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For a potential V such that V (x) ≥ |x| α with α > 2 we prove that the heat kernel k t (x, y) associated to the uniformly elliptic operator A = -

for large x, y ∈ R n and all t > 0. Here 0 < θ ≤ 1 is an appropriate constant, b > α+2 α-2 and µ 0 is the first eigenvalue of A. We also obtain an estimate for large |x| of the eigenfunctions of A.

Introduction

In this paper we consider operators of the type

Au = - n k,j=1 ∂ k (a kj ∂ j u) + V u,
with potentials V that grow more than a polynomial. We study the behaviour for large |x| of the associated heat kernel and associated eigenfunctions. We make the following assumptions in which α > 2, η and Λ are positive constants:

(H)    a kj = a jk ∈ W 1,∞ loc (R n , R), ∂ j a kj = o(|x| α 
2 ) as |x| → ∞, η|ξ| 2 ≤ n j,k=1 a kj (x)ξ k ξ j ≤ Λ|ξ| 2 for all ξ ∈ R n , V ∈ L 1 loc (R n ) such that V (x) ≥ |x| α . We define the quadratic forms

a(u, u) := n k,j=1 R n a kj ∂ k u∂ j u + R n V |u| 2 b(u, u) := R n |∇u| 2 + R n V |u| 2 for u ∈ D(a) = D(b) = {u ∈ W 1,2 (R n ); R n V |u| 2 < ∞}.
It is easy to see that a and b are closed symmetric forms. Their associated self-adjoint operators are A and B, respectively.

Formally,

Au = - n k,j=1
∂ k (a kj ∂ j u) + V u and Bu = -∆u + V u.

Since lim |x|→+∞ V (x) = +∞ it follows that A and B have compact resolvents. Therefore their spectra are discrete σ(A) = {µ i ; i = 0, 1, . . .} σ(B) = {λ i ; i = 0, 1, . . .}.

We shall denote by (ψ i ) i≥0 and (ϕ i ) i≥0 the corresponding normalized eigenfunctions of A and B, respectively. In particular, ψ 0 and ϕ 0 will denote the normalized eigenfunctions corresponding to the first eigenvalues µ 0 for A and λ 0 for B.

Since V is non-negative, the semigroup generated by -A is dominated by the Gaussian semigroup. Similarly, the semigroup of -B is dominated by the semigroup corresponding to the operator with V = 0. Therefore, A and B have heat kernels k t (x, y) and p t (x, y) which satisfy Gaussian upper bounds

p t (x, y) ≤ 1 (4πt) n/2 e -|x-y| 2 4t , k t (x, y) ≤ Ct -n/2 e -c |x-y| 2 t
for t > 0 and some constants c, C > 0 (see [START_REF] Davies | Heat Kernels and Spectral Theory[END_REF], [START_REF] Ouhabaz | Analysis of Heat Equations on Domains[END_REF]). Better estimates for large time t are proved in [START_REF] Ouhabaz | Sharp Gaussian bounds and L p -growth of semigroups associated with elliptic and Schrödinger operators[END_REF]. Indeed, it is shown there that

p t (x, y) ≤ C t n/2 e -λ 0 t e -|x-y| 2 4t 1 + λ 0 t + |x -y| 2 t n 2
and the same arguments give

k t (x, y) ≤ C t n/2 e -µ 0 t e -ρ 2 (x,y) 4t 1 + µ 0 t + ρ 2 (x, y) t n 2 , t > 0 where ρ(x, y) := sup{φ(x) -φ(y) : φ ∈ C ∞ c (R n ), n k,j=1 a kj ∂ k φ∂ j φ ≤ 1 a.e. on R n }
is the metric associated to coefficients a kj . By uniform ellipticity, ρ is equivalent to the Euclidean distance. These estimates are sharp with respect to t but they do not reflect the behaviour of the heat kernel for large x and y. For the operator B, it is known that 

p t (x, y) ≤ Ce ct -b ϕ 0 (x)ϕ 0 (y) (1.1) for all x, y ∈ R n , 0 < t ≤ 1,
|x| α 4 + n-1 2 e -|x| γ γ ≤ ϕ 0 (x) ≤ c 2 1 |x| α 4 + n-1 2 e -|x| γ γ (1.2)
for some positive constants c 1 , c 2 and γ := 1 + α 2 ; see [START_REF] Davies | Heat Kernels and Spectral Theory[END_REF]Corollary 4.5.8]. From this and (1.1) one has for large x and y

p t (x, y) ≤ Ce ct -b 1 (|x||y|) α 4 + n-1 2 e -|x| γ γ e -|y| γ γ . (1.3)
Our contribution in this note is to show a similar estimate for the heat kernel k t (x, y) of the operator A. It is not clear how to adapt the proof in [START_REF] Davies | Heat Kernels and Spectral Theory[END_REF] to obtain (1.1) for k t (x, y) with ψ 0 instead of ϕ 0 . What we shall do is to prove that the estimate (1.3) carries over from p t (x, y) to k t (x, y). The idea is to use a log-Sobolev inequality for B from [START_REF] Davies | Heat Kernels and Spectral Theory[END_REF] and then by ellipticity the the same inequality holds for A. In order to conclude we will need an L ∞ estimate for a "weighted" semigroup ϕ -1 e -tA ϕ with an appropriate function ϕ. This estimate will be obtained by using the Beurling-Deny criterion. As a result we prove that if Λ < 1, then for large |x| and |y|

k t (x, y) ≤ Ce -µ 0 t e ct -b 1 (|x||y|) α 4 + n-1 2 e -|x| γ γ - |y| γ γ
for all t > 0. We also mention that some related results on heat kernel bounds for Schrödinger operators on manifolds are proved in [START_REF] Sikora | On-diagonal estimates on Schrödinger semigroup kernels and reduced heat kernels[END_REF].

As a consequence of our result we obtain the following estimate for the eigenfunctions ψ j , j ≥ 0 for an appropriate constant c > 0.

|ψ j (x)| ≤ C 1 |x| α 4 + n-1

Heat kernel estimates

Before we state the main results of this section, let us recall that ψ 0 is strictly positive.

Lemma 2.1. The ground state ψ 0 of A is strictly positive, i.e.

ψ 0 (x) > 0, a.e. x ∈ R n .
Proof. By the Beurling-Deny criterion the semigroup (e -tA ) is positive. This follows from the fact u ∈ D(a) ⇒ u + ∈ D(a) and a(u + , u -) = 0. Since the Gaussian semigroup (e t∆ ) is irreducible (as a convolution with the Gaussian function) we have from [9, Theorem 2.10] that for every measurable subset It is now a classical fact that this implies that µ 0 is a simple eigenvalue with

Ω of R n such that χ Ω u ∈ W 1,2 (R n ), ∀u ∈ W 1,2 (R n ), then |Ω| = 0 or |R n \ Ω| = 0,
ψ 0 > 0 (cf [2, Proposition 1.4.3]).
The following is the first main result of this paper.

Theorem 2.2. Assume that (H) is satisfied with some constant Λ < 1. Then the heat kernel k t (x, y) satisfies

k t (x, y) ≤ Ce -µ 0 t e ct -b 1 (|x||y|) β e -|x| γ γ - |y| γ γ for large x, y ∈ R n and all t > 0. Here C, c > 0, b > α+2 α-2 , β = α 4 + n-1 2 and γ = 1 + α 2 .
Proof. We note first that, by domination (cf. [9, Theorem 2.24]), one can assume that By considering the unitary operator

V (x) = |x| α . Denote by ϕ a positive and C ∞ -function on R n such that ϕ(x) = |x| -β e -|x| γ γ for |x| ≥ R large enough. By normalization, one can assume that ϕ L 2 = 1. Define on L 2 ϕ := L 2 (R n , ϕ 2 (x)dx
U ϕ : L 2 (R n , ϕ 2 dx) -→ L 2 (R n , dx) f -→ ϕf
we see that the associated operators A, B (with a and b, respectively) are

A = U ϕ -1 AU ϕ , B = U ϕ -1 BU ϕ . Hence, e -t e A = ϕ -1 e -tA ϕ, e -t e B = ϕ -1 e -tB ϕ
and their associated kernels are

k t (x, y) = k t (x, y) ϕ(x)ϕ(y) and p t (x, y) = p t (x, y) ϕ(x)ϕ(y) .
We need the following lemmas.

Lemma 2.3. For every non-negative f ∈ D( a) we have

1 ∧ f := inf{1, f } ∈ D( a).
Proof. Since (ϕ -1 0 e -tB ϕ 0 )1 = ϕ -1 0 e -λ 0 t ϕ 0 = e -λ 0 t ≤ 1, the semigroup (ϕ -1 0 e -tB ϕ 0 ) is L ∞contractive. Therefore, we can apply the Beurling-Deny criterion (see e.g. [9, Corollary 2.17]) and obtain

1 ∧ f := inf{1, f } ∈ D(b ) for all 0 ≤ f ∈ D(b ), (2.1) 
where (b , D(b )) is the form associated to the operator ϕ -1 0 Bϕ 0 on L 2 (R n , ϕ 2 0 dx) which is (minus) the generator of ϕ -1 0 e -tB ϕ 0 . We claim now that D(b ) = D( b). By (1.2), ϕ and ϕ 0 are equivalent and hence

L 2 (R n , ϕ 2 dx) = L 2 (R n , ϕ 2 0 dx). In addition, R n V (ϕu) 2 dx < ∞ ⇔ R n V (ϕ 0 u) 2 dx < ∞.
Using the fact that for large |x| we have

a 1 |∇ϕ(x)| ≤ |∇ϕ 0 (x)| ≤ a 2 |∇ϕ(x)| (2.2)
where a 1 and a 2 are positive constants (see [6, Lemma 6.1], [8, Theorem 2.1, Chapter 6]), we obtain

∇ϕ 0 (x) ϕ 0 (x) 2 ≤ C 1 |x| α + C 2 , x ∈ R n ,
where C 1 and C 2 are two positive constants. Suppose now that u ∈ D( b).

Then, v := ϕu ∈ W 1,2 (R n ), R n |x| α |v(x)| 2 dx < ∞ and g := ϕ 0 ϕ satisfies |∇g(x)| 2 ≤ C 1 |x| α + C 2 , x ∈ R n . (2.3) Since C ∞ c (R n )
) is a core for B (cf. [START_REF] Kato | Schrödinger operators with singular potentials[END_REF]) and hence a core for b (cf. [9, Lemma 1.25]), it follows that there is a sequence

(v n ) in C ∞ c (R n )) such that v n → v, |∇v n | → |∇v| and |x| α 2 v n → |x| α 2 v in L 2 (R n ). Take now h ∈ R n . Then for every x g(x + h)v n (x + h) -g(x)v n (x) = (g(x + h) -g(x))v n (x) + g(x + h)(v n (x + h) -v n (x)) = v n (x) 1 0 h • ∇g(x + th) dt + g(x + h) 1 0 h • ∇v n (x + th) dt.
Hence, using (2.3), we deduce that there are positive constants

C 1 , C 2 , C 3 such that τ h (gv n ) -(gv n ) L 2 ≤ |h| C 1 R n |x| α |v n (x)| 2 dx 1 2 + C 2 v n L 2 + C 3 ∇v n L 2
holds for all n ∈ N. Passing to the limit, we obtain Proof. Starting from the expression of a we obtain

τ h (gv) -(gv) L 2 ≤ |h| C 1 R n |x| α |v(x)| 2 dx 1 2 + C 2 v L 2 + C 3 ∇v L 2 . Therefore, ϕ 0 u = gv ∈ W 1,2 (R n ) (cf.
a(u, v) = n j,k=1 R n a kj ∂ k (ϕu)∂ j (ϕv) dx + R n V uvϕ 2 dx = n j,k=1 R n a kj ∂ k u∂ j vϕ 2 dx + R n W a uvϕ 2 dx with W a := V -n j,k=1 ∂ j a kj ∂ k ϕ ϕ -n j,k=1 a kj ∂ k ∂ j ϕ ϕ .
For |x| large, we have

W a (x) = V (x) + n j,k=1 ∂ j a kj (x)x k β|x| -2 + |x| γ-2 - n j,k=1 a kj (x)x j x k (β|x| -2 + |x| γ-2 ) 2 + 2β|x| -4 -(γ -2)|x| γ-4 + n k=1 a kk (x) β|x| -2 + |x| γ-2 ≥ |x| α - k,j |∂ j a kj | β|x| -1 + |x| γ-1 - k a kk ∞ β|x| -2 + |x| γ-2 -Λ |x| 2 (β|x| -2 + |x| γ-2 ) 2 + 2β|x| -2 + η(γ -2)|x| γ-2 = (1 -Λ)|x| α - k,j |∂ j a kj | β|x| -1 + |x| γ-1 + η(γ -2)|x| γ-2 -Λ β 2 |x| -2 + 2β|x| γ-2 + 2β|x| -2 - k a kk ∞ β|x| -2 + |x| γ-2 .
Then, the assumptions Λ < 1 and

∂ j a kj = o(|x| α 2 ) yield W a (x) ≥ 0 for |x| large .
Hence, there is λ a ∈ R such that

W a (x) ≥ -λ a for a.e. x ∈ R n . (2.4) 
By the previous lemma and the obvious equality D( a) = D( b) we have 1 ∧ u ∈ D( a) for all non-negative u ∈ D( a). Applying now (2.4) we obtain

a(1 ∧ u, (u -1) + ) = R n W a (1 ∧ u)(u -1) + ϕ 2 dx ≥ -λ a R n (1 ∧ u)(u -1) + ϕ 2 dx.
Applying the Beurling-Deny criterion (cf. [9, Corollary 2.17]), we obtain the lemma.

We continue the proof of the theorem. Similarly to Lemma 2.4 we have

b(u, v) = R n ∇u • ∇vϕ 2 dx + R n W b uvϕ 2 dx,
where

W b = V -∆ϕ ϕ ≥ -|x| -2 β(β + 2 -n) for large |x|.
Hence, as above, we obtain

e -t e B L(L ∞ ) ≤ e λ b t , t ≥ 0, (2.5) 
for some constant λ b ∈ R.

On the other hand, let b > α+2 α-2 . Then, by (1.2) and [2, Corollary 4.5.5], we have

p t (x, y) = p t (x, y) ϕ(x)ϕ(y) ≤ C p t (x, y) ϕ 0 (x)ϕ 0 (y) ≤ M e ct -b , 0 < t ≤ 1.
For t ≥ 1 we recall first that, by the semigroup law and the symmetry of p t , p s+r (x, y) = R n p s (x, z)p r (y, z) dz, s, r > 0.

(

Hence,

p t (x, x) = R n |p t 2 (x, y)| 2 dy = R n e -( t 2 -1 2 )B p 1 2 (x, •)(y) 2 dy = e -( t 2 -1 2 )B p 1 2 (x, •) 2 L 2 ≤ e -2λ 0( t 2 -1 2 ) p 1 2 (x, •) 2 L 2 ≤ e -λ 0 t p 1 (x, x)
≤ M e -λ 0 t ϕ 2 (x).

Applying the inequality

p t (x, y) ≤ p t (x, x) p t (y, y), x, y ∈ R n ,
which is a consequence of (2.6) and Hölder's inequality, we obtain the estimate p t (x, y) ≤ M e -λ 0 t e ct -b , t > 0.

Thus, by (2.5), the semigroup e -t e B is ultracontractive. By [2, Theorem 2.2.3] we obtain that b satisfies a log-Sobolev inequality A is ultracontractive and

R n u 2 log u ϕ 2 dx ≤ ε b(u, u) + β(ε) u 2 L 2 ϕ + u 2 L 2 ϕ log u L 2 ϕ (2.7) for all ε > 0 and 0 ≤ u ∈ L 1 ∩ L ∞ ∩ D( b), with β(ε) = b 1 -λ 0 ε + cε -b ,
k t (x, y) = k t (x, y) ϕ(x)ϕ(y) ≤ Ce ct -b , 0 < t ≤ 1. (2.8) 
For t ≥ 1 we proceed as above and obtain

k t (x, y) ≤ Ce -µ 0 t e ct -b ϕ(x)ϕ(y), x, y ∈ R n , t > 0.
This proves the theorem. for large |x| and a constant C > 0, where β = α 4 + n-1 2 and γ = 1 + α 2 . Proof. For each j ≥ 0 we have

|ψ j (x)|e -µ j t = |e -tA ψ j (x)| = | R n k t (x, y)ψ j (y) dy| ≤ R n k t (x, y) 2 dy 1/2 ψ j 2 = (k 2t (x, x)) 1/2 .
We apply the previous theorem and obtain the estimate of the corollary. for all large |x| and some constants a 1 , a 2 > 0.

Theorem 2.7. Assume that (H) is satisfied. Then for θ > 0 such that θΛ < 1 we have

k t (x, y) ≤ Ce -µ 0 t e ct -b 1 (|x||y|) β e - √ θ γ |x| γ e - √ θ γ |y| γ for large x, y ∈ R n and all t > 0. Here C, c > 0, b > α+2 α-2 , β = α 4 + n-1 2 and γ = 1 + α 2 .
Proof. We proceed as in the proof of Theorem 2.2. We consider the function ϕ defined above and the form h associated to H instead of b. We have a(u, v) = The assumption θΛ < 1 gives W a (x) ≥ 0 for large |x| and hence W a (x) ≥ -λ for some λ ∈ R and all x ∈ R n . By Lemmas 2.3 and 2.4 we obtain e -t e A L(L ∞ ) ≤ e λt , t ≥ 0. We conclude exactly as in the proof of Theorem 2.2.

As a consequence we obtain an estimate for the eigenfunctions ψ j of A. for large |x| and some constant C > 0, where β = α 4 + n-1 2 and γ = 1 + α 2 . Remark 2.9. Take θ > 0 such that θΛ < 1. Using Lyapunov functions techniques it is proved in [START_REF] Laidoune | Global properties of transition kernels associated with second-order elliptic operators[END_REF]Corollary 3.4] that if the assumption (H) is satisfied and the coefficients a jk ∈ C 1+η (R n ) with some 0 < η < 1 then b = α+2 α-2 can be taken. More precisely one has the following estimate:

k t (x, y) ≤ Ce ct -α+2 α-2 e -2 √ θ α+2 |x| 1+ α 2 e -2 √ θ α+2 |y| 1+ α 2
for all x, y ∈ R n , 0 < t ≤ 1.

2 e

 2 -|x| γ γ for large |x|. If the condition Λ < 1 is not satisfied we prove similar estimates with e -|x| γ γ replaced by e -c |x| γ γ

  where | • | denotes the Lebesque measure. From this and the definition of D(a), we see that χ Ω u ∈ D(a), ∀u ∈ D(a), then |Ω| = 0 or |R n \ Ω| = 0, where χ Ω (x) = 1 if x ∈ Ω, 0 otherwise denotes the characteristic function of the set Ω. By [9, Corollary 2.11], (e -tA ) is irreducible.

  ) the forms a(u, v) := a(ϕu, ϕv), b(u, v) := b(ϕu, ϕv) D( a) = D( b) = {u ∈ L 2 (R n , ϕ 2 dx); ϕu ∈ D(a) = D(b)}.

[ 1 ,Lemma 2 . 4 .

 124 Proposition 9.3]) and hence D( b) ⊂ D(b ). The reverse inclusion can be proved similarly. Using now D(b ) = D( b), the lemma follows from (2.1). There exists a constant λ a ∈ R such that e -t e A L(L ∞ ) ≤ e λat for all t ≥ 0.

where b 1

 1 , c are positive constants. Since, by ellipticity (see (H)), b(u, u) ≤ max{ 1 η , 1} a(u, u) for all u ∈ D( a) = D( b), it follows that a satisfies the same log-Sobolev inequality (2.7). Using Lemma 2.4 and [2, Corollary 2.2.8 and Example 2.3.4] we conclude that e -t e

Corollary 2 . 5 .

 25 If the assumptions of Theorem 2.2 hold, then all the eigenfunctions ψ j , j = 0, 1,• • • of A satisfy |ψ j (x)| ≤ C|x| -β e -|x| γ γ

Remark 2 . 6 .

 26 For the first eigenfunction ψ 0 we do not know if the reverse inequalityψ 0 (x) ≥ C|x| -β e -|x| γ γ holds for large |x| and some constant C > 0. ≤ φ 0 (x) ≤ c 2 |x| -β e - |x|. As in the proof of Theorem 2.2 we consider a positive and smooth function ϕ (with ϕ L 2 = 1) such that ϕ(x) = |x| -β e - √ θ γ |x| γ for large |x|. By the same computation as in [6, Lemma 6.1], we obtain a 1 |∇ϕ(x)| ≤ |∇φ 0 (x)| ≤ a 2 |∇ϕ(x)| (2.10)

  R n a kj ∂ k (ϕu)∂ j (ϕv) dx + R n |x| α uvϕ 2 dx = n j,k=1 R n a kj ∂ k u∂ j vϕ 2 dx + R n W a uvϕ 2 dx,and for large |x|, a direct computation yields W a (x) ≥ (1 -θΛ)|x| α + o(|x| α ).

Corollary 2 . 8 .

 28 Assume that (H) holds. Then for θ > 0 such that θΛ < 1 we have for all j ≥ 0|ψ j (x)| ≤ C|x| -β e -

We consider now the general case where the condition Λ < 1 is not necessary satisfied. To this purpose we consider the operator H := -∆ + θ|x| α on L 2 (R n ) with 0 < θ < 1 and denotes by h t (x, y) its corresponding heat kernel. By [2, Theorem 4.5.4] and as in the above proof, we deduce that