
HAL Id: hal-00992192
https://hal.science/hal-00992192v2

Submitted on 9 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Feedrate planning for machining with industrial six-axis
robots

Adel Olabi, Richard Béarée, Olivier Gibaru, Mohamed Damak

To cite this version:
Adel Olabi, Richard Béarée, Olivier Gibaru, Mohamed Damak. Feedrate planning for machin-
ing with industrial six-axis robots. Control Engineering Practice, 2010, 18 (5), pp.471-482.
�10.1016/j.conengprac.2010.01.004�. �hal-00992192v2�

https://hal.science/hal-00992192v2
https://hal.archives-ouvertes.fr


Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers ParisTech

researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/8155

To cite this version :

Richard BEAREE, Adel OLABI, Olivier GIBARU, Mohamed DAMACK - Feedrate planning for
machining with industrial six-axis robots - Control Engineering Practice - Vol. 18, n°5, p.471-482 -
2010

Any correspondence concerning this service should be sent to the repository

Administrator : archiveouverte@ensam.eu

http://sam.ensam.eu
http://hdl.handle.net/10985/8155
mailto:archiveouverte@ensam.eu


Feedrate planning for machining with industrial six-axis robots 
 

1 
 

Feedrate planning for machining with industrial six-axis robots 
 
 

Adel Olabi 
Metrology and Applied Mathematics Laboratory (L2MA) 

Arts et Metiers ParisTech 
8, Boulevard Louis XIV, 59046 Lille Cedex (France) 

  
Richard Béarée* 

Laboratory of Electrical Engineering and Power Electronics (L2EP) 
Arts et Metiers ParisTech 

8, Boulevard Louis XIV, 59046 Lille Cedex (France) 
Fax: +33 3 20 62 27 50 ; Email: richard.bearee@ensam.eu 

 
Olivier Gibaru 

Metrology and Applied Mathematics Laboratory (L2MA) 
Arts et Metiers ParisTech 

8, Boulevard Louis XIV, 59046 Lille Cedex (France) 
 

Mohamed Damak 
 Dynalog-France 

1. Bd de Valmy, 59650 Villeneuve d'Ascq (France) 
 

 

 

 

 

 

 

 
*Corresponding author 
 

 

 

 



Feedrate planning for machining with industrial six-axis robots 
 

2 
 

Abstract 

Nowadays, the adaptation of industrial robots to carry out high-speed machining operations is 

strongly required by the manufacturing industry. This new technology machining process 

demands the improvement of the overall performances of robots to achieve an accuracy level 

close to that realized by machine-tools. This paper presents a method of trajectory planning 

adapted for continuous machining by robot. The methodology used is based on a parametric 

interpolation of the geometry in the operational space. FIR filters properties are exploited to 

generate the tool feedrate with limited jerk. This planning method is validated experimentally 

on an industrial robot. 
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1. INTRODUCTION 

 
Over the last four decades industrial robots were used to realize many industrial tasks like 

material handling, welding, cutting, and spray painting. Nowadays they are widely used in 

many fields of industry, like automobile industry and aircraft industry. Compared to machines 

tools, industrial robots are cheaper and more flexible with more important work space. This is 

why industrials are enthusiastic to replace machine tools by robots. These industrial robots 

can carry out machining applications like, prototyping, cleaning and pre-machining of cast 

parts as well as end-machining of middle tolerance parts. This kind of applications requires 

high accuracy in positioning and path tracking. Unfortunately industrial robots were designed 

to realize repeatable tasks. So they are repeaters but not that accurate. The robot repeatability 

ranges typically from 0.03 to 0.1 mm, and the accuracy is often measured to be within several 

millimeters (Damak et al. 2004). Due to their serial structure, articulated robot has lower 

stiffness than classical machine tools. The stiffness of an industrial robot is usually less than 1 

N/µm, while the stiffness of machines tools is often greater than 50 N/µm (Pan et al. 2006). 

This poor accuracy and stiffness are caused by many factors, such as geometric parameter 

errors: manufacturing tolerances, wear of parts and components replacement, as well as non-

geometric factors, such as flexibility of links and gear trains, gear backlashes, encoder 

resolution errors, and thermal effects (Elatta et al. 2004) (Shiakolas et al. 2002) (Khalil & 

Dombre, 2004). 

  

Many fields of investigation are proposed to increase the accuracy of industrial robots like; 

robots calibration, process development and control system. Robot calibration improves the 

accuracy of positioning by reducing the deviation between the commanded pose and the real 

one. The complete procedure of robot calibration basically consists of four stages: modeling, 

measurement, identification, and compensation (Meng & Zhuang, 2007). A kinematic model 
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of a robot is the mathematical description of its geometry and motion. To construct this model 

Denavit-Hartenberg convention is usually used. In kinematic calibration, geometric defaults 

are modeled and compensated. In this method robot joints are assumed to be perfectly rigid 

(Elatta et al. 2004). On the other hand, in non-kinematic calibration, flexibility of robot joints 

and the other non geometric defaults are taken into account (Ziaei et al. 2009) (Ostring et al. 

2003). In (Abele et al. 2007), authors have worked on modeling the Cartesian compliance of 

an industrial robot according to its joints compliance to analyze the system’s stiffness. Other 

works were interested in the machining process itself, like in (Pan et al. 2006) where the 

authors show the effect of the conditions of the machining process on its stability. Regarding 

the control field, a large number of works have been done on trajectory planning, feedback 

control, system compensation and feedforward control (Lambrecht et al. 2005) (Hakvoort et 

al. 2008) (Goto et al. 2007) (Huey et al. 2008). Trajectory planning is one of the important 

control aspects. It is a fundamental problem in robotics. A well-planned trajectory guaranties 

a good path tracking and excites less the mechanical structure of the robot and the servo 

control system, so vibrations can be avoided. For the machining applications these vibrations 

damage the quality of the machined surfaces.  

 

Trajectory planning can be defined as: determining a temporal motion law along a given 

geometric path, with respecting certain kinematic and dynamic limits. Therefore, from a 

geometric path, the planner generates the temporal references of position, speed and 

acceleration for each joint. For industrial robots, the end effector trajectory can be planned in 

both joint space and Cartesian space (operational space). Classically, motion planning in joint 

space is more used. This approach has many advantages like:  Both joints actuators and 

dynamic constraints are in the same level (joint level), so the verification of the respect of 

these constraints is easier for the control system which, in robotics, acts on the joints actuators 
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rather than the end effector. Trajectory planning in the joint space allows avoiding the 

problems arising with kinematic singularities and manipulator redundancy (Gasparetto & 

Zanotto, 2008). The main disadvantage of planning the trajectory in the joint space is that the 

performed motion by the robot end effector is not easily foreseeable. This is due to the non-

linearities introduced when transforming the trajectories of the joints into the end-effector 

trajectory through direct kinematic model.  This strategy is suitable for classical tasks like, 

pick and place, where the movement of the end effector is free between the two extremes 

positions (Chettibi et al. 2004); on the other hand, for machining applications, controlling the 

feedrate of the cutting tool is indispensable. Planning the trajectories in Cartesian space 

allows to impose the desired motion law, thus, to control the cutting tool movement. This 

approach is classically used to plan cutting tools trajectories for the machines tools 

(Erkorkmaz & Altintas, 2001). 

 

In this paper, a strategy of trajectory planning in robot operational space is introduced. This 

strategy is adapted to plan trajectories of end-effector of industrial robot intended to realize 

machining processes. In this method, a smooth motion law is generated by means of a 

parametric speed interpolator. This interpolator makes advantage of the properties of finite-

impulse response (FIR) filters (Kong & Yang, 2005) to give a smooth pattern to the feedrate 

profile (jerk limited or others). To illustrate the efficiency of this method, trajectories resulting 

from this strategy are tested on a machining industrial robot, depicted in Figure.1. 
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Fig. 1.  Machining robot with high-speed spindle. 

 

2. CARTESIAN SPACE MOTION PLANNING STRATEGY 
 
As mentioned before, this paper is interested in machining applications by industrial robots. 

So, unlike other applications it is concerned with planning of continuous-path motions instead 

of point-to-point motions. In this section, a method of trajectory generation for planning the 

motion of the cutting tool along a prescribed path is presented. This planning is realized in 

Cartesian space. The procedure used to generate motion commands is as follows. Firstly, the 

motion of the cutting tool on a parametric curve is planned by using a smooth feedrate profile 

(with different jerk patterns). Secondly, the parametric interpolator generates the position of 

the cutting tool (end effector) at each sampling time. Thirdly, these sampled Cartesian 

positions are converted into joint coordinate commands by using the inverse kinematics 

model. Fourthly, the joint kinematics constraints, expressed by means of upper bounds on 

speed, acceleration and jerk are checked and if necessary the feedrate is adapted. Finally, the 

joint space trajectories are used as references for the joints servos. Figure 2 illustrates the 

flowchart of the motion planning strategy detailed in this section. 
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Fig. 2.  Cartesian space motion planning strategy. 

 

2.1 End Effector feedrate Planning Algorithm 

The generation of end-effector smooth motion is divided into two steps. In the first step, 

simple trapezoidal speed profiles are generated. These profiles are filtered in the second step 

by a Finite Impulse Response filter. 

Motion planning is usually divided into: acceleration stage, constant speed stage (the desired 

feedrate, denoted Fd, if reachable) and deceleration stage. Considering classical trapezoidal 

velocity profile and noting Fk the feedrate at time t = kTs, the feedrate evolution during the 

acceleration stage is given by 

       0 . .k M sF F A k T= +                                                                                                    (1) 

where Ts is the sampling time, k is the sampling number, F0 is the start feedrate and AM is the 

kinematic constraint on the maximum end-effector acceleration. If the desired or the 

maximum feedrate is reached, the system enters into constant feedrate zone. The start time of 

the deceleration stage can be easily calculated according to the curve length. But, for this 
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simple speed profile, it is much more convenient to use the concept of speed horizon. The 

speed horizon Fh is based on the Work-Kinetic Energy theorem and can be expressed as 

           ( ) 2 2. .h r f M rF L F A L= +                                                                            (2) 

Where Ff  is the final velocity and Lr is the remaining distance to be travelled. If the speed 

horizon becomes lower than the next speed calculated by (1) or the constant desired feedrate 

Fd, the system enters into deceleration stage. One notes that the computation of Lr requires the 

curve arc length, noted L, which, except for specific cases, does not admit analytic reduction, 

therefore, the remaining distance has to be approximated. At the end of the deceleration stage, 

the required feedrate could be not synchronized with the distance to be traveled. To overcome 

this problem, the solution proposed in this algorithm is to adjust the feedrate such that the 

travelling time is an integer multiple of the sampling time. 

The trapezoidal velocity profile with piecewise constant acceleration have discontinuities 

which industrial systems, and especially robots, cannot follow, whatever the performances of 

the actuators. These discontinuities excite the mechanical structure in transitory stages and are 

responsible for a great part of the damage of the dynamic behavior (Erkorkmaz & Altintas, 

2001). To overcome this default, different types of feedrate profiles can be planned. Modern 

CNC systems used a least S-shaped speed profile with piecewise constant jerk value. In the 

present work, speed convolution technique with linear FIR filter, presnted in (Kong & Yang, 

2005) or (Chang, 2005), is used to smooth the trapezoidal velocity profile calculated 

previously, taking account of Jerk limitations. Such methodology offers the advantage of 

easiness of implementation in Open CNC systems. Therefore, the jerk limited profile does not 

have to be calculated analytically, which is a computer time consuming task.  The simple 

trapezoidal velocity profile can be reconstructed based on the velocities bounds F0, Fd and Ff 

calculated for each block by the existing CNC lookahead function. One notes that others 

elegant approaches can be used directly to generate a jerk limited trajectory in polynomial 
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form adapted for real time implementation (Boryga et al. 2009) (Osornio-Rios et al. 2007) 

(Zheng et al. 2009). 

The linear FIR speed filter (Figure 3) can be expressed as 

  
1

1
1 1

m m

k i i k i
i i

F c c F
−

− +
= =

 ′ =  
 
∑ ∑                                                                                            (3) 

where ci denotes the m filter weight coefficients and F’ k is the filtered feedrate reference. One 

can note that the weight coefficients used here are symmetrical ( 1i m ic c − += ). In order to respect 

both the ending velocity Ff  and the distance L to be traveled on the block, the trapezoidal 

velocity profile has to be adapted to the filter time constant. Firstly, to respect the ending 

velocity a constant velocity stage of value Ff with a time duration equal to the filter time delay 

mTs is added at the end of the block. Secondly, to compensate for the additional motion, noted 

∆L, induced by this constant velocity stage, the remaining distance to be travelled has to be 

initially set to L – ∆L. Considering the symmetry property of the weight coefficient, ∆L can be 

expressed as 
( )1

2f s

m
L F T

+
∆ = . Figure 4 shows the flowchart of the feedrate planning 

algorithm including this time filter compensation. 

 

Fig. 3.  Linear FIR speed filter. 
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Starting from the adapted trapezoidal velocity profile, a jerk limited trajectory is simply 

obtained by setting all weight coefficients equal to one. The constant jerk time resulting from 

this moving average filter is given by the filter time. Then, the maximum jerk value will be 

( )/M M sJ A mT= .  

Others type of smooth profiles can easily be produced. For example, the squared-sine 

acceleration profile corresponds to the following coefficients 

( )2 2 2
1

1
sin ; sin sin 2, ,

2 2 2i

ii
c c i m

m m m

ππ π −    = = − =    
     

…                                         

and the resulting maximum jerk value will be ( )/ 2M M sJ A mTπ= . Linear FIR filters can also 

be cascaded to obtain for example snap limited trajectory (snap is the jerk time derivative). In 

this case, noting m and n are the first and second filter lengths respectively and assuming 2n ≤ 

m, the maximum jerk and snap value can be calculated with ( )( )/M M sJ A m n T= −  and 

( )( )2/M M sS A n m n T= − . Figure 5 shows an example of different velocity profiles resulting 

from this strategy with the same filter time. Considering now a constraint on the maximum 

jerk value, the constant jerk limited profile leads obviously to the minimum time movement. 

It will be seen in Section 3 that this maximum jerk value for a constant Jerk limited trajectory 

could have a predictable effect on the vibrations of the system. One can note that for others 

profiles and especially for snap limited trajectory, it becomes very difficult to give a physical 

meaning to the constraints on higher order time derivatives. For all these reasons, the jerk 

limited trajectory is used in the following for the validation of the algorithm.        
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Fig. 4.  Flowchart of the feedrate planning method. 
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Fig. 5.  Feedrate profiles and their time derivatives resulting from the feedrate planning 
algorithm (example with two connected blocks with different desired feedrate values and 

extremum conditions). 
 
 

2.2 Parametric curve interpolator 

In this paper tool-paths or Tool Center Point paths are presumed to be designed in CAD 

systems with parametric forms such as NURBS or L1 Splines (Auquiert et al. 2007). 

Considering such a parametric curve C(u), the successive parameter u corresponding to the 

controller sampling period Ts is evaluated from the calculated feedrate F(t) using numerical 

integration 

  

( )( )
( )

dC u t
F t

dt
=

                   
                                                                                (4)  
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with .  denoting the Euclidean norm in Cartesian 3D space. As the function u(t) is a strictly 

monotonic increasing function, then the parametric velocity can be expressed as 

( )
( )du F t

dt dC u

du

=                                                                                                          (5) 

Since the parametric speed cannot be expressed in closed form for common parametric 

curves, Taylor’s series approximation is classically used. For computing efficiency the first 

order Taylor’s approximation is used. Noting uk the parameter at time t = kTs, the next 

numerical parameter is given by 

( )1

k

k
k k s

u u

F
u u T

dC u

du

+

=

= +                                                                                              (6) 

One notes that the approximation of the parametric velocity can induce feedrate fluctuations 

that become sensitive for very short segments lengths. In such case, adding the second order 

term is a solution, which has proven to be efficient in (Mohan et al. 2008). Then, the 

Cartesian position references that lie on the original curve can be generated in real-time by 

replacing the parameter value given by (7) in the parametric curve expression. In order to 

achieve multi-joints control, robot joints references must be derived by means of the inverse 

kinematics model. 

  

2.3 Inverse kinematic model 
 
 The Inverse Geometric Model of the studied robot is derived analytically by using classical 

Denavit-Hartenberg convention. The main difficulty of the inverse geometric model is that for 

a desired end effector configuration (position and orientation); there are eight solutions in 

joint space. In this work only one solution is taken into account. This solution corresponds to 

configuration of machining on a table placed in front of the robot (see figure.6). 
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Fig. 6.  Machining configuration. 
 

All manipulators have singularities at the boundary of their workspace, and most have loci of 

singularities inside their workspace (Craig, 1989). For the machining robot used in this study, 

workspace boundary singularities are avoided by limiting its task space and positioning it 

away from the workspace boundaries. During machining process, the last three axes are 

mainly concerned with the work space interior singularities problem. This singularity can be 

caused by the two axes 4 and 6 lining up (q5=0). This can be avoided by limiting the rotation 

of the joint 5. In other cases, specific machining strategies adapted to the work-piece have to 

be developed and can be incorporated into CAM software. The optimization of the robot 

configuration and the definition of the switching paths between two configurations are out of 

the scope of this paper. 

 

2.4 Joint Constraints and Feedrate Optimization  
 

The last stage of the motion planning in Cartesian space consists in checking that the joint 

kinematic constraints of axis-j expressed by means of upper bounds on velocity VMj, 

acceleration AMj and jerk JMj are not violated  
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( ) ( ) ( ); ; ; 1, ,6j M j j M j j M jq t V q t A q t J j≤ ≤ ≤ =ɺ ɺɺ ɺɺɺ …
    

                          (7) 

 

In the developed methodology, the desired feed value Fd is the only optimization parameter 

(as classically done in the machine-tool field). When the desired feedrate of a segment or 

curve is incompatible with (8), a bisection search method finds efficiently a kinematically 

feasible feedrate. The range of the search space is bounded by zero at the bottom, and the 

desired feedrate at the top. The search algorithm bisects the feed search space iteratively until 

a feasible solution is found within a specified tolerance. This method was used for 

computational efficiency reason, but such optimization problem can be solved with fast 

sequential quadratic programming or heuristic methods. Finally, the joint position 

corresponding to the kinematically compatible feed can be transferred at each sampling time 

to the joint position control.  

 

3. INFLUENCE OF THE MAXIMUM JERK VALUE ON THE VIBRATION 
 
Compared to acceleration limited profile, jerk limited profile reduces endpoint vibration and 

in some cases can totally suppress residual vibration. As demonstrated in (Barre et al. 2005), 

the maximum jerk value for an axis can be chosen to suppress vibration induced by the 

dominating vibratory mode of this axis. A simple explanation is based on the complex poles 

cancellation principle. The jerk limited law is a multiswitch bang-bang law, which can be 

represented in continuous domain as a sum of time delayed step function 

( ) 4
1

( ); ( ) . i

n
sTM

i
i

J
P s F s F s A e

s
−

=

= ⋅ =∑
                                                                            

(9) 

with P(s) the axis position reference, JM the maximum jerk value for this axis, n is the number 

of commutation (n = 4,6 or 8 according to dynamic limitations). F(s) is a time delayed filter, 

the coefficients Ai take their values in the ensemble {1, 2, -2, -1} and Ti are the switching 
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time. The cancellation of the conjugated complex poles associated to a dominating vibratory 

mode is obtained by the presence of conjugated complex zeros at the same location in the 

delayed filter 

21 1

. 0i

n n n n

n
sT

i
i s j

A e
ς ω ω ς

−

= =− ± −

=∑ .                                                                                                    (10) 

 
Assuming a lightly damped mode (ςn = 0), a trivial solution to (10) consists in choosing the 

time duration between two commutations (jerk time) equal to a multiple of the natural period 

of the vibrational mode. In other words, the minimum time of the moving average filter used 

in the feedrate planning can be chosen equal to the dominating natural period. Figure 7 (a) 

shows the residual vibration of the end-effector resulting from a simple rotation of the first 

joint around Z axis of world frame. In this configuration, the flexibility of the first joint 

induced a flexural motion of the end-effector associated to a modal frequency near 6 Hz. 

According to the previous remarks, the jerk time of 160 ms (6,3Hz) leads to a motion without 

residual vibration. One notes that the vibration level during the movement is significantly 

decreased too. Indeed, if jerk time is finely tuned, vibration can only occur during constant 

jerk stages. This result corresponds to specific case, and it isn’t valid for general applications 

where the robot realizes continuous paths. Because, in this method there is only one degree of 

freedom to adjust the curvilinear jerk, while, when the end-effector tracks a path on the 

operational space the six axes of the robot contribute to the movement. This setting can 

therefore lead to an improvement in vibration behavior if a single axis dominates the response 

of the end-effector. On the other hand, the eigenfrequencies of the robot depend on its 

configuration. However, assuming a reduced workspace these variations can reasonably be 

neglected. 

 

Experimental modal analysis was conducted on the studied robot. It demonstrates a significant 

influence of the first, second, and third links of the robot, producing lightly damped poles in 
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the neighbourhood of 10 Hz and 34 Hz. In this study, the workspace is included in a cube of 

500 mm and the modal frequency variations are below 8 %. Figure 7 (b) shows the result of a 

movement along the Y axis. In this particular case, the axis n°1 contributes mainly to the 

displacement of the end- effector. The frequency associated to the flexibility of the joint 1 is 

close to 10 Hz, which gives a period of optimum curvilinear jerk about 100 ms. One notes that 

such vibration reduction cannot be obtained for movements in X or Z direction, because of the 

vibratory coupling between each robot axis. Then, as a compromise the filtering time will be 

chosen equal to the first natural period (i.e 100 ms). 
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Fig. 7.  Jerk time influence on residual vibration: (a) joint motion around axis 1, (b) Cartesian 

motion along Y axis. 
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4. EXPERIMENTAL RESULTS 
 
4.1. Reference path 
 
In this section, the effectiveness of the method will be demonstrated by testing it on a real 

industrial robot. The proposed feedrate planning algorithm assumes that the reference path has 

a continuous curvature variation. If it is not the case, the system goes to full stop at the 

curvature discontinuities. To avoid these problem the reference path has to be interpolated 

incorporating this constraint with the specified contour error before planning the trajectory. 

These aspects are not developed in this paper. The theoretical geometric path used for 

demonstrations is a logarithmic spiral in the XY plane of the robot world frame (see figure.8). 

This simple curve was chosen for its geometric properties, especially for the monotonous 

curvature variation and the exact analytic calculation of its arc length. In addition, this path 

can be considered similar to paths used for pocketing processes. 

1000 1050 1100 1150 1200 1250
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Fig. 8.  Logarithmic Spiral, the Theoretical Path. 
 

4.2. Trajectory elaboration 
 
The robot used in this work is a six-axis vertical articulated industrial robot (RX170B from 

Stäubli Robotics) shown in Figure.1 and 6. A high-speed motor spindle was directly installed 

on the sixth axis, without any modifications of the robot mechanical structure. This robot is 

intended to realize machining processes like milling, deburring, drilling...etc. The robot has 
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some opening in its controller. It is particularly possible to impose joints trajectories for the 

six axes. The proposed trajectory planning is done offline because of its computational 

complexity. Nevertheless, since the trajectory is already known a look-ahead function can be 

generated and integrated into the control system for on-line implementation. The resulting 

joint trajectories are sampled to Ts = 4ms.  Then, joint references are read sequentially by the 

robot controller. The motion parameters and joint constraints, such as feedrate, acceleration, 

and jerk are summarized in Table 1. 

Table 1.  Experimental parameters 
Logarithmic Spiral *bR a e θ= ×  a=24, b=0.15, 4θ π=  
Maximum  Feedrate [m/sec] 1 
Maximum  Acceleration [m/sec2] 1  

Filtering time (jerk time) [sec] 0.08  
Joints speed limits [deg/sec] 65,65,65,90,100,150 
Joints Acceleration limits [deg/sec2] 140,110,150,450,300,700 
Joints Jerk limits [deg/sec3] 2500  

 
 

A smooth motion law for the cutting tool along the desired path (figure.7) is generated by the 

method developed in this paper. The feedrate is intended to be constant, as usually wanted for 

machining applications (figure.9). The corresponding joint trajectories of axes 1 and 2 are 

presented in figure.10. 
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Fig. 9.  Tool Motion Law with constant federate. 
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Fig. 10.  Robot axis 1, 2 reference trajectories 
 

It has to be noted that the maximum feedrate has not been reached. This is due to the 

saturation of axis 2, because of an important curvature variation at the beginning of the 

trajectory. This curvature variation becomes less important by getting far from the start point. 

So the tool feedrate is minimized to overcome this overrun of axis 2 speed at the beginning of 

the trajectory. In the first algorithm, constraints verification is done globally, so the 

minimized feedrate will be maintained over the entire trajectory. Maintaining a constant 

feedrate along the path can be coherent when trying to ensure a fine quality of the surface. 

But, in most cases, the optimized feedrate is less than the desired one, it is therefore essential 

to modulate it. A simple solution consists of segmenting the curve. The verification of 

constraints is performed locally on each segment. The segmentation points can be 
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automaticaly calculated during the geometric interpolation of the path considering for 

example a maximum curvature variation criterion.  

The path used in this study was segmented into four and eight curve segments. Figure 11 

shows the variation of the curvature along the trajectory. Figure 12 illustrates tool motion 

laws on the segmented trajectories. The feedrate evidently increases when the tool passes 

from one segment to another, since the curvature decreases. Table 2 presents the traveling 

time over the trajectory with and without segmentation. It can be noticed that by segmenting 

the geometric path in four curves the total traveling time is decreased of 26.8%. On the other 

hand, segmenting the path in height curves doesn’t have a great effect on traveling time 

because of the saturation of axis 2 on the test curve. The corresponding planned trajectories of 

axis 2 are presented in Figure 13. 
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Fig. 11. Curvature variation and cutting points 
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Fig. 12.  Tool Motion Laws on segmented trajectories 
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 Fig. 13.  Axis 2 trajectories 
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Table 2.  Traveling time and max. federate according to segments number.  
 

Segments 
N° 

Traveling Time[sec] Max 
Feedrate[mm/sec] 

1 4.52 210 
4 3.31 (- 26.8 %) 370 (+76.2 %) 
8 3.2 (-29.2 %) 480 (+128 %) 

 
 

4.3. Results 
 
The three trajectories were tested on the machining robot. Figure 14 shows an example of the 

machined spiral. However, in order to clearly validate the control of the feedrate with the 

proposed trajectory planning methodology, the trajectories of the robot end-effector have been 

measured without machining by means of a 3D measurement system, CompuGaugeTM. It is a 

simple measuring instrument consisting of two triangulation beams and software for data 

acquisition (DynalogTM). The sampling rate of data acquisition is 1 kHz (1000 samples per 

second). 

    

Fig. 14. Machining operations with the robot (cutting depth of 3 mm in resin material). 

Figure 15 shows the measured end-effector feedrates. The dashed black curves represent the 

references of the three feedrates for the same spiral with one, four, and height segments. 

These experiments show that using the proposed feedrate planning result in a predictable 

control of the end-effector feedrate, which can contribute to the improvement of continuous 

machining operations with industrial robots. 
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Fig. 15. Measured end-effector feedrates. 

Figure 16 illustrates these trajectories realized by the robot end effector. Figure 17 shows the 

resulting contour errors along the three trajectories and the maximum and Root Mean Square 

contour errors are summarized in Table 3. The contour error is defined as mesR R R∆ = −  

where R is the theoretical radius defined in Table 1 and Rmes is the radius of the measured 

point. Experimental results show that the first trajectory ensures a better path tracking, due to 

the fact that the feedrate is constant most of time. On the other hand, the two others induced 

higher joint accelerations, which excite more the vibration modes of the mechanical structure, 

so the path tracking is damaged. For the four segments curve, the travelling time is decreased 

by 27%, but the RMS contour error is increased by more than 35%. 

Table 3. Contour error 
 

Segments 
N° 

RMS contour 
error[mm] 

Max contour 
error[mm] 

1 0.2817 0.8531 
4 0.3822 (+ 35.7%)  0.9394 
8 0.4038 (+43.3%)  1.053 
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                                            Fig. 16. Measured Paths of the end-effector. 
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5. CONCLUSIONS 

In this paper, a feedrate planning method adapted for continuous machining with industrial 

robot has been proposed. Starting from a parametric representation of the tool paths, this 

method generates a smooth jerk limited law of motion for the tool, respecting the robot joints 

constraints. Different trajectories along a logarithmic spiral has been planned and tested in a 

six-axis industrial robot. It was shown that the feedrate planning strategy is an effective 

solution for controlling the tool motion for a robot. This provides a first step toward the 

improvement of machining with an industrial robot. Experimental results underline the 

presence of path tracking errors as well. Reducing these errors and improving the positioning 

accuracy of the robot end-effector are the objectives of future works. 
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Figure legends 
 
 
Fig. 1.  Machining robot with high-speed spindle. 

Fig. 2.  Cartesian space motion planning strategy. 

Fig. 3.  Linear FIR speed filter. 

Fig. 4.  Flowchart of the feedrate planning method. 

Fig. 5.  Feedrate profiles and theirs time derivatives resulting from the feedrate planning 

algorythm (example with two connecting blocks or curves with different desired feedrate 

values and extremum conditions). 

Fig. 6.  Machining Configuration. 

Fig. 7.  Jerk time influence on residual vibration: (a) joint motion around axis 1, (b) Cartesian 

motion along Y axis. 

Fig. 8.  Logarithmic Spiral, the Theoretical Path. 

Fig. 9.  Tool Motion Law with constant federate 

Fig. 10.  Axis 1, 2 reference trajectories 

Fig. 11. Curvature variation and cutting points 

Fig. 12.  Tool Motion Laws on segmented trajectories 

Fig. 13.  Axis 2 trajectories 

Fig. 14. Machining operations with the robot (cutting depth of 3 mm in resin material). 

Fig. 15. Measured end-effector feedrates. 

Fig. 16. Measured Paths of the end-effector. 

Fig. 17.  Contour errors. 

 
 


