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Abstract—Signaling pathways are seen as high criticalities in 

our understanding of mechanisms of biological functions. In 

this paper, we propose default logic for diagnostic of Discrete 

Time System (DTS) by focusing on automatic synthesis of the 

signaling pathways from factors within the cell. An essential 

component of this approach is using default logic to acquire 

facts about biological knowledge of intracellular 

communication. By choosing an adequate representation of 

biological knowledge, the "reasoning" is able to assign in 

acquisition of the facts and extract interactions necessary for 

the synthesis of the signaling pathways. 

I. INTRODUCTION 

Today, increasingly specialized experts need an 

appropriate evaluation of their know-how corroborated with 

the available experimental data in order to discover new 

knowledge. This scientific approach apprehends the biology 

systems by hypotension and validation of it. In this context, 

in recent decades, biology has grown prolifically in all its 

facets. New fields of applications and studies such as 

biotechnology, nanotechnology and bioinformatics are 

immersed and take an important place in the context of 

current research with the goal of identifying, understanding 

and quantification of biological phenomena seen in within 

the biological system. 

The System Biology is the research field, which handles 

biological complex system representation and analysis. The 

dynamic nature and non-linear inherence of biological 

course make the system identification difficult. By system 

identification we understand the model associated to 

biological system. The majority of kinetic models in biology 

could be described by a couple of differential equations [1]. 

It is almost impossible to find out an analytical solution to 

these non-linear systems [3]. The only feasible approach is a 

bottom-up analysis allowing the solving and simulating of 

the biological systems.  

From the standpoint of Artificial Intelligence, cells are 

sources of information that include a myriad of intra and 

extra cellular signals that as the ultimate goal of optimal 

output describing proteins. Disease and cancer in particular 

can be seen as a pathological alteration in the signaling 

networks of the cell. The study of signaling events appears 

to be the key of biological, pharmacological and medical 

research. The spread of these types of signals are not 

changing the behavior of proteins on three levels: regulation 

of the activity, interaction and expression. The three levels 

are synchronized in a strong momentum that leads to 

changes in protein activity. Since a decade signaling 

networks have been studied using analytical methods based 

on the recognition of proteins by specific antibodies. 

Parallel DNA chips (microarrays) are widely used to study 

the co-expression of candidate genes to explain the 

etymology of certain diseases, including cancer. 

This huge amount of data allows the modeling of gene 

interactions. The biological experts look for evidence of 

interactions between proteins or genes. Therefore, the 

representation by graphs is the best way of understanding of 

biological systems. This representation includes 

mathematical properties as connectivity; presence of 

positive and negative loops which is related to a main 

property of genetic regulatory networks. Biochemical 

reactions are very often a series of time steps instead of one 

elementary action. Therefore, one of the research directions 

in system biology is to capture or to describe the series of 

steps called pathways by signaling engineering.  

The study of gene networks poses problems well 

identified and studied in Artificial Intelligence over the last 

thirty years. In this article we present how the possibility to 

reason from incomplete, uncertain, revisable, contradictory 

and multiple sources. Indeed, the logical or mathematical 

description of signaling pathways is not complete: 

biological experiments provide a number of protein 

interactions but certainly not all of them. On the other hand, 

the conditions and sometimes the difficulties of the 

experiments involve these data are not always accurate. 

Some data may be very wrong and must be corrected or 

revised in the future. Finally, the information coming from 

different sources and experiences can be contradictory. It is 

the goal of different logics and particularly the non-

monotonic logics to handle this kind of situations. 

Afterwards this interaction maps should be validates by 

biological experiments. Of course, these experiments are 

time consuming and expensive, but less than an exhaustive 

experiment.  

The article goal is to analyze, understand and associate a 

logical model to biological systems. However, we want to 



build-up a knowledge based-system, able to discover 

biological mechanisms. 

The rest of this paper is organized as follows. Section II 

gives the problem from a biological point of view. Section 

III presents the causal relations between enzymatic 

activities. Section IV introduces the logical representation of 

these relations. Section V shows experimental results 

obtained by application of the default logic for estimation of 

possible reaction states from given observations. Section VI 

concludes this paper. 

II. SIGNALING PATHWAY 

In attempts to describe the behavior of living systems, 

where the deductive model is not successful, the process by 

qualitative reasoning based on the function of molecules has 

shown its limits [4]. Similarly, if the properties are known, 

we cannot clearly deduce their function in the living cell, 

and from the characteristics of living cells, calculate their 

behavior in a given environment. In general, the deductive 

approach fails because the functions of the living system 

components depend simultaneously of the interactions with 

other elements. The recurring problem of this reasoning is 

how the functional properties of the cell can be derived from 

properties of its components alone. In this context, with 

their ability to describe the complexity, the logic tools offer 

a perspective to analyze these structural elements organized 

in a complex network.  

If the analytical models based on differential equations 

are impossible to solve and the multi-scale analysis seems 

utopic, we propose in this paper an elegant solution to find 

out the main signaling reaction [2]. 

While the proteins have different morphologies and 

structures and their roles in different organisms are 

different, their basic functionality is the same. One of these 

cell-based activities is to ensure their own division 

(production). Its activity can be wholly summarized in two 

points. First, proteins can promote an activity of others, 

which is called cause. Second, proteins can inhibit an 

activity of others, which is called block. Most of these 

reactions, which take place in a cell, are catalyzed by special 

molecules called enzymes. Such a large amount of data on 

the signaling is represented as a network, called a signaling 

pathway, and has been stored and maintained in a database 

on a large scale [4]. 

Fig. 1 gives a very simplified example of interactions in 

a cell. Through different mechanisms not shown here, 

ultraviolet (UV) is the cell apostasies (it actually becomes 

immortal) from cancer. This is shown by an arrow. On the 

other hand, the UV activates the production of the protein 

p53. This protein will activate protein A which will block 

the cancer. But p53, bounds to the protein Mdm2, will 

produce B, which will block A. For a biologist, the question 

is how to block the cancer by blocking B. Biological 

experiments have shown that X could be a candidate for this 

block. Fig. 2 and Fig. 3 provide two types of interactions 

with X to explain blocking B [3]. 

 
Figure 1.  One example of interactions in a cell 

The problem is, in the domain of discrete time, how the 

interactions like. For example, at a moment, t0, UV activates 

cancer and p53. At the next moment, t1, p53 will activate A. 

On the other hand, p53 will bind to the Mdm2 for active B, 

who will block A at the moment t2, etc. In this paper, we 

have completed the graph by hand, and by using the 

computer to do this, too. 

 
Figure 2.  One possible solution 

This example is a very basic case, of course. In practice 

this graphical representation of the network signaling 

pathways may involve several thousands of genes. But the 

problem is still not trivial because the discovery (abduction) 

will be firstly on the presence of protein C and secondly on 

the addition of links between proteins. 

 
Figure 3.  Another possible solution 

III. LOGICAL MODEL OF SIGNALING 

Genes and proteins are considered as a same object 

(genes produce proteins). We will often restrict here to a 



propositional representation. In practice, the detailed study 

of interactions will require to represent increases or 

decreases in protein concentration. It therefore falls outside 

the scope propositional, but the basic problems are the same. 

To represent a change of concentration, for example, is 

possible to use predicates such as "increase" or "decrease" 

and to limit the use of these predicates. 

To describe interactions between genes in the cell, we 

start from a classical logic language L (propositional or first 

order). In L, the proposition A (resp. ¬ A) means that A is 

true (false). We can say, for example, give(UV) to say that 

the cell is subjected by ultraviolet, or even glass-screen → ¬ 
give(UV) to say that a glass screen protects from ultraviolet 

rays. We are in a logical framework, so it is possible to 

represent almost everything you want in a natural way. The 

price to pay, this can be the combinatorial explosion of 

algorithms. 

Interactions among genes are a very simple form of 

causality. To express these interactions, it is common to use 

two binary relations cause(A, B) and block(A, B). The first 

relation means, for example, protein A initiates the 

production of protein B, while the second inhibits it. 

Conventionally, these relationships are represented in the 

network of genes by A → B and A ⊣ B. Of course, this 

causality is basic and many works have been written for 

represent the causalities. 

If the inference of classical logic A → B is formally 
described perfectly, the description of formal properties 

causation, is less straightforward. Causality cannot be seen 

as a logical classical relation. A basic example is that of the 

expression "If it rains, the grass is wet". This expression 

cannot be translated by the formula rain → grass-wet, 

which will signifier that when it rains, the grass is wet 

automatically. Indeed, there may be exceptions to this rule 

(the grass is in a shed ...). We can also change the 

environment (we cover the grass). These revisable rules and 

exceptions are well known in Artificial Intelligence. They 

create, in particular, non-monotonic logics and theories of 

review. On the other hand, and more technical, we find here 

all the classical problems that arise when we want to try to 

formalize and use negation by failure in programming 

languages such as Prolog or Solar. 

To give the links between our causal relations cause and 

block, in a classical language (propositional calculus or first 

order logic), it must therefore do two things: 

- describe the internal properties in relations cause and block 

- describe the links between these relations and the classical 

logic 

All this take into account the problem of uncertain and 

revisable. For the first aspect we will explicitly give the 

links minimum and necessary between two causal relations. 

Links with classical logic will be described in a first time in 

default logic. Then, to take into account the aspect of 

discovery (abduction, field of production) we will use the 

default logic. 

In our context, to give these links between the relations 

cause and block, we will more simple, use classical logic. 

The basic solution is then to explicitly give two schemes of 

axioms: 

(C1) cause(A,B) ˄ cause(B, C) → cause(A, C) 
(C2) cause(A, B) ˄ block(B, C) → block(A, C) 

We believe that it is axiomatic minimum system 

necessary and probably sufficient for the application to the 

cell. At the moment, there is no formal link between two 

relations. It is of course possible to add other axioms to take 

into account these links. 

IV. LOGICAL REPRESENTATION 

In a first approach, the first properties that we want to 

give can be expressed naturally, by the rules of the type: 

(1) If A cause B and if A is true, so B is true. 

(2) If A block B and if A is true, so B is false. 

Depending on the context, the true can be called the 

known, certain ... or, more technically, in a demonstration 

automatically system proved. The first idea is to express 

these laws in classical logic by axioms: 

cause(A, B) ˄ A → B 

block(A, B) ˄ A → ¬B 

We can also express more weakly the laws by inference 

rules of modus ponens nearby: 

cause(A, B) ˄ A / B 

block(A, B) ˄ A / ¬B 

But these two formulations are problematic because 

there is a conflict. For example, if we have a set of four 

formulas F = {A, B, cause(A, C), block(B, C)}, it goes to 

both approaches above data inferred from F, C and ¬C, 

which is inconsistent. To resolve this type of conflict, we 

can try to use methods inspired by constraint programming, 

such as the use of negation by failure. It is also possible to 

use a revisable reasoning, especially a non-monotonic logic. 

The first approach poses many conceptual and technical 

problems if you leave the simple cases. These problems are 

often solved by adding properties to the formal system, that 

pose other problems ... and we arrive at a beautiful gas 

plant. We will study here a non-monotonic approach. At 

first, we use the default logic. 

V. INTERACTION AND DEFAULT LOGIC 

Default logic formalizes reasoning by default. It allows 
treating the rules by admitting exceptions without having to 
challenge the rules previously established whenever a new 
exception appears. A default theory consists of a set of facts 
W, which are formulas of propositional calculus from either 
of the first order logic, and a set of defaults D, which are 
rules of inference to specific contents. Defaults are used to 
manage incomplete information. In its most general form, a 
default is an expression of the form: 

 
                                                        (1) 

 
 



where Ax(X), By(X) and C(X) (x = 1,2, ..., m, y = 1,2, ..., l) 

are well-formed formulas which contain first order as free 

variable X or X = (x1, x2, x3, …, xn) as a vector of free 

variables. Ax(X) are the prerequisites, By(X) are the 

justifications and C(X) is the consequent. The default 

equation (1) means informally: if Ax(X) are verified, if it is 

possible that By(X) are real (By(X) are consistent), and if it 

is possible that C(X) is true, then we infer C(X). 

The use of defaults increases the number of formulas 

derived from the knowledge base W: we get extensions that 

are sets of theorems derivable monotonically. An extension 

of the default theory Δ = (D, W) is a set E of formulas, 

closed for the deduction, containing W and satisfying the 

following property: if d is a default of D whose prerequisites 

Ax(X) are in, the negation of justifications By(X) and of 

consequent C(X) are not in E, then the consequent of d is in 

E. Formally, the extensions are defined as follows: 
 

 
 
The calculation of extensions allows to study the defaults 

one by one and to retain those who respond to the problem 
and are compatible with each other. Each extension 
corresponds to a possible solution of the problem. To 
calculate an extension, we must verify that the negation of 
justification does not belong to Ei. We can therefore use an 
incremental algorithm for computing extensions. For a 
default theory Δ = (D, W), with the set of defaults D and the 
knowledge base W, the calculation is extended according to 
the algorithm: 

 

 Input : E = θ; (set of extensions E is empty). 

 

 calcul_extension(E) : 

{ 

  

      that has not yet been inspected do 

 (2) Select the default D, 

 (3) Verify that the prerequisites Ax(X) are true, 

 (4) Verify that the justifications By(X) are consistent 

with W, 

 (5) Verify that the consequent C(X) is consistent with 

W, 

 (6) Add By(X) and C(X) to W. 

 (7) end while 

 (8) End of the calculation for an extension. 

 (9) Backtracking (deleting the last C(X) and By(X) 

added to W). 

 (10) calcul_extension(E). 
} 

 
In our example, to provide links between these 

relationships cause and block, the intuitive idea is to weaken 

the formulation of causation rules: 

(1) If cause(A,B) is true (A causes B), and if A is true, 

and if it is possible that B, then B is true 

(2) If block(A,B) is true (A blocks B), and if A is true, 

and if it is possible that B is false, then B is false 

The question is then formally described by possible. We 

use here a non-monotonic logic of the best known, default 

logic. In this logic, the rules (1) and (2) will be expressed 

intuitively as: 

(1’) If cause(A,B) is true, and if A is true, and if B is 

not contradictory, then B is true 

(2’) If block(A,B) is true, and if A is true, and if ¬B is 

not contradictory, then ¬B is true 

In the default logic, these rules will be represented by 

the set of defaults D and be written: �1:
�����(��, ������)˄��: ������������  

�2:
�����(��, �53)˄��: �53�53

 

�3:
�����(�53, �)˄�53: ��  



�4:
�����(�����(�53,���2), �)˄�53˄���2: ��  

�5:
�����(�, �)˄�: ¬�

¬�  

�6:
�����(�, ������)˄�: ¬������

¬������  �7:
�����(�, �)˄�: ¬�

¬�  

We have also two general defaults, where X ∈ {uv, p53, 
mdm2, a, b}: �8:

�����(�, �)˄�:��  

�9:
�����(�����(�, �), �)˄�˄�: ��  

The conflict was resolved. 
With the default theory Δ = (D, W), in which D = {d1, 

d2, d3, d4, d5, d6, d7, d8, d9} and W = {uv,mdm2}, by 
applying the algorithm above, we have 18 extensions. The 
next are two could be easily interpreted that correspond to 
Fig. 2 and Fig. 3, respectively: 

 

�1 =

⎩⎪⎨
⎪⎧ �� −>  �53�53 −>  ������(�53,���2) −>  ��� −>  ������(��, �) −>  �� −>  −������

 

and 

�2 =

⎩⎪⎨
⎪⎧ �� −>  �53�53 −>  ������(�53,���2) −>  ��� −>  ������(���2, �) −>  �� −>  −������

 

 

This algorithm is almost NP - problem. Of course the real 

problem of signaling pathways is more complicated than the 

model presented in this paper. The practical complexity can 

then be accessible by controlling the numbers of defaults.  
If it is necessary to know, which molecule (a future 

drug), acts effectively we could represent this problem in a 
context of abductive reasoning. In simple terms, abduction 
find out the "minimum" information set added to a known 
facts F, able to deduce a result R which we would like to 
prove. 

VI. CONCLUSION 

We presented a first signaling pathways model using 

default logic to represent, complete and to find out the main 

reaction.  All this was done using the reasoning with default 

assumption. We show-up all possible main reactions in the 

case of a simple model, the next work will be devoted to real 

signaling maps downloaded from KEGG. 
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