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In this paper, we introduce a novel direction finding algorithm for a multi-scale sensor-array, that is, an array presenting multiple scales of invariance. We show that the collected data can be represented as a Candecomp/Parafac (CP) model, for which we analyze the identifiability properties. A two-stage algorithm for direction-of-arrival (DOA) estimation with such an array is also proposed. This approach generalizes the results given in [1] to an array that presents an arbitrary number of spatial invariances. We illustrate, on a particular array geometry, that our method outperforms the ESPRIT-based approach introduced in [2]. Moreover, we show that the single-snapshot case can be handled by our method, provided that the array includes at least three scale-levels.

Index Terms

direction finding, DOA

exploiting the quadrilinear structure of the data covariance, was proposed in [START_REF] Miron | DOA estimation for polarized sources on a vector-sensor array by PARAFAC decomposition of the fourth-order covariance tensor[END_REF], while Gong [START_REF] Gong | Source localization via trilinear decomposition of cross covariance tensor with vector-sensor arrays[END_REF] developed a trilinear cross-covariance DF method for an array of electric tripoles. Nion and Sidiropoulos established in [START_REF] Nion | A PARAFAC-based technique for detection and localization of multiple targets in a MIMO radar system[END_REF] a CP approach for source detection and localization in MIMO radar systems. In [START_REF] Gong | Regularised parallel factor analysis for the estimation of direction-of-arrival and polarisation with a single electromagnetic vector-sensor[END_REF], a regularized CP-based approach is used to solve the DOA estimation problem with a single six-component electromagnetic antenna. Recently, Zhang et al. proposed in [START_REF] Zhang | Coherent angle estimation in bistatic multi-input multi-output radar using parallel profile with linear dependencies decomposition[END_REF] an algorithm for coherent angle estimation for bistatic MIMO radar based on a CP model with linear dependences (PARALIND). Orthogonal tensor decompositions (e.g. HOSVD, HOEVD) have also been used in the last years to build up DF algorithms (see e.g. [START_REF] Miron | Vector sensor MUSIC for polarized seismic sources localization[END_REF], [START_REF] Haardt | Higher-order SVD-based subspace estimation to improve the parameter estimation accuracy in multidimensional harmonic retrieval problems[END_REF], [START_REF] Gong | Direction-of-arrival estimation via twofold mode-projection[END_REF], [START_REF] Boizard | Numerical performance of a tensor music algorithm based on HOSVD for a mixture of polarized sources[END_REF] an the references therein).

The approach proposed in this paper generalizes and extends the philosophy introduced in [START_REF] Sidiropoulos | Parallel factor analysis in sensor array processing[END_REF] an array presenting multiple scales of invariance. The main idea is to use an array geometry for which the source steering vectors can be expressed as N -way tensor products. A somewhat similar idea, but in a different context, was used in [START_REF] Lim | Blind multilinear identification[END_REF].

However, the authors of [START_REF] Lim | Blind multilinear identification[END_REF] utilized various tensor decompositions of a 2D array grid with two levels of spatial invariance, to illustrate their effect on coherent source estimation performance. In this paper, we propose a DF algorithm for any 3D sensor array with an arbitrary number of scales of invariance and provide an efficient twostage DOA estimation algorithm that exploits all the available information on the sources' DOAs. It is worth noting that the concept of multi-scale array used in this paper is totally different from that of nested arrays introduced in [START_REF] Pal | Nested arrays: A novel approach to array processing with enhanced degrees of freedom[END_REF], where the main idea is to exploit the associated "difference co-array" to resolve more sources than physical sensors.

The remainder of this paper is organized as follows: section II presents the proposed multi-scale array configuration; the corresponding data model is derived in section III. In section IV, we analyze the identifiability of the proposed data model and a two-stage algorithm for DOA parameter estimation is introduced in section V. In section VI, the proposed method is compared in simulations to the ESPRIT-based approach in [START_REF] Wong | Direction-finding with sparse rectangular dual-size spatial invariance arrays[END_REF]; conclusions are drawn in section VII.

II. THE GEOMETRIC CONFIGURATION OF A MULTIPLE SCALE-INVARIANT SENSOR ARRAY

We introduce in this section the configuration of the array for which the data model is to be derived in section III.

Consider an subarray composed of L 1 omnidirectional identical sensors indexed by l 1 = 1, . . . , L 1 . Consider then, L 2 identical replicas of this subarray, spatially translated to arbitrary, possibly known locations. The L 2 different copies of the subarray, indexed by l 2 = 1, . . . , L 2 , can now be seen as subarrays of a larger (higher-level) array.

The proposed array structure can be further developed by considering an additional level, composed of L 3 translated replicas of the previous L 1 L 2 sensors array, indexed by l 3 = 1, . . . , L 3 . Let us generalize this scheme to a total of N such hierarchical levels, the "highest" level consisting of L N subarrays indexed by l N = 1, . . . , L N . It is worth noting that two different subarrays at a given level n need not be disjoint, i.e. they may have in common subarrays/sensors of the previous level (n -1). However, if all subarrays at all levels are disjoint, then the entire array contains a total number of L = L 1 L 2 . . . L N identical sensors. Fig. 1 illustrates a three-level array with co-planar sensors.

Consider also a Cartesian coordinate system OXY Z attached to the considered array. An impinging source is December 23, 2013 DRAFT characterized in this coordinate system by its direction-cosines u, v, w :

      u v w       =       sin θ cos φ sin θ sin φ cos θ       , (1) 
where θ ∈ [0, π[ denotes the source elevation angle measured from the vertical Z-axis and φ ∈ [0, 2π[ symbolizes the azimuth angle measured from the positive X-axis.

Let us consider a single level-1 subarray. In the coordinate system OXY Z, the position of the l 1 th sensor of this subarray is given by the vector (x

(1) l1 , y (1) 
l1 , z

l1 ). Consider next L 1 such subarrays. The position of the l 1 th sensor of the l 2 th subarray is given by (x

(1) l1 + x (2) l2 , y (1) l1 + y (2) l2 , z (1) l1 + z (2) l2 ), where (x (2) l2 , y (2) l2 , z (2) 
l2 ) indicates the spatial displacement of the l 2 th subarray with respect to the first subarray. It can be easily shown by induction that, for a N -level array, the position of one sensor is given by (x

(1) l1 + • • • + x (N ) lN , y (1) 
l1 + • • • + y (N ) lN , z (1) 
l1 + • • • + z (N ) lN ), where (x (N ) lN , y (N ) lN , z (N )
lN ) indicates the spatial displacement of the l N th subarray compared to the first subarray of the level N (indexed by l N = 1), etc.. The presented array structure is composed by sensor/subarrays "packs" that differ from each others only by a translation in the three-dimensional Euclidian space. This provides interesting spatial invariance properties for the data acquired by this array, as shown in the next section.

III. DATA MODEL

Consider first a narrow-band plane wave impinging on the array described in section II. Let us symbolize by a l1l2...lN its phase factor at sensor indexed by l 1 , l 2 , . . . , l N at the N different array levels, respectively and denote

k = [u v w] T and d (n) ln = [x (n) ln y (n) ln z (n)
ln ] T , with n = 1, . . . , n. With the notations introduced above, the phase factor is given by :

a l1l2...lN (k) = exp j 2π λ N n=1 k T d (n) ln = N n=1 exp j 2π λ k T d (n) ln . (2) 
Thus, the array manifold for the entire sensor array is

a(k) = a 1 (k) ⊗ • • • ⊗ a N (k), (3) 
with

a n (k) =        e j(2π/λ)k T d (n) 1 . . . e j(2π/λ)k T d (n) Ln        (4) 
an L n × 1 vector, n = 1, . . . , N and " ⊗ " the Kronecker product of two matrices.

Next, consider P narrow-band, plane-waves, having traveled through a nonconductive homogeneous isotropic medium, impinging upon the array from directions k p = [u p v p w p ] T , with p = 1, . . . , P . Denote by s p (t) the December 23, 2013 DRAFT time signal emitted by the pth narrow-band source 1 . Then, the output at time t of the entire sensor array can be expressed as an L × 1 vector

z(t) = P p=1 a 1 (k p ) ⊗ • • • ⊗ a N (k p ) s p (t) + n(t), (5) 
where n(t) is a complex-valued zero-mean additive white noise.

Let us assume that we have at our disposal K snapshots at time instants t 1 , t 2 , . . . , t K , and define the following matrices :

A 1 = a 1 (k 1 ), . . . , a 1 (k P ) (L 1 × P ) (6) 
. . .

A N = a N (k 1 ), . . . , a N (k P ) (L N × P ) (7) 
and 

S =           s 1 (
s 1 (t K ) s 2 (t K ) . . . s P (t K )           = s 1 , s 2 , . . . , s P (K × P ). (8) 
The collection of K snapshots of the array can then be organized into an L × K data matrix as

Z = [z(t 1 ), . . . , z(t K )] = A 1 ⊙ • • • ⊙ A N S T + N, (9) 
where "⊙" denotes the Khatri-Rao (Kronecker column-wise) product of two matrices, and N (L × K) is a complexvalued matrix modeling the sensor noise on the entire array for all K temporal snapshots. Equation ( 9) reveals a

(N + 1)-dimensional CP structure (see [START_REF] Harshman | Foundations of the PARAFAC procedure: Models and conditions for an 'explanatory' multimodal factor analysis[END_REF], [START_REF] Carroll | Analysis of individual differences in multidimensional scaling via an N-way generalization of "Eckart-Young" decomposition[END_REF]) of the collected data.

In the case where only one sample is available, i.e. matrix S is a 1 × P vector, the data model given by ( 9) becomes

z = A 1 ⊙ • • • ⊙ A N s + n, (10) 
with z = z(t 1 ), s = s(t 1 ) = S(1, :)

T and n = N(:, 1). In the definitions above, we used the Matlab notations for columns and rows selection operators. Equation ( 10) is a vectorized representation of a N -dimensional CP data model (see e.g. [START_REF] Kolda | Tensor decompositions and applications[END_REF] for details on the different CP representations). It is worth noting that if only one snapshot of the array is available, the N + 1 CP model degenerates into a N -dimensional one.

IV. DATA MODEL IDENTIFIABILITY

Before presenting the proposed algorithm for source DOA estimation, a discussion on data model identifiability is required. In this paper, the term identifiability refers to the non-ambiguous estimation of the DOA parameters from the collected data. We will only focus herein on the identifiability conditions for the estimation of matrices A 1 , . . . , A N and S, from the data (equation ( 9)). A brief discussion on the ambiguity problems when estimating the direction-cosines from A 1 , . . . , A N is provided in section V.

The main advantage of the CP model, compared to other source separation approaches, is its identifiability under only mild conditions. In [START_REF]Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics[END_REF], Kruskal derived a sufficient condition for the identifiability of the 3-way CP model. This condition is based on a special notion of matrix rank, called the Kruskal-rank or k-rank2 , and has been generalized later to N -way arrays by Sidiropoulos and Bro [START_REF] Sidiropoulos | On the uniqueness of multilinear decomposition of N-way arrays[END_REF]. If applied to the data model given by eq. ( 9), this condition states that the matrices A 1 , . . . , A N and S can be uniquely estimated from Z if

N n=1 k An + k S ≥ 2P + N, (11) 
where k (.) denotes the Kruskal-rank of a matrix. This estimation is unique up to two trivial indeterminacies. The first indeterminacy is an arbitrary simultaneous column permutation of all N + 1 matrices, and signifies that the order of the sources can not be a priori determined. The second one is an arbitrary column scaling/counterscaling and can be resolved by normalizing each column of matrices A 1 , . . . , A N by the modulus of that column's first element.

If the P sources have distinct DOAs and are not fully correlated, the identifiability condition (11) can be reformulated as

N n=1 min(L n , P ) + min(K, P ) ≥ 2P + N. (12) 
In general, the number of snapshots exceeds the number of sources (K > P ), in which case [START_REF] Nion | A PARAFAC-based technique for detection and localization of multiple targets in a MIMO radar system[END_REF] becomes

N n=1 min(L n , P ) ≥ P + N. (13) 
Furthermore, if L n > P for n = 1, . . . , N, (this could be the case especially for small values of N ), than the sufficient condition will always be met for model identifiability if P, N ≥ 2. This means that, for non-collocated sources with not fully correlated temporal sequences, the CP model identifiability is easily achieved in practical applications.

Another case of interest is when the array has at least three scales of invariance. In this situation the model can be identified even under the single-snapshot assumption, and Kruskal's condition reads:

N n=1 min(L n , P ) ≥ 2P + N -1. (14) 
Meanwhile, if the condition [START_REF] Gong | Source localization via trilinear decomposition of cross covariance tensor with vector-sensor arrays[END_REF] does not hold, the identifiability of ( 9) can no longer be ensured. In this case, partial identifiability may apply, meaning that only a part of the parameters in (9) may be uniquely recovered.

Partial identifiability results for the 3-way CP model, similar to Kruskal's condition, have been derived in [START_REF] Guo | Uni-mode and partial uniqueness conditions for CANDECOMP/PARAFAC of three-way arrays with linearly dependent loadings[END_REF]. A generalization of these results to N -way arrays has been proposed in [START_REF] Zhang | Uni-mode uniqueness conditions for CANDECOMP/PARAFAC decomposition of n-way arrays with linearly dependent loadings[END_REF]. Specific identifiability conditions for the case of fully coherent sources and/or collocated sources could be derived from these results. However, this analysis is beyond the scope of this paper.

V. PARAMETER ESTIMATION

The parameter estimation procedure proposed in the paper can be split into two stages. The first stage consists of estimating the N steering vectors a n (k p ) (n = 1, . . . , N ) for each of the P sources (p = 1, . . . , P ), by exploiting the CP structure (9) of the collected data. For the first stage, an Alternating Least Squares (ALS) procedure can be used to fit the CP model. It consists of recursively estimating one of the N + 1 matrices A 1 , . . . , A N , S, by fixing the other N of them [START_REF] Harshman | Foundations of the PARAFAC procedure: Models and conditions for an 'explanatory' multimodal factor analysis[END_REF], [START_REF] Carroll | Analysis of individual differences in multidimensional scaling via an N-way generalization of "Eckart-Young" decomposition[END_REF]. ALS is simple to implement but suffers from a slow convergence rate and is sensitive to over-(and under-) factoring. Improved versions of this algorithm, using data compression and line search techniques that partly mitigate these deficiencies, have been proposed in [START_REF] Bro | Improving the speed of multiway algorithms[END_REF], [START_REF] Bro | A fast least squares algorithm for separating trilinear mixtures[END_REF], [START_REF] Rajih | Enhanced line search: A novel method to accelerate PARAFAC[END_REF]. Derivative-based methods or direct (non-iterative) procedures can likewise be employed to fit the CP model [START_REF] Tomasi | A comparison of algorithms for fitting the PARAFAC model[END_REF]. Such CP decomposition methods have been implemented in Matlab and are freely available online (see e.g. [START_REF] Andersson | The N-way toolbox for MATLAB[END_REF], [START_REF] Sorber | Tensorlab v1.0[END_REF]). This present paper's simulations will use the COMFAC approach of [START_REF] Bro | A fast least squares algorithm for separating trilinear mixtures[END_REF].

The second stage estimates the source direction-cosines k p , p = 1, . . . , P from the steering vectors obtained at the previous stage. To this end, we propose a sequential procedure that exploits all the available information from the source steering vectors of all scale levels.

Define the following cost functions:

J n (k p ) = âp n -a n (k p ) 2 , with n = 1, . . . , N, (15) 
where âp n denotes the nth level estimated steering vector for the pth source. Estimating the DOA parameters for the pth source comes down to minimizing the following criterion:

I N (k p ) = N n=1 J n (k p ). ( 16 
)
This function is non-convex and highly non-linear with respect to the direction-cosines; hence a direct local optimization procedure would fail in most cases. We propose a sequential strategy to minimize I N (k p ), using an iterative refinement of the direction-cosine estimates. The method is based on the fact that, when noise-free, the N cost-functions in [START_REF] Miron | Vector sensor MUSIC for polarized seismic sources localization[END_REF] have the same global minimum.

Assume that the level-1 subarrays' inter-sensor separations would not exceed half a wavelength. This assumption is essential to obtaining a set of high-variance but unambiguous direction-cosine estimates. On the contrary, the spatial displacement between any two subarrays of the highest level is supposed to exceed λ/2, where λ is the wavelength.

This will produce lower variance but cyclically ambiguous estimates for the same set of direction-cosines. Under the first assumption, the J 1 (k p ) function is unimodal inside the support region of the DOA parameters. Therefore, any local optimization procedure should converge towards the global minimum for the criterion. Thus, we obtain a December 23, 2013 DRAFT set of high-variance, but unambiguous, estimates of the DOA parameters, to be denoted by k * p,1 with p = 1, . . . , P . These values will subsequently be used, in a second step, as the initial point for the minimization of

I 2 (k p ) = J 1 (k p ) + J 2 (k p ). (17) 
As no assumption is made on the distances between the level-2 subarrays, I 2 (k p ) may present more than one local minimum. Hence, a good initial point is crucial for the optimization procedure. The estimates obtained by the minimization of I 2 (k p ), denoted by k * p,2 , are then used for the minimization of I 3 (k p ) = 3 n=1 J n (k p ), and so on, until the final estimates are obtained by the minimization of I N (k p ). We emphasize the necessity of sequential iteration for good results, going from level n to level n + 1. A direct "jump" from a low hierarchical level (e.g. level 1) to a high hierarchical level (e.g. level N ) may result in erroneous results, especially for low signal-to-noise ratios (SNR). The reason is that the number of local minima for J n (k) and I n (k) increases with n and that the low-level estimates have a high variance. Thus, the direct initialization of a high-level parameter estimation step with a low-level estimate may result in convergence towards a local minimum instead of the global one. This sequential minimization can be regarded as a Graduated Non-Convexity (GNC) optimization approach [START_REF] Blake | Visual Reconstruction, ser. Artificial Intelligence Series[END_REF], in which the multi-scale array geometry determines the parameter controlling the transformation of the initial convex problem into a non-convex problem. A sufficient condition ensuring the global minimization of the non-convex problem is that:

• the global minimum of the initial convex problem can be reached;

• the global minimum of each intermediate sub-problem belongs to the locally convex region around the global minimum of the subsequent optimization problem.

The first requirement is met because the inter-element spacing of the level-1 subarray is ≤ λ/2, resulting in a uni-modal criterion J 1 (k). Regarding the second requirement, it is difficult to determine whether it is met, because the shape of the criterion J N (k) depends on the array geometry. However, as the number of local minima increases with the inter-sensor spacing, the algorithm would likely reach the global minimum of the criterion J N (k) provided that the inter-sensor spacing of the successive scales of the array do not change excessively from one level to another level.

The proposed algorithm can be summarized as follows:

THE TWO-STAGE ESTIMATION ALGORITHM

First Stage: Estimate A 1 , . . . , A N by CP decomposition of the data Z or z (see eq. ( 9) or ( 10)).

Second Stage:

• For p = 1, . . . , P and 

• Output: The estimated parameters for the P sources: kp = (û p , vp , ŵp ) = k * p,N with p = 1, . . . , P .

In this paper, the first stage is performed using the COMFAC CP-fitting algorithms implemented in the Matlab toolbox [START_REF] Andersson | The N-way toolbox for MATLAB[END_REF]. For the second stage, the minimization of I n in ( 18) is done by the Nelder-Mead simplex algorithm, initialized by the estimates of the previous step k * p,n-1 . Random values, within the parameters definition domain, are used to initialize the minimization of

I 1 = J 1 .
The next section will illustrate the performance of the proposed algorithm in numerical simulations.

VI. SIMULATION RESULTS AND DISCUSSION

In this section, we compare our approach with the one developed by Wong and Zoltowski in [START_REF] Wong | Direction-finding with sparse rectangular dual-size spatial invariance arrays[END_REF], using an array configuration proposed by those same authors. The Cramér-Rao Bound (CRB) for the considered model, derived in the appendix, is used as a benchmark. The sensor array consists of a 2 × 2 square grid at an extended spacing of 10 λ and a 5-element half-wavelength spaced cross-shaped subarray at each grid point, as illustrated by Fig. 2. This array can be seen as having two hierarchical levels with L 1 = 5 sensors and L 2 = 4 subarrays, or as a three-level array with L 1 = 5, L 2 = 2 and L 3 = 2. In [START_REF] Wong | Direction-finding with sparse rectangular dual-size spatial invariance arrays[END_REF], the source' DOAs are estimated using an ESPRIT-based technique. Two types of estimates (coarse but unambiguous, versus fine but cyclically ambiguous) are computed separately for each of the x and y axes of the considered spatial grid, using four matrix pencils altogether. The coarse but unambiguous estimates are then used to disambiguate the fine but cyclically ambiguous DOA estimates. This procedure is followed by a pairing step of the x-axis and y-axis direction-cosines of the sources.

The considered signal scenario involves two equal-power narrowband source signals impinging respectively from (u 1 = 0.83, v 1 = 0.17), and (u 2 = 0.13, v 2 = 0.79). There are I = 500 independent Monte-Carlo runs for each data point plot on the figures. The additive white noise is complex-value Gaussian distributed. All figures plot the "composite root-mean-square-error" (CRMSE) of the sources' Cartesian direction-cosine estimates, versus SNR. This CRMSE is defined as

1 I I i=1 δ 2 u,p,i + δ 2 v,p,i 2 , ( 19 
)
where δ u,p,i (δ v,p,i ) symbolizes the error in estimating the pth source's x-axis (y-axis) direction-cosine during the ith run.

The pth source signal model used for the simulations represented on Fig. 3-6 is:

s p (t) = a p (t) e j 2π fp 3 t+ϕp , (20) 
where a p (t) is a zero-mean unit-variance complex-value random time series Gaussian distributed and temporally white, ϕ p is a random variable uniformly distributed between [0, 2π] and f 1 = f 2 = 1. In Figures 345 A first experiment evaluates the performance of the two algorithms for different SNR's in the case of uncorrelated sources. Figures 3(a) and 3(b) plot the CRMSE for K = 5 and K = 20 snapshots, respectively. For high SNR, the two approaches yield similar results, very close to the CRB, while at low SNR, the proposed algorithm outperforms ESPRIT. This phenomenon is more obvious for small values of K and can be explained by the fact that our method also estimates the time sequences for the impinging waves. This is not the case for the method in [START_REF] Wong | Direction-finding with sparse rectangular dual-size spatial invariance arrays[END_REF], that averages over the time dimension to estimate the data covariance matrix. Thus, the total number of parameters estimated by CP equals (L 1 + L 2 + K)P while the number of parameters for ESPRIT is L 1 L 2 P . Roughly speaking, one of the situations where our algorithm provides better results is when the number of parameters to estimate is smaller compared to other method, i.e. for small values of K. Figure 4 illustrates this statement using different numbers of snapshots K = {2, 3, . . . , 19, 20, 30, 40, . . . , 90, 100} for an SNR of 15 dB. It can be observed that the multi-scale CP approach produces more accurate results for a number of snapshots smaller that about K = 11, which agrees with the simplified analysis above.

The second experiment illustrates the fact that the proposed algorithm can be applied even if only a single snapshot is available. However, in this case, the (N + 1)-way CP model degenerates into an N -dimensional one, as shown by equation [START_REF] Miron | DOA estimation for polarized sources on a vector-sensor array by PARAFAC decomposition of the fourth-order covariance tensor[END_REF]. Therefore, the array depicted on Fig. 2 is now seen as a 3-level array, where the first level is the 5-element cross-shaped subarray (L 1 = 5), the second level is composed of two of such configurations, aligned along the x-axis (L 2 = 2) and the third level is the couple of two level-2 subarrays (L 3 = 2). Figure 5 plots the results for the two methods under the single-snapshot scenario. It can be seen that the proposed method still yields fair results, while ESPRIT is unusable here.

In a third experiment, we study the behavior of the two approaches in the presence of correlated sources. For that, we simulated two sources with a correlation coefficient of 0.83 between a 1 (t) and a 2 (t). The numerical simulation results are plotted on Figure . 6. Once more, the proposed algorithm outperforms the ESPRIT method. This is because, in this case, the source covariance matrix is no longer diagonal, which violates a restriction in the model used in [START_REF] Wong | Direction-finding with sparse rectangular dual-size spatial invariance arrays[END_REF] while entirely allowed by our CP approach. However, a strong correlation between sources may yield convergence problems for our algorithm, especially for a low SNR and a small number of snapshots, as one can see on Fig. 6(a).

We show in this section that, for the given array configuration, the proposed approach provides more accurate results than the method in [START_REF] Wong | Direction-finding with sparse rectangular dual-size spatial invariance arrays[END_REF], in diverse scenarios. However, this comes at the expense of a smaller number of sources that can be, in general, estimated by our method. For a Q 1 × Q 2 grid of 5-element half-wavelength spaced December 23, 2013 DRAFT cross-shaped subarrays, the approach in [START_REF] Wong | Direction-finding with sparse rectangular dual-size spatial invariance arrays[END_REF] can handle only up to

P ≤ min{5(Q 1 -1)Q 2 -1, 5Q 1 (Q 2 -1) -1, 2Q 1 Q 2 -1} (21) 
uncorrelated sources, while the number of sources P that can be handled by our approach is given by min(5, P ) + min(Q 1 Q 2 , P ) + min(K, P ) ≥ 2P + 2.

For the array configuration used in this section, both approaches can handle up to 7 sources, but if the size of the grid increases, the number of sources that can be estimated by ESPRIT increases.

Another drawback of the proposed method is the computational burden which is, in general, bigger than for ESPRIT. However, powerful CP fitting algorithms [START_REF] Bro | A fast least squares algorithm for separating trilinear mixtures[END_REF], [START_REF] Tomasi | A comparison of algorithms for fitting the PARAFAC model[END_REF] have been developed in the last years and they significantly improve the convergence speed. Moreover, closed-form solutions exist for CP decompositions [START_REF] Roemer | A closed-form solution for parallel factor (PARAFAC) analysis[END_REF] that are particularly efficient for Vandermonde structured data [START_REF] Sorensen | Tensor decompositions with Vandermonde factor and applications in signal processing[END_REF], [START_REF]Blind signal separation via tensor decomposition with Vandermonde factor: Canonical polyadic decomposition[END_REF] (which frequently appears in array processing), and present a computational complexity equivalent to ESPRIT's. Nevertheless, for the approach in [START_REF] Wong | Direction-finding with sparse rectangular dual-size spatial invariance arrays[END_REF], two pairing procedures (that may fail for difficult scenarios), are necessary for the identification of the source parameters. This pairing is no longer needed with our method, as it is intrinsic to the CP decomposition.

VII. CONCLUSIONS

This paper introduces a new sensor-array configuration for DOA estimation based on a scale invariance principle;

and we proved that the data acquired by this array follows a multidimensional CP structure. Our analysis proves that this model is identifiable, under only mild conditions that are readily met in practical applications. A two-stage algorithm for the estimation of the source DOAs with such an array was proposed and compared with an ESPRITbased approach developed in [START_REF] Wong | Direction-finding with sparse rectangular dual-size spatial invariance arrays[END_REF]. Our Monte Carlo simulations verify that our proposed method outperforms in terms of root mean-square error an earlier ESPRIT-based approach [START_REF] Wong | Direction-finding with sparse rectangular dual-size spatial invariance arrays[END_REF], especially for a small number of snapshots or for time correlated sources. Moreover, unlike the ESPRIT-based approach, this proposed algorithm can also be applied in the single-snapshot scenario and is not limited to rectangular array configurations.

APPENDIX DERIVATION OF CRAM ÉR-RAO BOUND FOR THE DATA MODEL IN SECTION VI

The K snapshots, collected by the L-element array using a sampling period T s , can be written as

z = z(T s ) T , • • • , z(KT s ) T T = P p=1 s p ⊗ a(k p ) + n(T s ) T , • • • , n(KT ) s ) T T def =n , (23) 
where

s p = [s p (T s ), • • • , s p (KT s )]
T , ⊗ symbolizes the Kronecker product and n represents a LK × 1 noise vector.

All deterministic unknown entities are collected into a 2P × 1 vector ψ = [u 1 , . . . , u P , v 1 , . . . , v P ].

The resulting Fisher Information Matrix J has its (i, j)th entry equal to (equation (8.34) in [START_REF] Van Trees | Detection, Estimation,and Modulation Theory, Part IV: Optimum Array Processing[END_REF]) :

[J(ψ)] i,j = K Tr R -1 zz ∂R zz ∂[ψ] i R -1 zz ∂R zz ∂[ψ] j , (24) 
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where R zz represents the data spatial covariance matrix and Tr[.] symbolizes the matrix trace operator.

The received data's spatial covariance matrix at a given time instant kT s is given by

R zz def = E{z(kT s )z(kT s ) H } = Γ ss + Γ nn , (25) 
where

Γ ss def = E    P p=1 s p (kT s ) ⊗ a p (k p ) P p=1 s p (kT s ) ⊗ a p (k p ) H    , (26) 
Γ nn def = E n(kT s )n(kT s ) H = σ 2 n I L , (27) 
respectively denote the sources' and noise's spatial covariance matrices, with noise's variance as σ 2 n , and I L symbolizes an L × L identity matrix. 1) For two uncorrelated zero-mean unit-variance complex Gaussian signals (Fig. 345),

Γ ss = 2 p=1 σ 2 p a p a H p , (28) 
with the pth source's variance as σ 2 p . 2) For two cross-correlated zero-mean unit-variance complex Gaussian signals with a correlation coefficient ρ (Fig. 6),

Γ ss = ρσ 1 σ 2 a 1 a H 2 + a 2 a H 1 + 2 p=1
σ 2 p a p a H p . 
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 123122 Fig. 1. A multi-scale planar array with three hierarchical levels

Fig. 3 . 2 Fig. 4 .

 324 Fig. 3. Uncorrelated sources: CRMSE versus signal-to-noise power ratio (SNR).
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 252206 Fig. 5. Uncorrelated sources: CRMSE versus signal-to-noise power ratio (SNR) under one temporal snapshot.
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  the two December 23, 2013 DRAFT complex signals (a 1 (t) and a 2 (t) ) are not correlated. All random entities are otherwise statistically independent from each other.

The incident signals are narrow-band in that their bandwidths are very small compared with the inverse of the wavefronts' transit time across the array. December

23, 2013 DRAFT 

The Kruskal-rank of a matrix is the maximum number of independent columns that can selected from that matrix in an arbitrary manner.December 23, 2013 DRAFT
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