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Abstract

The paper first offers a parallel between two approaches to conceptual clustering, namely formal concept

analysis (augmented with the introduction of new operators) and bipartite graph analysis. It is shown that a

formal concept (as defined in formal concept analysis) corresponds to the idea of a maximal bi-clique, while

sub-contexts, which correspond to independent “conceptual worlds” that can be characterized by means of

the new operators introduced, are disconnected sub-graphs in a bipartite graph. The parallel between formal

concept analysis and bipartite graph analysis is further exploited by considering “approximation” methods

on both sides. It leads to suggest new ideas for providing simplified views of datasets, taking also inspiration

from the search for approximate itemsets in data mining (with relaxed requirements), and the detection of

communities in hierarchical small worlds.∗

Keywords: formal concept analysis (FCA), bipartite graph, small world, clustering, possibility theory.

1. Introduction

The human mind tries to make sense of a complex

set of data usually by conceptualizing it by some

means. Roughly speaking, it generally amounts to

putting labels on subsets of data that are judged to

be similar enough. Formal concept analysis25,24

offers a theoretical setting for defining the notion

of a formal concept as a pair made of (i) the set of

objects that constitutes the extension of the con-

cept and of (ii) the set of properties shared by these

objects and that characterize these objects as a

whole. This set of properties defines the intention

of the concept. Thus, particular subsets of objects

are associated with conjunctions of properties that

identify them in a bi-univoque way. This provides

a formal basis for data mining algorithms46.

Formal concept analysis exploits a relation that

links objects with properties. Such a relation

can be viewed as well as a bi-graph (or bipartite

graph), i.e. a graph having two kinds of vertices,

and whose links are only between vertices of dif-

∗This paper is a fully revised and expanded version of a conference paper28. In particular, Sections 4 and 5 are new.



ferent kinds.

Besides, the discovery that real-world complex

networks from many different domains (linguis-

tics, biology, sociology, computer science, ...) are

sharing some non-trivial characteristics has raised

a considerable interest53,3,42,26. These networks

are indeed sparse, highly clustered, and the aver-

age length of shortest paths is rather small with

regard to the graph size53, hence their name of

“small worlds”. Moreover, most of parameters,

and in particular their vertices degree, follow a

power-law distribution4,42, which acknowledges a

hierarchical organization. One of the most active

fields of this new network science concerns the

problem of graph clustering48,23. This problem is

often called “community detection” in the litera-

ture due to its application to social networks.

Intuitively speaking, a cluster (or community)

corresponds to a group of vertices with a high den-

sity of internal links and only a few links with

external vertices. Nevertheless there is no uni-

versally accepted formal definition of a cluster23

and making a parallel with formal concept anal-

ysis may provide some relevant views for defin-

ing graph clusters. Many real-world large net-

works are bipartite and it has been shown that

such networks also share properties similar to the

above-mentioned ones38. While clustering is usu-

ally done on projected graphs, some authors ad-

dress the problem of community detection directly

on bipartite networks5,39. Besides, techniques in-

spired from formal concept analysis have been

also used for detecting human communities in so-

cial bipartite networks50.

The purpose of this paper is first to investi-

gate the parallel between formal concept analy-

sis and the graph-based detection of communi-

ties in bipartite graphs. In fact, we do not re-

strict ourselves here to standard formal concept

analysis, but we rather consider an enlarged set-

ting with new operators17,18. This setting includes

the classical Galois connection that is at the ba-

sis of the definition of formal concepts, but also

another connection that characterizes independent

sub-contexts. This is the graph counterpart of this

enlarged setting that is discussed here from a bi-

partite graph point of view. Moreover, extensions

of this setting which allows various forms of ap-

proximations of formal concepts and sub-contexts

are then paralleled and compared with methods

used in bi-graph clustering.

The paper is organized as follows, the basic

elements of formal concept analysis are first re-

stated and the other operators are introduced in

Section 2. Then, after a short background on

graphs, it is shown in Section 3 that a formal con-

cept corresponds to a maximal bi-clique in a bi-

graph, while conceptual worlds (i.e., independent

sub-contexts), obtained by the second connection,

correspond to disconnected sub-parts in the graph.

Then different ways of introducing various types

of approximation, or gradualness, in formal con-

cept analysis, data mining, or in community detec-

tion are reviewed in Section 4, before discussing

and illustrating their counterpart in the bi-graph

setting by proposing a two step clustering proce-

dure in Section 5.

2. Extended formal concept analysis

Let R be a binary relation between a set O of ob-

jects and a set P of Boolean properties. We note

R = (O,P,R) the tuple formed by these objects

and properties sets and the binary relation. It is

called a formal context25. The notation (x,y) ∈ R

means that object x has property y. Let R(x) =

{y ∈ P|(x,y) ∈ R} be the set of properties of ob-

ject x. Similarly, R−1(y) = {x ∈ O|(x,y) ∈ R} is

the set of objects having property y.

Formal concept analysis25 defines two set op-

erators, here denoted (.)∆, (.)−1∆, called intent

and extent operators respectively, s.t. ∀Y ⊆ P and

∀X ⊆ O :

X∆ = {y ∈ P|∀x ∈ X ,(x,y) ∈ R} (1)

Y−1∆ = {x ∈ O|∀y ∈ Y,(x,y) ∈ R} (2)

X∆ is the set of properties possessed by all objects

in X . Y−1∆ is the set of objects having all proper-

ties in Y . These two operators induce an antitone

Galois connection between 2O and 2P. This means

that the following property holds

X ⊆ Y−1∆ ⇔ Y ⊆ X∆
.



A pair such that X∆ =Y and Y−1∆ =X is called

a formal concept25. X is its extent and Y its intent.

In other words, a formal concept is a pair (X ,Y )

such that X is the set of objects having all proper-

ties in Y and Y is the set of properties shared by all

objects in X . It can be shown that formal concepts

correspond to maximal pairs (X ,Y ) such that

X ×Y ⊆ R.

A recent parallel between formal concept anal-

ysis and possibility theory17 has led to emphasize

the interest of three other remarkable set operators

(.)Π, (.)N and (.)∇. These three operators and the

already defined intent operator can be written as

follows, ∀X ⊂ O :

XΠ = {y ∈ P|R−1(y)∩X 6= /0} (3)

XN = {y ∈ P|R−1(y)⊆ X} (4)

X∆ = {y ∈ P|R−1(y)⊇ X} (5)

X∇ = {y ∈ P|R−1(y)∪X 6= O} (6)

Note that (5) is equivalent to the definition of op-

erator (.)∆ in (1). XΠ is the set of properties that

are possessed by at least one object in X . XN is the

set of properties such that any object that satisfies

one of them is necessarily in X . X∆ is the set of

properties shared by all objects in X . X∇ is the set

of properties that some object outside X misses.

It is usually assumed that the relation R is

such that R−1(y) 6= /0 and R−1(y) 6= O (“bi-

normalization”), which respectively means that

there is no property y that is possessed by no ob-

ject, or by all objects. It guarantees that XN ⊆ XΠ

and X∆ ⊆ X∇ hold, as expected.

Operators (.)−1Π, (.)−1N , (.)−1∆ and (.)−1∇

are defined similarly on a set Y of properties by

substituting R−1 to R and by inverting O and P.

(Y )−1Π, (Y )−1N , (Y )−1∆ and (Y )−1∇ are respec-

tively, i) the set of objects having at least one prop-

erty in Y , ii) the set of objects whose properties

are all in Y , iii) the set of objects that have all the

properties in Y , and iv) the set of objects that are

missing at least one property outside Y . Moreover,

we also assume the bi-normalization of R for ob-

jects, namely R(x) 6= /0 and R(x) 6=P, i.e., no object

misses all properties or has all properties.

These new operators lead to consider a new

connection20,16 that corresponds to pairs (X ,Y )

such that XΠ = Y and Y−1Π = X (or equivalently)

such that XN = Y and Y−1N = X , while (.)∇ and

(.)∆ lead to the same remarkable pairs which de-

fine formal concepts. But pairs (X ,Y ) such that

XΠ = Y and Y−1Π = X do not define formal con-

cepts, but rather independent sub-contexts. In-

deed, it has been recently shown16,20 that pairs

(X ,Y ) of sets exchanged through the new connec-

tion operators, are subsets such that

(X ×Y )∪ (X ×Y )⊇ R,

just as formal concepts correspond to maximal

pairs (X ,Y ) such that

X ×Y ⊆ R.

For instance, the pairs ({1,2,3,4},{g,h, i})

and ({5,6,7,8},{a,b,c,d,e, f}) in Figure 1 are

two independent sub-contexts, whereas pairs

({1,2,3,4},{g,h}), ({5,6},{a,b,c,d, f}) and

({5,6,7,8},{a,c,d}) are examples of formal con-

cepts. However, note that in general, it might be

the case that an independent sub-context in a bi-

nary relation R can still be further decomposed

into smaller sub-contexts.

Thus, in the setting of formal concept analy-

sis, by means of two companion connections, two

key aspects of the idea of clustering are at work.

On the one hand, independent sub-contexts are

characterized, and on the other hand inside each

sub-context, formal concepts (X ,Y ) are identified

where each pair (x,y) such that x ∈ X ,y ∈Y are in

relation (while no pair (x,y) such that x∈X ′,y∈Y ′

or x ∈ X ′,y ∈ Y ′ are in relation if (X ′,Y ′) and

(X ′,Y ′) two independent subcontexts). In partic-

ular, two formal concepts belonging to two dif-

ferent sub-contexts are clearly well-separated. A

recent discussion paper19 has indeed emphasized

a parallel between the characterizations of formal

concepts and sub-contexts in formal concept anal-

ysis and the characterization of fuzzy clusters in

the setting of the extensional fuzzy set approach34.

The relation with clustering is made still clearer

in the next section by providing a bipartite graph

reading of formal concept analysis.
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1 2 3 4 5 6 7 8

a × × × ×
b × ×
c × × × ×
d × × × ×
e ×
f × × ×
g × × × ×
h × × × ×
i ×

Figure 1: A formal context R and the corresponding bipartite graph.

3. Graph reading of formal concept analysis

Let us start by restating some graph theory defini-

tions. A graph is a pair of sets G = (V,E), where

V is a set of vertices and E a set of edges. In the

paper only undirected graphs will be considered,

it means that edges are unordered pairs of vertices.

A graph is bipartite if the vertex set V can be split

into two sets A and B such that there is no edge be-

tween vertices of the same set (in other words for

every edge {u,v} either u ∈ A and v ∈ B or u ∈ B

and v ∈ A). We note G = (A,B,E) such a graph

where A and B constitute two classes of vertices.

A vertex v is a neighbour of a vertex u if

{v,u} ∈ E, we say that u and v are adjacent. Γ(u)

is the set of neighbours of a given vertex u, it is

called neighbourhood of u. An ordinary graph is

complete if every couple of vertices from V ×V

are adjacent. A bi-graph is complete if every cou-

ple of vertices from A×B are adjacent.

An induced subgraph on the graph G by a

set of vertices S is a graph composed of a vertex

set S ⊆ V , and an edge set E(S) that contains all

vertices of E that bind vertices of S (∀u,v ∈ S,

{u,v} ∈ E ⇔ {u,v} ∈ E(S)). A set of vertices

S that induces a complete subgraph is called a

clique. If no vertex could be added to this induced

subgraph without loosing the clique property then

the clique is maximal. It is straightforward that ev-

ery subgraph of a bi-graph is still bipartite, every

vertex keeping the same class. A set of vertices

S that induces a complete subgraph (in a bipartite

sense) on a bi-graph G is called a bi-clique and if

no vertex could be added without loosing this bi-

clique property then the bi-clique is maximal.

A path from a vertex u to a vertex v is a se-

quence of vertices starting with u and ending with

v and such that from each of its vertices there ex-

ists an edge to the next vertex in the sequence.

The length of a path is the length of this vertices

sequence minus one (it is to say the number of

edges that run along the path). Two vertices are

connected if there is a path between them. We

note Sk the set of vertices connected to at least

one vertex of S with a path of length smaller or

equal to k. By definition S0 = S. One can observe

that ∀k,Sk ⊆ Sk+1. S∗ is the set of vertices con-

nected to at least one vertex of S with a path of

any length, we have S∗ =
⋃

k>0 Sk. Two vertices

are disconnected if there is no path between them.

Two subsets A,B of vertices are disconnected if

every vertex of A is disconnected from any ver-

tex of B. A subset of vertices S is connected if

there is a path between every pair of vertices of S,

An induced subgraph that is connected is called a

connected component. If no vertex could be added

to this induced subgraph without loosing the prop-

erty of connectedness then the connected compo-

nent is maximal. Note that often “connected com-

ponent” is used for speaking of a “maximal con-

nected component”.

3.1. From formal context to bi-graph

For every formal context R = (O,P,R), we can

build an undirected bi-graph G = (Vo,Vp,E) s.t.

there is a direct correspondence between: the set

of objects O and a set Vo of “o-vertices”, the set of

properties P and a set Vp of “p-vertices”, and be-

tween the binary relation R and a set of edges E. In



other words, there is one o-vertex for each object,

one p-vertex for each property, and one edge be-

tween an o-vertex and a p-vertex if and only if the

corresponding object possesses the corresponding

property (according to R).

The four operators (.)Π, (.)N , (.)∆ and (.)∇

can be redefined for a set of vertices in this graph

framework by replacing, in equations (3) to (6),

O by Vo, P by Vp and R−1(y) by Γ(y). Operators

(.)Π and (.)∆ can also be rewritten in the following

way:

XΠ = ∪x∈X Γ(x) (7)

X∆ = ∩x∈X Γ(x) (8)

These notations are interesting since only the

neighborhood of vertices of X is involved. It per-

mits to immediately understand operators (.)Π and

(.)∆ in terms of neighborhood in the bi-graph: XΠ

is the union of neighbors of vertices of X whereas

X∆ is the intersection of these neighbors. Note that

with this writing and interpretation there is no dif-

ference between (.)Π and (.)−1Π neither between

(.)∆ and (.)−1∆.

Graph interpretations of (.)N and (.)∇ are less

straightforward, nevertheless XN can be under-

stood as the union of neighbors of vertices of X

that have no neighbors outside of X . In other

words it is the set of vertices exclusively con-

nected with vertices of X (but not necessarily all).

Whereas X∇ is the set of p-vertices that are not

connected to all o-vertices of X .

3.2. Two views of graph clusters in terms of

connections

The connections induced by (.)∆ and (.)Π can also

be understood in the graph setting framework. On

the bi-graph G = (Vo,Vp,E), with X ⊆ Vo and

Y ⊆Vp:

Proposition 1 X = Y−1∆ and Y = X∆, iff X ∪Y is

a maximal bi-clique.

Proof. Let (X ,Y ) be a pair such that X = Y−1∆

and Y = X∆. For all x ∈ X and y ∈ Y , as Y =

∩x∈X Γ(x) we have y ∈ Γ(x) thus {x,y} ∈ E. It

means that the subgraph induced by X ∪Y is com-

plete. Moreover there is no vertex that are adja-

cent to all vertices of X (resp. Y ) which are not

in X∆ (resp. Y−1∆), therefore X ∪Y is a maximal

bi-clique.

If X ∪Y is a maximal bi-clique, every vertex of

X (resp. Y ) is adjacent to any vertex of Y (resp. X)

and there exists no vertex that is adjacent to all ver-

tices of X (resp. Y ) which are not in Y (resp. X),

therefore it is straightforward that Y = X∆ (resp.

X = Y−1∆).

Proposition 2 For a pair (X ,Y ) the two following

propositions are equivalent:

1. X = Y−1Π and Y = XΠ.

2. (a) (X ∪Y )∗ = (X ∪Y ) and

(b) ∀v ∈ (X ∪Y ), Γ(v) 6= /0.

Proof. 1 ⇒ 2. By definition (X ∪Y )⊆ (X ∪Y )∗.

We show by recurrence that (X ∪Y )∗ ⊆ (X ∪Y ).

(X ∪Y )0 ⊆ (X ∪Y ) is given by definition. We then

assume that it exists k such that (X ∪Y )k ⊆ (X ∪

Y ). We can notice that (X ∪Y )k+1 ⊆ ((X ∪Y )k)1,

by considering that a k + 1 long path is a path

of length k followed by a one edge step. So

(X ∪Y )k+1 ⊆ (X ∪Y )1. But as X = Y−1Π and

Y = XΠ all vertices connected to X ∪Y with a path

of length 1 are in X ∪Y . So (X ∪Y )k+1 ⊆ (X ∪Y ).

This implies by recurrence that ∀k > 0,(X ∪Y )k ⊆

(X∪Y ). Thus (X∪Y )∗ =
⋃

k>0(X∪Y )k ⊆ (X∪Y ).

We still have to show that any vertex v of X ∪Y has

at least one neighbour, which is straightforward if

we consider that either v ∈ XΠ or v ∈ Y−1Π.

2 ⇒ 1. We show that X = Y−1Π, the proof

is exactly the same for Y = XΠ. Y−1Π is the

set of vertices adjacent to one vertex of Y , so

Y−1Π ⊂Y ∗ and then Y−1Π ⊂ (X ∪Y )∗. That means

that Y−1Π ⊂ (X ∪Y ), but as the graph is bipartite:

Y−1Π ⊂ X . Let x be a vertex of X , by 2.b† x has at

least one neighbour v, v is in X∗ and therefore in

(X ∪Y )∗, so v ∈ X ∪Y , but the graph is bipartite,

so v ∈ Y . It’s then straightforward that X ⊂ Y−1Π

and therefore X = Y−1Π.

†Note that condition 2.b is not required if we assume that the relation (i.e. the graph) is bi-normalized.



A set S such that S∗ = S is not exactly a max-

imal connected component but it is a set of ver-

tices disconnected from the rest of the graph. So if

there is no strict subset S′ of S satisfying S′∗ = S′

it means that there is no subset of S disconnected

from other vertices of S. In other words, S is con-

nected and then S is a maximal connected compo-

nent. Therefore, the following property:

Proposition 3 For a pair (X ,Y ) the two following

propositions are equivalent:

1. X =Y−1Π and Y = XΠ and there is no strict

subset X ′ ⊂ X and Y ′ ⊂ Y such that X ′ =

Y ′−1Π,Y ′ = X ′Π.

2. X ∪Y is a maximal connected component

(which has at least two vertices).

According to Propositions 1-3, it is worth not-

ing that the two Galois connections correspond to

extreme definitions of what a cluster (or a commu-

nity) could be:

1. a group of vertices with no link missing in-

side.

2. a group of vertices with no link with out-

side.

One the one hand a maximal bi-clique is a maxi-

mal subset of vertices with a maximal edge den-

sity. Vertices cannot be moved closer, and in that

sense one can not build a stronger cluster. On the

other hand, a set of vertices disconnected from the

rest of the graph can not be more clearly separated

from other vertices. It corresponds to another type

of cluster. In fact, only the smallest of such sets

are really interesting, and they are nothing else

than maximal connected components. This two

extreme definitions were already pointed out for

clusters in unipartite graphs51.

4. Approximate conceptual structure:

comparative state of the art

Formal concepts correspond to maximal bi-

cliques, while independent sub-context corre-

spond to disconnected subparts. These two no-

tions may need to be relaxed for various reasons.

Motivations are mainly twofold: first data may be

noisy (some links in the graph may be missing or

wrongly present), secondly one may need to have

a simplified view of the set of concepts at work in

the data. The first motivation is the one which is

the most frequently emphasized in the literature.

However in some sense any exceptional piece of

data, even if there is no doubt about its validity,

may be considered as contributing some “noise”

that blurs the picture and prevents to have a sim-

plified image of the data. This suggests to forget

some “details” in order to summarize the infor-

mation more easily. For instance, one may forget

an edge because it simplifies the view by discon-

necting weakly connected parts (for example the

link (4,d) in Figure 2), or introduce some miss-

ing edges in order to reinforce the connectedness

inside a potential cluster (missing links (1,h) and

(5,c) for example in Figure 2) and lay bare a sim-

pler and more general concept.

Such ideas are encountered in formal concept

analysis, when looking for relevant, or for ap-

proximate / pseudo formal concepts, but have also

counterparts in other areas such as frequent item-

set mining, or in graph clustering (also now known

as “community detection” problem). In this sec-

tion, we provide an overview of the existing liter-

ature in these different areas, starting with formal

concept analysis. We end the section by consider-

ing different weighted extensions of formal con-

cept analysis, where the weights bearing on the

links between objects and properties may provide

an indication of the importance of the link for de-

ciding if we keep it, or we cut it in an approxima-

tion process.

4.1. Relevant or approximate formal concepts

A first line of research for simplifying a set of for-

mal concepts which tend to be large (especially

when data are noisy) is to select the relevant con-

cepts only by means of appropriate measures35.

The stability measure36,32 is the most commonly

used. The stability measure is all the greater for

a concept (X ,Y ) as more subsets of X are such

that X∆ = Y . This means in practice that the ob-

jects have not in general common properties out-

side Y , or in other words the concept is likely to



1 2 3 4 5 6 7 8

a × × × ×
b × ×
c × × ×
d × × × × ×
e ×
f × × ×
g × × × ×
h × × ×
i ×

Figure 2: R′: Relation R modified and the corresponding bi-graph.

be “stable” if one remove some objects. These ap-

proaches only select relevant concepts among the

whole set of existing ones. So they cannot produce

larger approximate concepts that would cover con-

cepts that are distinct due to some missing links.

One may think of doing that either by defining ap-

proximate formal concepts, or by using fuzzy for-

mal concepts.

Defining an approximate formal concept can

be done in a rather straightforward manner. Indeed

the definition of X∆ may be softened by looking

for the set of properties shared by “most” objects

in X rather than all. It leads to define20 an oper-

ator X∆,k which allows for at most k exceptions

among objects (provided that X has more than k

elements). Namely,

X∆,k =
{

y∈P |∃K ⊆X , |K|= k, (X−K)⊆R−1(y)
}

Likewise, we can define Y ∆, j = {x ∈ O|∃K′ ⊆

Y, |K′| = j,(Y − K′) ⊆ R(x)}. Then, an approx-

imate formal concept is a pair (X ,Y ) such that

Y = X∆,k and X = Y ∆, j. While a formal con-

cept (X ,Y ) corresponds to the Cartesian product

X ×Y , an approximate formal concept thus may

have at most k holes by column and at most j

holes by line. This idea is at work in data min-

ing when looking for error-tolerant (closed) item-

sets, see the next Section 4.2. Similarly one may

think of defining approximately independent sub-

contexts (X ′,Y ′) and (X ′,Y ′) by tolerating a lim-

ited number of elements in (X ×Y ′)∪ (X ′×Y ′).

In a related spirit, another approach consists in

looking for pseudo concepts44. Pseudo concepts

are a way to enlarge formal concepts: Indeed a set

of objects X is associated with a set of primary

properties Y , and with a secondary set of proper-

ties such that a majority of the objects are associ-

ated with the properties in this latter set.

4.2. Looking for error tolerant itemsets

Methods for mining association rules1,52 look for

sets of items that are frequently present together

in a transaction database. The search for itemset

can be related to formal concept analysis46. In that

perspective, the transaction database is viewed as

a formal context where each transaction stands for

an object and each item in this transaction corre-

sponds to a property satisfied by the object. Then

the intent of each formal concept corresponds to

a closed itemset. Then frequent itemset can be

found by pruning the lattice of the formal con-

cepts. In particular the rule: Y0 ⇒ Y \Y0 has no

exception iff ((Y0)
−1∆)∆ = Y where Y0 ⊂ Y .

The presence of noise in data has led to the

development of different ways of finding error-

tolerant itemsets30. Roughly speaking, the idea

is to no longer require that every item in a fre-

quent itemset appears in each supporting transac-

tion. This idea is very close of the idea of toler-

ating “holes” in format concept (which are max-

imal rectangles included in the formal context).

As already said for approximate formal concept,

it is not only the proportion of holes in the rect-

angle which matters but also their relative posi-

tions. Similar issues can be found with error-



tolerant itemsets where one distinguishes weak

error-tolerant itemsets and strong error-tolerant

itemsets54. In the former tolerance is global, while

in the latter the number of possibly missing items

(of the considered itemset) is limited inside each

supporting transaction and the number of support-

ing transaction missing an item (of the consid-

ered itemset) is also limited. Moreover strong er-

ror tolerant itemsets may be further constrained

by requiring that a given proportion of support-

ing transactions include all items (of the consid-

ered itemset)10.

Besides, once the error-tolerant itemsets are

obtained, one may think of merging them (by tak-

ing their union) on a similarity basis in order to

reduce their number. Similarity may be judged by

requiring that the result of the merging is a strong

error-tolerant itemset with respect to some toler-

ance thresholds9.

4.3. Community detection in hierarchical

small world

There is a large amount of literature about graph

clustering51,23, especially since the emergence of

so-called community detection problem42. Most

of these works concern unipartite graphs. How-

ever such graphs are often obtained from bipar-

tite ones (for example co-authoring graph between

authors are based on the author-paper bipartite

graph). Some authors prefer to address the clus-

tering problem on bipartite graphs rather than on

unipartite graph projections (where a part of the

information is lost). In the following we briefly

review existing graph clustering methods that have

been adapted for bipartite graphs.

The classical graph partitioning problem33

consists in splitting the vertex set in a given num-

ber of nearly equally-sized subsets such that the

number of edges binding two vertices belonging to

two different groups (i.e. the cut size) is minimal.

This view has traditional applications in problems

such as electronic circuit partitioning or load bal-

ancing in parallel computing. However it has also

been applied to finding conceptual clusters in both

unipartite and bipartite graphs14. The main draw-

back of this approach is that the number of clusters

has to be known a priori, which makes sense for

example in parallel computing when the number

of resources is known. However when clustering

communities, the number of clusters is usually un-

known. In addition, as mentioned by Newman43

the minimal cut argument is maybe a too naive

approach to find “natural” structures in networks

(some edges may be more significant than other

according to the graph structure).

The modularity is a more complex quality

measure of graph vertices partitioning. It is equal

to the number of edges contained inside each clus-

ter minus the same number for a graph built by

rewiring vertices randomly but preserving their in-

cidence degree. One looks for a partition that

maximizes this modularity measure. This also

amounts to minimize the number of edges between

cluster minus the same number in the same ran-

domly rewired graph. It was initially introduced

by Newman and Girvan42 as an argument to select

a particular cut in a dendrogram (resulting from

a hierarchical clustering algorithm). It has then

been used as an objective function in various op-

timizing algorithm11,7. Different bipartite adapta-

tions of this quality measure has been proposed

recently5,29,40.

Another common approach for graph cluster-

ing consists in using random walks. The intu-

itive idea is that random walk reveal the graph

structure. Indeed more precisely, a random walker

tends to be trapped into clusters since once in-

side a cluster the probability of getting out is

low. This is because there are only few paths

that would enable the walker to go out, and many

paths that remain inside the cluster. This has been

used for computing similarity degrees between

graph vertices26,27 which are then used for build-

ing clusters47 (this algorithm has been adapted to

bipartite graph clustering41). This same idea may

also been used in a different way for defining qual-

ity measures of a partition of graph vertices13,49.

Such quality measure is then used as an objec-

tive function in optimizing algorithms for obtain-

ing a partition of the graph into clusters. The qual-

ity measure proposed by Rosvall and Bergstrom49

seems especially promising37, but has not be ap-



plied to bipartite graphs yet.

Another family of approaches views cliques as

kernels of potential communities. A first idea is

to look for adjacent cliques. It is illustrated by the

well known method CFinder45 which defines clus-

ters as chains of adjacent k-cliques (a k-clique is

a complete subgraph of size k, and two k-cliques

are adjacent iff they have -at least- k− 1 vertices

in common). This method has been adapted to

bipartite graphs39: clusters become chains of ad-

jacent Ka,b-bicliques. A Ka,b-biclique is a com-

plete subgraph of a o-vertex and b p-vertex and

two Ka,b-bicliques are adjacent if they share a−1

o-vertex and b − 1 p-vertex. It is worth noting

that all maximal bicliques that count more than a

o-vertices and b p-vertices are made of adjacent

Ka,b-bicliques. In other words, each (big enough)

maximal bi-clique is contained in a cluster (while

maximal bi-cliques that are too small are ignored).

Other approaches based on cliques work in more

global way. Some authors have proposed to per-

form an agglomerative hierarchical clustering al-

gorithm over edges (ie. 2-cliques) of uni-partite

graphs2. It has been also proposed to transform

a uni-partite graph into the graph of its k-cliques

and then to compute a partitioning of the optain

graph22,21.

Apparently ignored by the above proposals, an

older method is worth mentioning31. It starts with

a bipartite graph for which one computes all the

maximal cliques, then a bipartite graph is built by

associating these maximal cliques to one of the

two vertex sets. Finally this new graph is parti-

tioned by minimizing the cut size.

In all these clique-based methods, the clusters

of vertices that are obtained are allowed to over-

lap (since it is expected that individuals may be-

long to several communities). As emphasized by

Hu et al.31 the methods working with cliques bet-

ter preserve the maximal cliques which constitute

the core of communities, while all the previously

presented methods that focus on vertices may split

these meaningful maximal cliques.

4.4. Weighted extensions of formal concept

analysis

There may be several good reasons for having a

weighted formal context, i.e. a context where the

links between objects and properties are weighted.

Indeed, the weights may be understood in two dif-

ferent ways. First they may reflect the idea of

allowing the properties to be a matter of degree.

Another type of weights correspond to the situa-

tion where the properties remains binary but are

pervaded with uncertainty. In both cases, this sup-

poses that the information about the gradedness, or

the uncertainty, is available. The first way, which

has been the most investigated until now, amounts

to consider that objects may have properties only

to a degree. Such fuzzy formal concept analysis6

is based on the operator :

X∆(y) =
∧

x∈O

(X(x)→ R(x,y)) (9)

where now R is a fuzzy relation, and X and X∆

are fuzzy sets of objects and properties respec-

tively, and
∧

denotes the min conjunction oper-

ator and → an implication operator. A suitable

choice of connective (the residuated Gödel impli-

cation: a → b = 1 if a 6 b, and a → b = b if

a > b) still enables us to see a fuzzy formal con-

cept in terms of its level cuts Xα ,Yα such that

(Xα ×Yα)⊆ Rα where Xα ×Yα are maximal, with

Rα = {(x,y)|R(x,y) > α}, Xα = {x ∈ O|X(x) >

α}, Yα = {y ∈ P|Y (y)> α}.

Another way16,15 is related to the idea of un-

certainty. The possibilistic manner of representing

uncertainty here is to associate with each link (x,y)

a pair of number (α,β ) such as α,β ∈ [0,1] and

min(α,β ) = 0 expressing respectively to what ex-

tent it is certain that the link exists (α), and does

not exists (β ). A link in a classical formal context

corresponds to a pair (1,0), the absence of a link to

the pair (0,1), and the pair (0,0) models complete

ignorance on the existence or not of a link. On this

basis a link may be all the more easily added (resp.

deleted) as α (resp. β ) is larger.

One may also consider that some properties

are less important, or that some objects are more

typical15. Then weights are no longer put on links



or edges, but rather on the nodes. Thus forgetting

a non compulsory property (e.g. the ability to fly

for a bird) may help building a larger concept (e.g.

birdness, although typical birds fly). Forgetting an

object or a property also suppresses links, which

may also help obtaining disconnected subparts.

These three views require different kinds of

additional knowledge which are not often avail-

able, especially in large data sets. Moreover the

two last views have been only recently introduce

and have not been yet investigated in detail. How-

ever such weights may provide a help for building

larger formal concepts and smaller sub-contexts.

We shall see a way of producing weights by ex-

ploiting the structure of a binary relation through

a diffusion process; see Section 5.2.

5. Looking for an approximate conceptual

view of data

We have reviewed different trends of research aim-

ing either at defining approximate concepts, sub-

contexts, closed itemsets, or at clustering com-

munities in bipartite graphs. Among these meth-

ods, some focus on the identification of what may

be retrospectively understood as approximate in-

dependent sub-contexts, while others rather look

for approximate (formal) concepts. Indeed some

methods partition the bipartite graph into non-

overlapping subgraphs, while the others use for-

mal concepts (or bi-cliques) for building larger

groups (which are still allowed to overlap). We

recognize here the two views for characterizing

clusters (no link with outside vs. no missing link

inside, see section 3.2). The partitioning methods

suppress (or forget) links that are judged unimpor-

tant, whereas approximate concept methods tend

to add (or to compensate) missing links.

It is worth noticing that the reviewed methods

adopt one point of view (either looking for sub-

contexts that are as much as possible independent,

or approximate concepts that are as dense as pos-

sible). But none of these methods may both add

and suppress links (depending on the situation), at

least in the initial context. However, there exists

a two step approach that first looks for the con-

cepts in the initial context, and then try to partition

the set of concepts obtained. This may be done by

considering the meta-context built from the links

relating concepts and the objects of their extents

and looking for approximatively independent sub-

context in this meta-context, or doing the same in

terms of bipartite graphs31. Moreover from a for-

mal concept analysis point of view, it would seem

natural to look first for approximate independent

sub-contexts and then inside each of these sub-

contexts to look for the concepts.

Generally speaking, one may think of two

types of approaches for identifying meaningful

clusters (or communities), namely the ones that

try to modify the initial context (by suppressing

or adding links) in order to simplify the result-

ing clusters, and the ones that rather start from

the set of concepts associated to the initial context

and then try to simplify this set (for instance, by

gathering or selecting relevant concepts). The first

ones require some evaluation of the links in order

to be able to decide to add or suppress them, while

the second type of methods need some measure of

the goodness of what is produced.

In the following, we present a two-step pro-

cedure that aims at providing a simplified, struc-

tured view of a set of data. These two steps corre-

spond respectively to the two types of approaches

mentioned above. The first step uses a random

walk method for transforming the initial context

into a graded one. This graded context is in turn

reduced to a simplified binary context that is ex-

pected to have a smaller number of formal con-

cepts. The second step then tries to merge together

sets of concepts that overlap sufficiently. Before

discussing this two-step procedure, we introduce

the use of random walks, which also leads to a

worth-noticing parallel with extended versions of

formal concept analysis.

5.1. Random walks and formal concept

analysis

A large panel of approaches developed within

community detection literature use random walks

for identifying communities. As already men-

tioned in Section 4.3, the underlying idea is that



random walkers tend to be trapped inside com-

munities. Let us consider a random walk8 on

a bipartite-graph. In the following we continue

to use the formal concept analysis notations tak-

ing advantage of the strict parallel with bipartite

graphs established in section 3.1. The relation R

is now replaced by a probabilistic transition ma-

trix for going from a vertex x to a vertex y, or

conversely. The probability is generally equally

shared between the edges directly connected to the

starting vertex. Let Px→y be the probability for go-

ing from a vertex x ∈ O to a vertex y ∈ P, formally

defined as follows:

Px→y =

{

1
|R(x)| if (x,y) ∈ R,

0 elsewhere,
(10)

where R(x) is the set of properties verified by x.

Let X(x) be the probability for a random walker to

be in vertex x ∈ O at a given step; the probability

XP(y) to reach a vertex y ∈ P at the next step is

given by:

XP(y) = ∑
x∈O

X(x).Px→y (11)

Similarly when going from a property vertex

to an object vertex we have the following equa-

tions:

Py→x =

{

1
|R−1(y)|

if (x,y) ∈ R,

0 elsewhere,
(12)

Y P(x) = ∑
y∈P

Y (y).Py→x (13)

where Y (y) is the probability for a random walker

to be in vertex y ∈ P at a given step.

The equations (11) and (13) correspond to a

one step walk between an object and a property.

More generally, a walk with an odd number of

steps links objects and properties. The probability

to reach a property from an object (or conversely

an object from a property) after an odd number of

t steps can be computed by composing t times the

operator (.)P. For t being an odd number, let Pt
x→y

(resp. Pt
y→x) be the probability to reach a prop-

erty y from an object x (resp. an object x from an

property y) in t steps.

One can show26,27 that when t tends to in-

finity, Pt
x→y no more depends on the starting ver-

tex x. However, the dynamics of the convergence

towards this limit clearly depends on the start-

ing node. Indeed, the trajectory of the random

walker is completely governed by the topology of

the graph: after t steps, any vertex y located at a

distance of t links can be reached. The probabil-

ity of this event depends on the number of paths

between x and y, and the degree (i.e. number of

neighbours) of each vertex along those paths. The

more interconnections between these vertices, the

higher the probability of reaching y from x. There-

fore, for a small t, Pt
x→y reveals “how far” is y from

x. This idea is used in the next section to compute

a weight for each pair of object and property.

With regard to formal concept analysis, there

is a worth noticing parallel between the “diffu-

sion” operator at the basis of random walk meth-

ods and graded extensions of (the possibility the-

ory reading of) formal concept analysis operators.

Indeed equations (11) and (13) can formally be

paralleled with the formula defining the operator

at the basis of the definition of a formal concept6:

X∆(y) = min
x∈O

X(x)→ R(x,y) (14)

and with the formula of the operator inducing in-

dependent sub-contexts18:

XΠ(y) = max
x∈O

X(x)∗R(x,y) (15)

where R may be graded, as well as X , XΠ and X∆

and where an usual choice for ∗ is min, and a resid-

uated implication for →.

This parallel between operators may be fur-

ther extended between definitions of concepts and

communities as stable points for these operators.

Some random walk approaches define clusters as

sets of vertices almost stable in the sense that a

random walker tends to stay inside them13,49. In

formal concept analysis, a formal concept is also

a stable set for the Galois connection operator

(X∆∆ = X and Y−1∆−1∆ = Y ).

Nevertheless, we do not intend in the follow-

ing to compute a probabilistic substitute to the

notion of formal concept. We rather compute



a weighted counterpart of the considered formal

context by using random walks for assessing the

importance of links between objects and proper-

ties.

5.2. A two-step procedure

In the following, we propose a two-step proce-

dure aiming at providing an approximate concep-

tual view of data. It takes advantages of several

ideas coming from the previous comparative dis-

cussion of different research trends. Namely the

procedure first uses a random walk approach for

providing a weighted counterpart to the formal

context which is the basis of a heuristic method

for diminishing the number of formal concepts as-

sociated to the context. Then, in a second step,

the procedure merges formal concepts which are

sufficiently close.

5.2.1. Using random walks for assessing the

importance of edges

We propose to use a short random walk to attribute

a weight W (x,y) on each pair (x,y) ∈ O×P of ob-

ject and property:

W (x,y) =
1

2

(

P3
x→y +P3

y→x

)

(16)

The choice of random walk of length three

may be discussed. As seen in the previous sec-

tion, we have to use short random walks anyway.

Moreover the number of steps t has to be odd, and

if t = 1 only pairs (x,y) that are in R will have

a non null weight. It is why we use the smallest

informative number of steps, which has obvious

computational advantages.

So the result of this computation is to substi-

tutes a weighted context W to the original one R,

where the weights accounts for a form of close-

ness. It is clear that given a threshold s, one can

extract from W a binary relation R′:

R′ = {(x,y) ∈VO ×VP|W (x,y)> s} (17)

This new formal context R′ is associated with inde-

pendent sub-contexts (if any) and with a lattice of

formal concepts. Table 1(a) provides the weighted

context W obtained from the example of Figure 2.

As can be seen, an appropriate choice of s (here,

e.g., s = 0.16) enables us to identify two approx-

imately independent sub-contexts, since (4,d) is

removed. It has also the effect of introducing

new links in the cells where the weight is suffi-

ciently high. For example the link (1,h) is added ;

as a consequence concepts ({g},{1,2,3,4}) and

({g,h},{2,3,4}) are merged together into the new

formal concept ({g,h},{1,2,3,4}). If we look

at Figure 3 which shows the lattice of concepts

extracted from the relation of Figure 2 on which

the transformation from R′ to W has been applied

with different thresholds s, one observes that the

number of concepts diminishes with s. However,

there is no monotonic decrease in general. See

for instance Figure 4 which gives the number of

concepts in function of the threshold, where in

the vicinity of 0.100 the number of concepts goes

from 8 to 10 and then to 9. We also observe in

Figure 3 that when the threshold is decreased too

much, the two independent sub-contexts no longer

exist (since for s = 0.10, (4,d) is no longer re-

moved). Note that independent sub-contexts are

easy to recognize in the lattice of concepts, since

they correspond to families of paths from the top

and the bottom formal concepts (with empty sets

of properties and objects respectively), which are

fully separated from the others.

In order to explore what values of the threshold

may be of interest for looking for approximately

independent sub-contexts, or for diminishing the

number of formal concepts, two landmark values

are of interest: let m be the weight of the worse of

the edges and M be the weight of the best of the

“non-edges” in the formal context. Namely,

m = min({W (x,y), ∀(x,y) ∈ R}) (18)

M = max({W (x,y), ∀(x,y) ∈ R}) (19)

One can note that if all edges have a larger

weight than all “non-edges” (i.e. M 6 m) then the

relation stays the same for any value of the thresh-

old in [M,m]. When m 6 M, the idea it to remove

some edges that have a weight lower than the best

“non-edges”, and to add some “non-edges” that

have a better score than the worst edges, by choos-



(a) s = 0.20 (b) s = 0.16 (c) s = 0.10

Figure 3: Lattices of formal concepts for different values of the threshold (example of Figure 2, with W given in

Table 1(a).

ing a threshold s ∈ [m,M]. In practice, one may

blindly take s = m+M
2

, or explore different values.

However, a better strategy seems to first look for

approximately independent sub-contexts by taking

a value close to M (see Table 1(b)), and then in

each of the sub-contexts to diminish the threshold

progressively in order to increase the number of

edges and checking the corresponding number of

formal concepts.

As a matter of illustration, Table 2 gives the re-

sult of the transformation on a relation that corre-

sponds to the Southern Women Data Set12, a bipar-

tite graph between 18 women and 14 events that is

a standard example in social network analysis lit-

erature and in community detection literature. The

crosses in Table 2 (as well as in Table 1(b)) repre-

sent the new relation R′ computed from W , and the

cells in gray are the ones that have been modified

by the transformation (to get back to the original

relation, one has just to swap cross and blank in

each of these gray cells). In Table 2, there are 67

formal concepts in the original relation and only

22 with the new relation.

5.2.2. Merging concepts

At the end of the previous step, it is expected to

have a simplified view of the original context in

terms of sub-contexts (when possible) and formal

concepts. However the number of formal con-

cepts may remain still too high with respect to user

needs. Indeed in the example of Table 2 after the

first step there is still 22 formal concepts. In order

to further simplify the view one may complete the

previous procedure with a second step aiming at

merging “close” formal concepts.

For two concepts a = (Xa,Ya) and b = (Xb,Yb),

the inclusion value of a in b can be defined as fol-

lows:

inc
(

a,b
)

=
|Xa ∩Xb||Ya ∩Yb|

|Xa||Ya|
(20)

This can be extended to a set C of n concepts

s(C) = max({min({inc(a,b),∀a ∈C}),∀b ∈C}),

(21)

where s(C)> θ means that there is a concept b∈C

such that, for all concepts a ∈ C, θ% of a is in-

cluded in b. In other words, there exists a concept

in the set C that almost includes all concepts of the

set C.

In order to merge formal concepts, one may

apply the following standard agglomerative algo-

rithm :

1. each concept is in its own cluster,

2. for each pair of clusters, the score of their

union is computed,

3. if this maximal score is larger than the

threshold:

(a) a pair having maximal score is selected

and merged,

(b) loop to 2.



Table 1: Modification of the relation permit to go from 13 to 11 concepts

(a) weighted relation W

1 2 3 4 5 6 7 8

a .048
✄

✂

!

✁
.221

✄

✂

!

✁
.252

✄

✂

!

✁
.228

✄

✂

!

✁
.224

b .034
✄

✂

!

✁
.217

✄

✂

!

✁
.225 .101 .157

c .041 .165
✄

✂

!

✁
.213

✄

✂

!

✁
.233

✄

✂

!

✁
.204

d .037 .051 .051
✄

✂

!

✁
.143

✄

✂

!

✁
.211

✄

✂

!

✁
.234

✄

✂

!

✁
.216

✄

✂

!

✁
.212

e .031 .070 .117
✄

✂

!

✁
.279 .122

f .041
✄

✂

!

✁
.226

✄

✂

!

✁
.246 .136

✄

✂

!

✁
.204

g
✄

✂

!

✁
.352

✄

✂

!

✁
.367

✄

✂

!

✁
.367

✄

✂

!

✁
.320 .013 .011 .013 .013

h .208
✄

✂

!

✁
.304

✄

✂

!

✁
.304

✄

✂

!

✁
.300 .015 .013 .015 .015

i .062 .109 .109
✄

✂

!

✁
.279 .031 .030 .031 .031

(b) R′ computed from W with s = 0.20

1 2 3 4 5 6 7 8

a × × × ×
b × ×
c × × ×
d × × × ×
e ×
f × × ×
g × × × ×
h × × × ×
i ×

Table 2: New relation from southern woman bipartite network after applying random walk transformation. Cells

in gray are the ones affected by the transformation.

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14

Ev. × × × × × × × ×
La. × × × × × × × ×
Th. × × × × × × × ×
Br. × × × × × × × ×
Ch. × × × ×
Fr. × × × ×
El. × × × ×
Pe. × ×
Ru. × × ×
Ve. × ×
My. × × × ×
Ka. × × × × × ×
Sy. × × × × × × ×
No. × × × × × × × ×
He. × × × × × × ×
Do. × × × ×
Ol. × ×
Fl. × ×



Figure 4: Number of formal concepts (including the bottom and top trivial ones) in function of the threshold

applied to the weighted relation W of the formal context in Figure 2.

However, note that it does not necessarily lead

to a partition of the set of concepts that is op-

timal in the sense that it does not necessarily

maximize mini(s(Ci)) among all the n-partitions

{C1,C2, . . . ,Cn} of the set of formal concepts.

Table 3 provides the result of this second step

on the women social network example. Finally, 6

non trivial clusters are retained. Clearly, a thresh-

old θ too small may lead to an oversimplification

of the formal context, as in the initial example, see

Table 4, where each of the two (approximately)

independent sub-context becomes a unique clus-

ter for θ = 0.4. It is worth noticing that this sec-

ond step still preserves a structured view, since one

may keep the benefit of the lattice of concepts re-

stricted to the “father” concepts of each group of

concepts (which approximately include the other

concepts in their group). Besides, other criteria

(e.g., the relative size) may be used for a further

selection in the set of formal concepts, if too many

formal concepts remain in the result of this second

step.

6. Conclusion

Starting with a view of a formal context as a

bi-graph, the paper has shown that formal con-

cepts correspond to the idea of maximal bi-

cliques, whereas independent sub-contexts, ob-

tained thanks to the introduction of another con-

nection, correspond to disconnected subsets of

vertices. Noticeably enough, these two constructs

reflect two ideal views of the idea of graph cluster,

namely a set of vertices with no link missing in-

side and a group of vertices with no link with out-

side. The last part of the paper, after a review of

different ways of getting approximate structured

views of a formal context, or equivalently of clus-

tering a bipartite graph, has outlined a two-step

procedure for laying approximately independent

sub-contexts if any, and simplifying the lattice of

the formal concepts. The first step of the proce-

dure takes advantage of random walks methods for

introducing a closeness estimation of the vertices

(or equivalently of the pairs (object, property) in

the formal context), the second step merges formal

concepts that are approximately included. Clearly,



Table 3: θ = 0.6, Final clusters for Southern Women Data Set:

X Y

E9.E11 No.He.Ol.Fl.

E3.E4.E5.E7 Ev.La.Th.Br.Ch.Fr.El.

E9.E7.E8 Ev.La.Th.Br.Ch.El.Ru.Sy.No.

E7.E8.E9.E10.E11.E12.E13.E14 My.Ka.Sy.No.He.Do.

E1.E2.E3.E4.E5.E6.E7.E8 Ev.La.Th.Br.Fr.El.

E9.E8 Ev.La.Th.Br.Fr.El.Pe.Ru.Ve.My.Ka.Sy.No.He.Do.Ol.Fl.

Table 4: θ = 0.4, Final clusters of the academic example of Figure 2:

X Y

1.2.3.4 igh

5.6.7.8 abcdef

by bridging different areas, this overview paper

has discussed several ideas that are worth of fur-

ther investigation, and the procedure that has been

outlined for clustering bipartite graphs may be still

refined and improved after a proper evaluation.
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