hierarchical level (e.g. level N ) may result in erroneous results, especially for low signal-to-noise

ratios (SNR). The reason is that the number of local minima for Jn(k) and In(k) increases with n and that the

low-level estimates have a high variance. Thus, the direct initialization of a high-level parameter estimation step

with a low-level estimate may result in convergence towards a local minimum instead of the global one.

This sequential minimization can be regarded as a Graduated Non-Convexity (GNC) optimization approach [34],

in which the multi-scale array geometry determines the parameter controlling the transformation of the initial convex

problem into a non-convex problem. A sufficient condition ensuring the global minimization of the non-convex

problem is that:

• the global minimum of the initial convex problem can be reached;

• the global minimum of each intermediate sub-problem belongs to the locally convex region around the global

minimum of the subsequent optimization problem.

The first requirement is met because the inter-element spacing of the level-1 subarray is ≤ λ/2, resulting in a

uni-modal criterion J1(k). Regarding the second requirement, it is difficult to determine whether it is met, because

the shape of the criterion JN (k) depends on the array geometry. However, as the number of local minima increases

with the inter-sensor spacing, the algorithm would likely reach the global minimum of the criterion JN (k) provided

that the inter-sensor spacing of the successive scales of the array do not change excessively from one level to another

level.

The proposed algorithm can be summarized as follows:

THE TWO-STAGE ESTIMATION ALGORITHM

First Stage: Estimate A1, . . . ,AN by CP decomposition of the data Z or z (see eq. (9) or (10)).

Second Stage:

• For p = 1, . . . , P and
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for n = 1, . . . , N compute

k
∗

p,n = argmin
kp

In(kp) = argmin
kp

n∑

i=1

Ji(kp). (18)

• Output: The estimated parameters for the P sources: k̂p = (ûp, v̂p, ŵp) = k
∗

p,N with p = 1, . . . , P .

In this paper, the first stage is performed using the COMFAC CP-fitting algorithms implemented in the Matlab

toolbox [32]. For the second stage, the minimization of In in (18) is done by the Nelder-Mead simplex algorithm,

initialized by the estimates of the previous step k
∗

p,n−1. Random values, within the parameters definition domain,

are used to initialize the minimization of I1 = J1.

The next section will illustrate the performance of the proposed algorithm in numerical simulations.

VI. SIMULATION RESULTS AND DISCUSSION

In this section, we compare our approach with the one developed by Wong and Zoltowski in [2], using an array

configuration proposed by those same authors. The Cramér-Rao Bound (CRB) for the considered model, derived

in the appendix, is used as a benchmark. The sensor array consists of a 2× 2 square grid at an extended spacing

of 10 λ and a 5-element half-wavelength spaced cross-shaped subarray at each grid point, as illustrated by Fig.

2. This array can be seen as having two hierarchical levels with L1 = 5 sensors and L2 = 4 subarrays, or as a

three-level array with L1 = 5, L2 = 2 and L3 = 2. In [2], the source’ DOAs are estimated using an ESPRIT-based

technique. Two types of estimates (coarse but unambiguous, versus fine but cyclically ambiguous) are computed

separately for each of the x and y axes of the considered spatial grid, using four matrix pencils altogether. The

coarse but unambiguous estimates are then used to disambiguate the fine but cyclically ambiguous DOA estimates.

This procedure is followed by a pairing step of the x-axis and y-axis direction-cosines of the sources.

The considered signal scenario involves two equal-power narrowband source signals impinging respectively from

(u1 = 0.83, v1 = 0.17), and (u2 = 0.13, v2 = 0.79). There are I = 500 independent Monte-Carlo runs for each

data point plot on the figures. The additive white noise is complex-value Gaussian distributed. All figures plot the

“composite root-mean-square-error” (CRMSE) of the sources’ Cartesian direction-cosine estimates, versus SNR.

This CRMSE is defined as

1

I

I∑

i=1

√

δ2u,p,i + δ2v,p,i
2

, (19)

where δu,p,i(δv,p,i) symbolizes the error in estimating the pth source’s x-axis (y-axis) direction-cosine during the

ith run.

The pth source signal model used for the simulations represented on Fig.3-6 is:

sp(t) = ap(t) e
j
(
2π

fp

3 t+ϕp

)

, (20)

where ap(t) is a zero-mean unit-variance complex-value random time series Gaussian distributed and temporally

white, ϕp is a random variable uniformly distributed between [0, 2π] and f1 = f2 = 1. In Figures 3-5 the two
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complex signals (a1(t) and a2(t) ) are not correlated. All random entities are otherwise statistically independent

from each other.

A first experiment evaluates the performance of the two algorithms for different SNR’s in the case of uncorrelated

sources. Figures 3(a) and 3(b) plot the CRMSE for K = 5 and K = 20 snapshots, respectively. For high SNR, the

two approaches yield similar results, very close to the CRB, while at low SNR, the proposed algorithm outperforms

ESPRIT. This phenomenon is more obvious for small values of K and can be explained by the fact that our method

also estimates the time sequences for the impinging waves. This is not the case for the method in [2], that averages

over the time dimension to estimate the data covariance matrix. Thus, the total number of parameters estimated

by CP equals (L1 + L2 +K)P while the number of parameters for ESPRIT is L1L2P . Roughly speaking, one of

the situations where our algorithm provides better results is when the number of parameters to estimate is smaller

compared to other method, i.e. for small values of K . Figure 4 illustrates this statement using different numbers of

snapshots K = {2, 3, . . . , 19, 20, 30, 40, . . . , 90, 100} for an SNR of 15 dB. It can be observed that the multi-scale

CP approach produces more accurate results for a number of snapshots smaller that about K = 11, which agrees

with the simplified analysis above.

The second experiment illustrates the fact that the proposed algorithm can be applied even if only a single

snapshot is available. However, in this case, the (N + 1)-way CP model degenerates into an N -dimensional one,

as shown by equation (10). Therefore, the array depicted on Fig.2 is now seen as a 3-level array, where the first

level is the 5-element cross-shaped subarray (L1 = 5), the second level is composed of two of such configurations,

aligned along the x-axis (L2 = 2) and the third level is the couple of two level-2 subarrays (L3 = 2). Figure 5

plots the results for the two methods under the single-snapshot scenario. It can be seen that the proposed method

still yields fair results, while ESPRIT is unusable here.

In a third experiment, we study the behavior of the two approaches in the presence of correlated sources. For

that, we simulated two sources with a correlation coefficient of 0.83 between a1(t) and a2(t). The numerical

simulation results are plotted on Figure. 6. Once more, the proposed algorithm outperforms the ESPRIT method.

This is because, in this case, the source covariance matrix is no longer diagonal, which violates a restriction in the

model used in [2] while entirely allowed by our CP approach. However, a strong correlation between sources may

yield convergence problems for our algorithm, especially for a low SNR and a small number of snapshots, as one

can see on Fig. 6(a).

We show in this section that, for the given array configuration, the proposed approach provides more accurate

results than the method in [2], in diverse scenarios. However, this comes at the expense of a smaller number of

sources that can be, in general, estimated by our method. For a Q1 ×Q2 grid of 5-element half-wavelength spaced
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cross-shaped subarrays, the approach in [2] can handle only up to

P ≤ min{5(Q1 − 1)Q2 − 1, 5Q1(Q2 − 1)− 1, 2Q1Q2 − 1} (21)

uncorrelated sources, while the number of sources P that can be handled by our approach is given by

min(5, P ) + min(Q1Q2, P ) + min(K,P ) ≥ 2P + 2. (22)

For the array configuration used in this section, both approaches can handle up to 7 sources, but if the size of the

grid increases, the number of sources that can be estimated by ESPRIT increases.

Another drawback of the proposed method is the computational burden which is, in general, bigger than for

ESPRIT. However, powerful CP fitting algorithms [29], [31] have been developed in the last years and they

significantly improve the convergence speed. Moreover, closed-form solutions exist for CP decompositions [35] that

are particularly efficient for Vandermonde structured data [36], [37] (which frequently appears in array processing),

and present a computational complexity equivalent to ESPRIT’s. Nevertheless, for the approach in [2], two pairing

procedures (that may fail for difficult scenarios), are necessary for the identification of the source parameters. This

pairing is no longer needed with our method, as it is intrinsic to the CP decomposition.

VII. CONCLUSIONS

This paper introduces a new sensor-array configuration for DOA estimation based on a scale invariance principle;

and we proved that the data acquired by this array follows a multidimensional CP structure. Our analysis proves

that this model is identifiable, under only mild conditions that are readily met in practical applications. A two-stage

algorithm for the estimation of the source DOAs with such an array was proposed and compared with an ESPRIT-

based approach developed in [2]. Our Monte Carlo simulations verify that our proposed method outperforms in

terms of root mean-square error an earlier ESPRIT-based approach [2], especially for a small number of snapshots

or for time correlated sources. Moreover, unlike the ESPRIT-based approach, this proposed algorithm can also be

applied in the single-snapshot scenario and is not limited to rectangular array configurations.

APPENDIX

DERIVATION OF CRAMÉR-RAO BOUND FOR THE DATA MODEL IN SECTION VI

The K snapshots, collected by the L-element array using a sampling period Ts, can be written as

z =
[
z(Ts)

T , · · · , z(KTs)
T
]T

=
P∑

p=1

sp ⊗ a(kp) +
[
n(Ts)

T , · · · ,n(KT )s)
T
]T

︸ ︷︷ ︸

def
=n

, (23)

where sp = [sp(Ts), · · · , sp(KTs)]
T

, ⊗ symbolizes the Kronecker product and n represents a LK×1 noise vector.

All deterministic unknown entities are collected into a 2P × 1 vector ψ = [u1, . . . , uP , v1, . . . , vP ].

The resulting Fisher Information Matrix J has its (i, j)th entry equal to (equation (8.34) in [38]) :

[J(ψ)]i,j = K Tr

[

R
−1
zz

∂Rzz

∂[ψ]i
R

−1
zz

∂Rzz

∂[ψ]j

]

, (24)
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where Rzz represents the data spatial covariance matrix and Tr[.] symbolizes the matrix trace operator.

The received data’s spatial covariance matrix at a given time instant kTs is given by

Rzz
def
= E{z(kTs)z(kTs)

H} = Γss + Γnn, (25)

where

Γss
def
= E







(
P∑

p=1

sp(kTs)⊗ ap(kp)

)(
P∑

p=1

sp(kTs)⊗ ap(kp)

)H





, (26)

Γnn
def
= E

{

n(kTs)n(kTs)
H
}

= σ2
nIL, (27)

respectively denote the sources’ and noise’s spatial covariance matrices, with noise’s variance as σ2
n, and IL

symbolizes an L× L identity matrix.

1) For two uncorrelated zero-mean unit-variance complex Gaussian signals (Fig. 3 - 5),

Γss =
2∑

p=1

σ2
papa

H
p , (28)

with the pth source’s variance as σ2
p .

2) For two cross-correlated zero-mean unit-variance complex Gaussian signals with a correlation coefficient ρ

(Fig. 6),

Γss = ρσ1σ2

(
a1a

H
2 + a2a

H
1

)
+

2∑

p=1

σ2
papa

H
p .
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Fig. 1. A multi-scale planar array with three hierarchical levels
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Fig. 2. The configuration of the sensor array used in the simulations
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Fig. 3. Uncorrelated sources: CRMSE versus signal-to-noise power ratio (SNR).
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0 10 20 30 40 50 60 70
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR dB

C
o

m
p

o
s
it
e

 R
.M

.S
.E

 f
o

r 
( 

u
,v

) 
e

s
ti
m

a
ti
o

n
 (

in
 r

a
d

ia
n

s
)

 

 

PARAFAC for Source #1
PARAFAC for Source #2
ESPRIT for Source #1
ESPRIT for Source #2
CRB for Source #1
CRB for Source #2

Fig. 5. Uncorrelated sources: CRMSE versus signal-to-noise power ratio (SNR) under one temporal snapshot.
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Fig. 6. Cross-correlated sources: CRMSE versus signal-to-noise power ratio (SNR).
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