N
N

N

HAL

open science

Unsupervised Post-Nonlinear Unmixing of
Hyperspectral Images Using a Hamiltonian Monte Carlo
Algorithm

Yoann Altmann, Nicolas Dobigeon, Jean-Yves Tourneret

» To cite this version:

Yoann Altmann, Nicolas Dobigeon, Jean-Yves Tourneret. Unsupervised Post-Nonlinear Unmixing of
Hyperspectral Images Using a Hamiltonian Monte Carlo Algorithm. IEEE Transactions on Image

Processing, 2014, 23 (6), pp.2663-2675. 10.1109/T1P.2014.2314022 . hal-00992112

HAL Id: hal-00992112
https://hal.science/hal-00992112

Submitted on 16 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00992112
https://hal.archives-ouvertes.fr

OATAO

Open Archive Toulouse Archive Ouverte

OpenArchive ToulouseArchive Ouverte OATAOQO)

OATAO is an open access repository that collects the work of Toulossarchers ai
makes it freely available over the web where possible.

This is an author-deposited version published htip://oatao.univ-toulouse.
Eprints ID: 11559

Identification number: DOI : 10.1109/TIP.2014.2314022
Official URL: http://dx.doi.org/10.1109/TIP.2014.2314022

To cite this version
Altmann, Yoann and Dobigeon, Nicolas and Tourneret, Jean-¥nggpervised
Post-Nonlinear Unmixing of Hyperspectral Images Using a Hamiltonian M
Carlo Algorithm.(2014) IEEE Transactions on Image Processing, vol. 23 (r
pp. 2663-2675. ISSN 1057-7149

Any correspondence concerning this service should be sent to the repository adorinistra
staff-oatao@inp-toulouse.fr



http://dx.doi.org/10.1109/TIP.2014.2314022
http://oatao.univ-toulouse.fr/

Unsupervised Post-Nonlinear Unmixing of
Hyperspectral Images Using a Hamiltonian
Monte Carlo Algorithm

Yoann Altmann,Member, IEEE Nicolas DobigeonSenior Member, IEEEand Jean-Yves Tourneret

Abstract— This paper presents a nonlinear mixing model for the bidirectional reflectance based model proposed in [8] for
hyperspectral image unmixing. The proposed model assumes that intimate mixtures associated with sand-like materials, com-
the pixel reflectances are post-nonlinear functions of unknown pynations of LMM and intimate mixture models [9] and the
pure spectral components contaminated by an additive white bilinear/polynomial models studied in [10]-[17] to account
Gaussian noise. These nonlinear functions are approximated : ) . 3
using second-order p0|ynomia|s |eading to a p0|ynomia| post- for Scatte“ng effects ma|n|y obsved in Vegetatlon and urban
nonlinear mixing model. A Bayesian algorithm is proposed areas. The second class of MMs contains more flexible
to estimate the parameters involved in the model yielding an models allowing different kinds of nonlinearities to be approx-
unsupervised nonlinear unmixing algorithm. Due to the large 514, Precisely, these analytical models are not explicitly
number of parameters to bt_a estlr_nated, an efﬁment_ Hamiltonian based on the physical phenomena involved in the mixing
Monte Carlo algorithm is investigated. The classical leapfrog . o
steps of this algorithm are modified to handle the parameter Process but are able to model different deviations from the
constraints. The performance of the unmixing strategy, including classical LMM. Such deviations can result, for instance, from
convergence and parameter tuning, is first evaluated on synthetic the presence of relief or multi-layered materials, from illu-
data. Simulations conducted with real data finally show the - mination heterogeneity, or from the spectral variability of the
accuracy of the proposed unmixing strategy for the analysis of .
hyperspectral images. scene components. These flexible models can be constructed

from neural networks [18], [19], kernels [20]-[22], or post-
nonlinear transformations [23]-[25] (The reader is invited to
consult [26] for a recent review). In particular, a polynomial
|. INTRODUCTION post-nonlinear mixing model (PPNMM) has recently shown
interesting properties for the SU of hyperspectral images

7]. This model assumes that the observed pixels result
om nonlinear transformations applied to linear combina-

problem, also referred to as unsupervised spectral unmixibs C():I enddmemlbers. _TTe roglin%aritiesr?re appr;ﬁmﬁted#y
(SU), has been widely studied for the applications where gRgcond-order polynomials. It has been shown in [27] that the

pixel reflectances are linear combinations of pure componé:'t'\”v”vI S a erX|bIe model (in terms OT pixel reconstrqctlon)
spectra [1]-[5]. However, as explained in [6] and [7], th at can provide accurate abunda estimates for nonlinear

linear mixing model (LMM) can be inappropriate for somgNMXing. . . . . :
hyperspectral images, such as those containing sand, trees ost nonlmear_ unmixing strategies available in _the I|_ter-
vegetation. Nonlinear mixing models (NLMMs) provide ar?ture are supervised, i.e., the endmembers contained in the

interesting alternative for overcoming the inherent limitatio age are assumed to be known (chosen from a spec_tral
of the LMM. They have been proposed in the hyperspect rary or extracted from the data by an endmember extraction
a

image literature and cfan be divided into two main classes. gorithm (EEA)). Moreover, mqst existing EEAs rgly on the
The first class of NLMMs consists of physical model&MM [28]-[30] and thus can be inaccurate for nonlinear mix-

based on the nature of the environment. These models incl&#rees' Rec_entl)_/, a nonlinear EEA based on the approximation
of geodesic distances has been proposed in [31] to extract

endmembers from the data. However, this algorithm can suffer
This work was supported in [TOM the absence of pure pixels in the image (as most linear
part by the Direction Générale de I'armement, French Ministry of DefencE EAS). This paper presents a new fully unsupervised Bayesian
in part by the HYPANEMA ANR Pragct under Grant ANR-12-BS03-003, ynmixing algorithm based on the PPNMM studied in [27]. The
and in part by the Thematic Trimester on Image Processing of the CIMI d thod all i0int estimati fth d b
Labex, Toulouse, France, under Grant ANR-11-LABX-0040-CIMI withinPfOPosed method a OWS ajoin .e.s Imation ot the endmembers
the Program ANR-11-IDEX-0002-02. ®hassociate editor coordinating theand abundances (mixing coefficients) and does not assume

review of this manuscript and approving it for publication was Prof. Jonghe presence of pure pixels in the observed image. In the
Chul Ye.

The authors are with the University of Toulouse, Toulouse Cedex 7 310ﬁ§yes'an framework, appropriate prior d!strlbutlons are chosen
France (e-mail: yoann.altmann@enseéi; nicolas.dobigeon@enseeiht.fr; for the unknown PPNMM parameters, i.e., the endmembers,

jean-yves.tourneret@enseeiht.fr). the abundances, the nonlinearity parameters and the noise
variances. The joint posterior distribution of these parameters
Digital Object Identifier 10.1109/TIP.2014.2314022 is then derived. Since the classical Bayesian estimators cannot
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unmixing, Hamiltonian Monte Carlo, post-nonlinear model.

DENTIFYING macroscopic materials and quantifying th
proportions of these materials are major issues when a
lyzing hyperspectral images. This blind source separati



be easily computed from this joint posterior we investigatie nth pixel, R is the number of endmembers contained in the
a Markov chain Monte Carlo (MCMC) method to generatanage andg, is a nonlinear function associated with theh
samples according to this posterior. More precisely, followingixel. Moreover,e, is an additive independently distributed
the principles of the Gibbs sampler, samples are generamsto-mean Gaussian noise sequence with diagonal covariance
according to the conditional distributions of the posterior. Dumatrix ¥ = diag 02), denoted ass, ~ N (0., X), where

to the large number of parameters to be estimated we propege= [012, R O'E] is the vector of the. noise variances and
to use a Hamiltonian Monte Carlo (HMC) [32] method tcdiag(az) is anL x L diagonal matrix containing the elements
sample according to some of theonditional distributions. of the vectoro?. Note that the usual matrix and vector
HMCs are powerful simulation strategies based on HamitotationsM = [m1,..., mgr] and a, = [aljn,...,aR,n]T
tonian dynamics which can improve the convergence ahdve been used in the right hand side of (1). As in [27],Xhe
mixing properties of classical MCMC methods (such as theonlinear functiong,, are defined as second order polynomial
Gibbs sampler and the Metropolis-Hastings algorithm) [33honlinearities defined by

[34]. These methods have received growing interest in many L L

applications, especially when the number of parameters to be  9n': 01" —R

estimated is large [35], [36]. The classical HMC can only s . [Sl+bn$]2_ s +bnsz]T @)
be used for unconstrained variables. However, new HMC T -
methods have been recently proposed to handle constraipgg s — [si, ...,s 1T andby is a real parameter. Motivations

variables [33, Chap. 5] [37], [38] which allow HMCs to samplgq considering polynomial ndimearities have been discussed
accordmg to thg posterior of the Bayesian model proposed ]‘Hr[27]_ In particular, it has been shown that the PPNMM
SU. Finally, as in any MCMC method, the generated samplggolves bilinear and quadratic terms (with respect to the
are used to compute Bayesian estimators as well as measy@finembers) which have been considered to handle multiple
of uncertainties such as confidence intervals. _scattering effects [14], [15]. Thus, it is very flexible and can
The problem addressed in this paper is the unsupervisgghroximate many different nonlinearities. Because the non-
nonlinear unmixing of hyperspectral images. The main contfjpearity is characterized by argjle nonlinearity parameter per
bution of this paper is a Bayesian approach which consists gfe, it is difficult to infer the sources of nonlinearities that
estimating jointly the endmembers and the abundances usiag occur in the image pixels using the PPNMM. However, it
the PPNMM. Appropriate prior distributions are assigned tQyoys linearly/nonlinearly mixed regions in the image to be
the unknown parameters. In particular, sparsity promoting pPfientified (as will be shown in Section VII). Straightforward

ors are considered for the nonlinearity parameters. To ha“EiB?rnputations allow the PPNMM observation matrix to be

the large number of parameters to be sampled, an emc“’é&bressed as follows

constrained HMC method is used, leading to an efficient

sampling procedure. Y = MA +[(MA) © (MA)]diag(b) + E 3)
The paper is organized as fals. Section Il introduces the ) .

PPNMM for hyperspectral image analysis. Section 11l presenfd!€r€A = [a1, ..., an]is anRx N matrix,Y = [y1, ..., yn]

: T
the hierarchical Bayesian model associated with the propoSEtfiE = [€1, ..., en] areL x N matrices,b = [by, ..., bn]

PPNMM and its posterior distribution. The constrained HMdS @ N x 1 vector containing the nonlinearity parameters and
(CHMC) algorithm used to sample some parameters of tHis denotes the Hadamard (termwise) product.

posterior is described in Section IV. The CHMC is coupled

with a standard Gibbs sampler presented in Section V. So@eapundance Reparametrization

simulation results conducted on synthetic and real data areD to ohvsical derati the abund -
shown and discussed in Sections VI and VII. Conclusions are— " '© physical considerations, the abundance Veagrs

finally reported in Section VII| satisfy the following positivity and sum-to-one constraints
R

Il. PROBLEM FORMULATION Dan=1 an>0vre{l. . R (4)
r=1
A. Polynomial Post-Nonlinear Mixing Model . .
i ) ] o ) To handle these constraints, we propose to reparameterize the
This section recalls the nonlinear mixing model used in [27}, \ndance vectors belonging to the following set
for supervised SU of hyperspectral images. We consider a set

of N observed spectrg, = [yn.1,...,YnL1',ne{1,..., N} T R
wherelL is the number of spectral bands. Each of these spectra S =ja=[a1,....arl |& >0, Za =1 ()
is defined as a nonlinear transformatiggof a linear mixture r=1
of R spectram; contaminated by additive noise using the following transformation
c = 1-z, ifr <R
Yn=0n| D anmr )+en =gy Man) + e 1) an=|]]zn)x [ L. (6)
—) el 1 ifr=R
wheremy = [my g, ..., mr,|_]T is the spectrum of theth mate- This transformation has beeacently suggested in [39]. One

rial present in the scene; p, is its corresponding proportion in motivation for using the latent variablesy instead ofa, , is



the fact that the constraints (4) for tih abundance vector defined in (5) (see [39] for details). Assuming prior indepen-

ap express as dence between the coefficient vectes},_;  n leads to
O<zn<l Vrefl,...,R-1} @) B R-1 1 N -
o . f@=11gr—ronll= (10
for the nth coefficient vectorzq = [z1n,...,Zr-1.n]' . AS @ re1 (R-r,1 ne1

consequence, the constraints (7) are much easier to handle . .
for the sampling procedure than (4) (as will be shown ¥hereéB(. ) is the Beta function. .
Sections IV and V). It is interesting to note that the abundance?) EndmembersEach endmemben, = [mr 1, ..., My ]
reparametrization considered in this paper depends on {hé& reflectance vector satisfgrthe following constraints
endmember order. This point will be discussed in Section V-A.

. . . ; 1LV 1,....R}V 1,...,L}. 11
The next section presents the Bayesian model associated with O=mre=1¥refl...RLVe(d. ...} (11)

the PPNMM (1) for SU. For each endmemben,, we propose to use a Gaussian prior

I1l. BAYESIAN MODEL mr ~ Ng gt (M, $71L), (12)
This section generalizes the hierarchical Bayesian modgincated on[0, 1] to satisfy the constraints (11). In this
introduced in [27] in order to jointly estimate the abundancgmper, we propose to select the mean vecdiarsas the pure
and endmembers, leading to a fully unsupervised hyperspect@nponents previously identified by the nonlinear EEA stud-
unmixing algorithm. The unknown parameter vector associatiti in [31] and referred to as “Heylen”. The variarg2aeflects
with the PPNMM contains the reparameterized abundandbs degree of confidence given to this prior information. When
Z = [zn,...,zN] (satisfying the constraints (7)), the endno additional knowledge is available, this variance is fixed to
member matrixM, the nonlinearity parameter vectbrand a large value? = 0.5 in our simulations). Note that any EEA
the additive noise variance?. This section summarizes thecould be used to define tHex R matrixM = [my, ..., MR].
likelihood and the parameter priors (associated with the pro-3) Nonlinearity ParametersThe PPNMM reduces to the
posed hierarchical Bayesian PPNMM) introduced to perforonMM for b, = 0. Since the LMM is relevant for most
nonlinear unsupervised hyperspectral unmixing. observed pixels, it makes sense to assign prior distributions
to the nonlinearity parameters that enforce sparsity for the
- vector b. To detect linear and nonlinear mixtures of the
A. Likelihood pure spectral signatures in the image, the following conjugate
Equation (3) shows thayn|M, zn, by, a2 is distributed Bernoulli-Gaussian prior is assigned lig
according to a Gaussiadistribution with meang, (M an)
and covariance matrixt, denoted asyn|M, zn,bn, a2 ~ f (bnlw, 62) = (1 — w)d(bn) + wN (0, abz) (13)
J\/(gn Mayp), ):). Note that the abundance vectay should
be denoted a®n(z,). However, the argument, has been whered(-) denotes the Dirac delta function. Note that the prior
omitted for brevity. Assuming independence between tighstributions for the nonlinearity parametébs},_; . n share
observed pixels, the joint likelihood of the observation matrifhe same hyperparameters € [0, 1] and 62 € R*. More
Y can be expressed as precisely, the weighto is the prior probability of having a
v TRy x nonlinearly mixed pixel in_the image. Assuming prior indepen-
F(YIM,Z, b, 02) |):|‘N/2etr[—( - X) ¥ - )] _dgnce _betw_eep th_e nonlinearity _paramet{éw,s}nzl _____ N, the
2 joint prior distribution of the nonlinearity parameter vector
(8) can be expressed as follows

whereox means “proportional to”, efr) denotes the exponen- N
tial trace andX = MA +[(MA) © (MA)] diag(b) is anL x N f(blw, o) = [] f(onlw, o) (14)
matrix. n=1

4) Noise VariancesA Jeffreys’ prior is chosen for the noise
B. Parameter Priors variance of each spectral baaﬁ

1) Coefficient MatrixZ: To reflect the lack of prior knowl- 9 1 9
edge about the abundances, we propose to assign prior dis- fof) o Flﬂ‘* (”é’)
tributions for the coefficient vector, that correspond to t
noninformative prior distributions fora,. More precisely, which reflects the absence d&howledge for this parame-
assigning the following beta priors ter (see [40] for motivations). Assuming prior independence

between the noise variances, we obtain

(15)

Zny ~Be(R—r,1) ref{l,...,R-1} (9) ]
and assuming prior independence between the elememts of f(o?) = H f(a}). (16)
yield an abundance vecter, uniformly distributed in the set =1



D. Joint Posterior Distribution
The joint posterior distribution of the unknown parame-
/ ter/hyperparameter vectdp, ®} whered = {Z, M, b,az}

and ® = {02, w} can be computed using the following

b hierarchical structure
\ ) g / £(8, ®|Y) o f(Y|0, ®)f(0, D) (19)
2

Z M b o where f (Y|0) has been defined in (8). By assumiagpriori
independence between the parame®rsM, b and 62 and
between the hyperparameters and w, the joint prior dis-

Y tribution of the unknown parameter vector can be expressed

as
Fig. 1. DAG for the parameter andyperparameter priors (the fixed
parameters appear in boxes). f (0, ®)

f(0]®)f(®)
= f(2)f(M)f(a?) f(bloZ, w) f(o2) f (w). (20)

C. Hyperparameter Priors The joint posterior distributionf (9, ®|Y) can then be com-
The performance of the proposed Bayesian model for spgfited up to a multiplicative constant after replacing (20) and
tral unmixing depends on the values of the hyperparametegs in (19). Unfortunately, it is difficult to obtain closed form
o2 and w. When the hyperparameters are difficult to adjuséxpressions for the standard Bayesian estimators (including
it is classical to include them in the unknown parameteéfe maximum a posteriori (MAP) and the minimum mean
vector, resulting in a hierarchical Bayesian model [27], [41§quare error (MMSE) estimatoraysociated with (19). In this
This strategy requires to define prior distributions for thgaper, we propose to use efficient Markov Chain Monte Carlo

hyperpa'rametelrs. o . (MCMC) methods to generate samples asymptotically distrib-
A conjugate inverse-Gamma prior is as&gned:lfo uted according to (19). Due to the large number of parameters
o2 ~ TG (7,v) (17) to be sampled, we use an HMC algorithm which allows the

number of sampling steps to be reduced and which improves
where (y,v) are real parameters fixed to obtain a flat priothe mixing properties of the sampler. The generated samples
reflecting the absence of knowledge about the variarg:e are then used to compute the MMSE estimator of the unknown
((y,v) will be set to(107%,1071) in the simulation section). parameter vecto(d, ®). The next section summarizes the

A uniform prior distribution is assigned to basic principles of the HMC methods that will be used to
sample asymptotically from (19).
w ~ Ui, 11(w) (18) ple asymp y (19)
since there is no a priori information regarding the proportions IV. CONSTRAINED HAMILTONIAN
of linearly and nonlinearly mixed pixels in the image. The MONTE CARLO METHOD

resulting directed acyclic graph (DAG) associated with the HMCs are powerful methods for sampling from many

proposed Bayesian model is depicted in Fig. 1. . S : . o
As mentioned in Section I, the PPNMM is an analy,[i_contlnuous distributions by introducing fictitious momentum

. D .
cal model which could not systematically provide physicallva”ables' Letq € R be the parameter of interest and

meaninaful endmember estimates. Even when assumin %{g) its corresponding distribution to be sampled from. From
g ‘ 9 SHtistical mechanics, the distributiar(q) can be related to a

classical LMM, geometric considerations (such as volume con-

straints) and positivity constraints are used to favor reasonaBﬁatentlal energy functioty (q) = —log [” (q)] +cwherec is

aIPositive constant such thatexp(—U(q) +c)dgq = 1. The

endmembgr e§t|mates.. The pr(.)blen']'become's more dnchCIqamiltonian ofz (q) is a function of the energy (q) and of
when considering possible nonlinearities. In this paper, range . 1ditional momentum vectqr R defined as
constraints are first considered for the endmembers to ensure

that the estimated spectragsiatures belong to the reflectance H(a, p) =U(q) + K(p) (21)
domain [0, 1]. Second, the prior distribution assigned to the ) ) o )
nonlinearity parameters favors weak/null nonlinearities fd¥here K(p) is an arbitrary kinetic energy function. Usu-
pixels that can be accurately modeled by the LMM. Cons@llY: @ quadratic k|net|c+ energy is chosen and we pro-
quently, the estimated endmembers are implicitly enforced R§S€ 10 useK(p) = p' p/2 in this paper (for reasons

be close to those that would be estimated using LMM-basggPlained later). The Hamiltonian (21) defines the following
endmember extraction algorithms. Moreover, similarly to tHiStribution

Bayesian algorithm studied in [41] for linear unsupervised f(q,p) o exp[—H(q, p)]

unmixing, the prior distribution assigned to the abundance 1

vectors promotes small volumes for the simplex defined by x  7(q) exp(—— p' p) (22)
the endmembers, i.e, promotes endmembers close to the data 2

and thus physically meaningful (as illustrated in Sections Yor (q, p) which shows that] and p are independent and that
and VII). the marginal distribution ofp is a N'(Op, Ip) distribution.



The HMC algorithm allows samples to be asymptoticallalgorithm 1 Constrained Hamiltonian Monte Carlo Iteration
generated according to (22). Théh HMC iteration starts
with an initial pair of vectors(q®”, pi)) and consists of ST .
two steps. The first step resamples the initial momenpith « g7 =g satisfying the constraints (25)
. . . R o Sample p(t0) = p(H) ~ N (0p,1p)
according to the standard multivate Gaussian distribution. )
The new notationp” is introduced here to highlight the ij fgﬁﬂgd;ﬁg“, 1;,[?:&_0% o
fact that initial momentum used in theh frepfrog scheme 4. ¢ sundard leapfrog steps
differs from the final momentum of th@ — 1)th iteration, as . c (imete/2) — (ime) € OU ;0o
; . . .3 e ompute p'* = pl& 777T(q, )
shown in Algo. 1. The second step uses Hamiltonian dynamics (e — (ime) 99 o
to propose a candidat@*, p*) which is accepted with the  * Compute g =ar A ep

fO"OWIng pFObabI|Ity %Steps required to ensure q(i,(n+1)e) satisfies the constraints (25)
i i) 7. while g(5("FD€) does not satisfy (25) d
p=minfexp[-H(@, p)+H@", p)]. 1} @) 5 " ° oes not satisfy (25) do

1: %Initialization of the ith iteration(n = 0)

9: for d=1:D do

. . 10:
A. Generation of the Candidatg*, p*) 11 if ¢ < g, then
Hamiltonian dynamics are usually simulated by discretiza?: Set qfiz’("?lz@j) 2 gy o
tion methods such as Euler or leapfrog methods. The classica (repléi(ce qi,l ’/7;) ‘ b(y its+sy/nzl)metric with respect to g;)
leapfrog method is a discretization scheme composed, ef 13 Set pg’ =Py
pirog P 14 d if
steps with a discretization stepsize The nth leapfrog step 15 ffn q(t'+e> > gu then
can be expressed as 16: Sot gD gq, _ gLintntD))
p(i’neJre/z) _ olne _ € ou ( (i,ne)) (24a) (repla(ciengg;(/zjl)s) b%/i i,tiff/rg)memc with respect to qy,)
28qT 17: Set py’ =-p;’
; ; ; 18: end if
q(l,(n+1)e) = q(l’ne) +e€ p(lanJrE/z) (24b) 19: end for
(n+De) _ ninete2) _ € OY T i int1e 20 end while
p( D) = p( 2 — anT C]( r+De . (24c) 21:  %Standard leapfrog step
, . au . ..
) ) » L 22:  Compute p(i-(n1)e) = plinete/2) € ov qi-(n+1)e)
The leapfrog method starts wittg 9, p) = @©, p") 247 | )
and lghe C%ndNidate is set aftédir steps to(q*, p*) = 4 % Accept-reject procedure
(q(l,s LF)’ pl-€ LF))_ 25: Set p* = p(+Ni) and g* = qlieNix)

However, if q is subject to constraints, more sophisticatezh: Compute p usir_lgl(23) . N
discretization methods must be used. Assume that the vectogg?fsz (g )(71, f(ll;r )()i+:1)(q:7 P*()ﬂwitg)probablhty P
interestq = [qu, ..., qo]T satisfies the following constraints 2 Else set (4771, pr) = (a1, 570).

Q|<qd<qU9 de{l,aD} (25)

whereq (resp.qy) is the lower (resp. upper) bound fag .
(such kind of constraints need to be satisfied by the elemeﬁ?srameters can be tuned sequentially. The procedures used

of Z and the endmembers M). In this paper we propose toIn this pe:}per to adjusNir and ¢q are detailed in the next
use the constrained leapfrog scheme studied in [33, Chap_%e?,ragrap S

consisting ofN_r steps, with a discretization stepsizg Each

CHMC iteration starts in a similar way to the classical leapfrog. Tuning the Stepsizg

method, with the sequential sampling of the momentpm  The step sizey is related to the accuracy of the leapfrog
(24a) and the vectay (24b). However, if the generated vectoimethod to approximate the Hamiltonian dynamics. Wign

q violates the constraints (25), it is modified depending 98 “small”, the approximation of the Hamiltonian dynamic is
the violated constraints and.the mqmentum is negated (%urate and the acceptance rate (23) is high. However, the
[33, Chap. 5] for more details). This step is repeated ungikpioration of the distribution support is slow (for a given
each component of the generatgdatisfies the contraints. The NLr). In this paper, we propose to tune the stepsize during the
CHMC ends with the update of the momentuym(24c). One  pyrn-in period of the sampler. More precisely, the stepsize is
iteration of the resulting constrained HMC algorithm (CHMC}ecreased (resp. increased) by 25% if the average acceptance
is summarized in Algo. 1. As mentioned above, one mighjte over the last 50 iterations is smaller tha @esp. higher
think of using a more sophisticated kinetic energy foto  than 08). Note that the stepsize update only happens during

improve the performance of the HMC algorithm. Howeveghe purn-in period to ensure the Markov chain is homogeneous
the kinetic energyK (p) = p' p/2 allows the discretization after the burn-in period.

method handling the constraints to be simple and will provide

good performance for our application (as will be shown in .

Section VI). The performance of the HMC mainly relies off+ Tuning the Number of Leapfrog Stepg=N

the values of the parametefd r and eq. Fortunately, the  Assumeeq has been correctly adjusted. Too small values
choice ofeq is almost independent & such that these two of N_r lead to a slow exploration of the distribution (random



walk behavior) whereas too high values Nfr require high i.e., the N coefficients vectordz,},_; n are a posteriori
computational time. Similarly to the stepsieg, the optimal independent and can be sampled independently in a parallel
choice of NL.r depends on the distribution to be samplednanner. Straightforward computations lead to
The sampling procedure proposed in this paper consists of —
several HMC updates included in a Gibbs sampler (as willf ;v M b, o2 (_ (Yn —Xn) " "(yn — Xn))
. . nlyn, M, b, 0%) o exp

be shown in the next section). The number of leapfrog steps 2
required for each of these CHMC updates has been adjusted R-1
by cross-validation. From preliminary runs, we have observed %1 1)r-1(Zn) H sz,fr"’l (27)
that setting the number of leapfrog steps for each HMC r
updatfa close toN g = 50. provides a reasonab!e tradeof@vhere Xn = Gn(Man), Lo pr1() denotes the indicator
ensuring a good explor'at|on of the tgrget dlstnputlon 6}q‘ﬂnction over(0, 1)R-1. The distribution (27) is related to the
a reasonable computational complexity. To avoid poss'%llowing potential energy
periodic trajectories, it is recommended to Mig random
[33, Chap. 5]. In this paper, we have assumed tNgt is (Yn — Xm) TE"1(Yn — Xn) R-1
uniformly drawn in the interval [45], [55] at each iteration of U (zn) = > — > log (z,ﬁf;“l)
the Gibbs sampler. r=1

Convergence isues associated with HMCs have been dis- (28)
cussed in details in [33, Chap. 5]. In particular, it has been
shown that a sampling scheme combining HMC updatééiere we note thatf (zalyn, M, bn,0?) o exp[-U(z)].
within a classical Gibbs sampler (as will be used in the nekt momentum vectors associated with a canonical kinetic
section) converges to the target distribution. Although tfenergy are introduced. The CHMC of Section IV is then
performance improvement thaan be obtained by replacing@PPlied independently to thd vectorsz, whose dimension
random walk procedures by HMC updates can be evaluatedfd — 1) is relatively small. The partial derivatives of the
closed form for simple problems, the gain obtained when usiRgtential function (28) required in Algo. 1 are derived in the
HMCs within a Gibbs sampler is more difficult to evaluatefppendix. As mentioned in Section 1I-B, the _Iatent variables
The reader in invited to consult [42] for additional simulation§&P€end on the endmember order. However, since the proposed
illustrating the convergence of the proposed HMC-based saf#MC uses (27) to build an appropriate proposal distribution,
pler. The next section presents the Gibbs sampler (includiftg impact of the initial endmember permutation on the

CHMC steps) which is proposed to sample according to (1@)§neraFed samp'les is not §ignificant (see [42] for additional
simulations obtained with different permutations).

V. GIBBS SAMPLER

The principle of the Gibbs sampler is to sample accordirfy S@MPling the Endmember Matiix
to the conditional distributions of the posterior of interest From (19) and (20), it can be seen that
[34, Chap. 10]. Due to the large number of parameters to .
be estimated, it makes sense to use a block Gibbs sampler — _
to improve the convergence of the sampling procedure. MoféM ¥.2.b,0% 8% M) =[] f(Me.lye. Z.b.of, 8% i)
precisely, we propose to sample sequentidlyZ, b, 62, o2 =1
andw using six moves that are detailed in the next sectionﬁ;herem[,: (resp.m¢. andy,..) is the ¢th row of M (resp. of

M andY) and

A. Sampling the Coefficient Matrix

_ lye,: = tell®

Sampling fromf (Z|Y, M, b, 02, 62, w) is difficult due to f(melyes Z,b,of,s% M) o exp(— 52 )
the complexity of this distribution. In this case, it is classical 2 ¢
to use an accept/reject procedure to update the coefficient Xexp(_w) LR (mg :) (29)
matrix Z (leading to a hybrid Metropolis-Within-Gibbs sam- 2s? ' |
pler). Since the elements & satisfy the constraints (7), the
CHMC studied in Section IV could be used to sample accor
ing to the conditional distributionf (Z|Y,M, b, 02, op, w).
However, as for Metropolis-Hastings updates, the converge
of HMCs generally slows down when the dimensionality &
the vector to be sampled increases. Consequently, sampﬁh
an N(R — 1)-dimensional vector using the proposed CHMC

jith t; = ATmg . + diag(b) [(ATm¢;) © (ATm¢;)]. Conse-
quently, the rows of the endmember matkixcan be sampled
r'vegependently similarly to the procedure described in the
revious section (to sampl&). More precisely, we introduce
Botential energy (m¢,.) associated withm, . defined by

Iye,: — tell>  Ime. — Mg ]2

can be inefficient when the number of pixels is very large. V(mg,) = 27 > (30)
However, it can be shown that Te
N and a momentum vector associated with a canonical kinetic

f(Z|Y,M, b, 02, op, w) = H f(znlyn, M, bn, 6%)  (26) energy. The partial derivat?ves _of the potentie_ll function (30)
nei required in Algo. 1 are derived in the Appendix.



C. Sampling the Nonlinearity Parameter Vector Algorithm 2 Gibbs Sampler

Using (19) and (20), it can be easily shown that the con- . [uisalization ¢ = 0
ditional distribution ofbn|yn, Mz, 02, w, 62 is the following \ 20 MO pO) 520) 10 520
Bernoulli-Gaussian distribution b

bilYn, M, Zn, 02, w, 0 ~ (L= w5)d(bn) + i (sn, s2)

2: Iterations
3: for t =1 : Nyc do
Parameter update

AR

44

v
For each b, the conditional distribution (31) does not%n_a_ i
depend or{b}i..n. Consequently, the nonlinearity parameter 3 o)

{bn}n=1,...n Can be sampled independently. ol

=
o

(31) 5. Sample Z®) from the pdfs (27) using a CHMC procedure.
6:  Sample M(®) from the pdfs (29) using a CHMC procedure.
where 7:  Sample b®) from the pdfs (31).
2(t)
O_bz (Yn—M an)T z_lhn X O_bz 8: Sample o from t‘he pdfs (34).
Un = PTG , T —] 9:  Hyperparameter update
Oh hn X ha+1 Oh hn X ha+1 10:  Sample cri(t) from the pdf (35).
11 le w(*) from the pdf (36).
andh, = (Map) ©® (Map). Moreover, . engatf::fe wit) from the pdf (36)
% w
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D. Sampling the Noise Variance Veciof Wavelength (nm) Wavelength (am) Wavelength (nm)

Using (19), it can be shown that Fig. 2. TheR = 3 endmembers extracted from the ENVI software [43] used
L to generated the synthetic imagksto |3.
f@?Y,M,Z,b) =[] f(flye..m.c. Z,0)  (33)

pe] the MMSE estimator of the unknown parameters can be

) o _ approximated by computing the empirical averages of these
and thato;lyc,:,m.¢,Z, b is distributed according to the samples, after an appropriate burn-in period. In the simulations

following inverse-gamma distribution conducted in this paper, the number of iterations has been fixed
5 N (ye.— X{,,:)T (Ve — Xe..) to Nuc = 150_00 mcluc_hnngi = 14000 burn-in iterations.
orlYe., My, Z,b~1G > 5 (34) The next section studies the performance of the proposed

algorithm for synthetic hyperspectral images.
whereX = [x1.,..., xL,;]T. Thus the noise variances can be

sampled easily and independently.
VI. SIMULATIONS ON SYNTHETIC DATA

E. Sampling the Hyperparametesg and w A. Simulation Scenario

Looking carefully at the posterior distribution (19), it can be The performance of the proposed unsupervised nonlinear
seen thaw?|b, y, v is distributed according to the following SU algorithm is first evaluated by unmixing 3 synthetic images

inverse-gamma distribution of size 50x 50 pixels. TheR = 3 endmembers contained in
5 these images (and depicted in Fig. 2) have been extracted from
2 ni b the spectral libraries provided with the ENVI software [43]
b,y,v~7ZG | = , — 35) , , .
10,7V g 2 +7 z 2 L (35) (i.e., green grass, olive green paint and galvanized steel metal).

nel They consist ofL = 207 different spectral bands ranging

with 11 = {n|bn # O}, no = [Ibllg (where|-|lp is thelo norm, from 400nm to 2500nm with a spectral resolution of 4nm
i.e., the number of elements bfthat are different from zero) from 400nm to 800nm and of 6nm between 800nm and
andny = N — ng, from which it is easy to sample. Similarly 2500nm. The main motivation for using these signatures is
- that these materials have been considered in previous papers
wlb~ Be(ng + 1, Mo + 1). (36) [14], [21], [27], [41], allowing better comparisons. The first
Finally, the Gibbs sampler (including HMC procedures) usesynthetic imagel; has been generated using the standard
to sample according to the posterior (19) consists of the direar mixing model (LMM). A second imagé, has been
steps summarized in Algo. 2. The small number of samplirggnerated according to the PPNMM and a third im&gbas
steps is due to the high parallelization properties of theeen generated according to the generalized bilinear mixing
proposed sampling procedure, i.e., the generation ofNhe model (GBM) presented in [14]. Note that the PPNMM does
coefficient vectorgz,},_1._n, the N nonlinearity parameters not generalize the GBM but can be used to approximate
{bn}n=1,..~n and thel reflectance vectorﬁm,:}[:1 - After it (as will be shown in this section). For each image, the
generatingNmc samples using the procedures detailed abowayundance vectora, have been generated according to a



uniform distribution in the admissible set defined by TABLE |
ABUNDANCE RNMSES (x 10*2): SYNTHETIC IMAGES

R
Stz[a0<ar <0.9,Za,=1}. (37) T I T

r=1 (LMM) | (PPNMM) | (GBM)

Note that the condition® < 0.9 ensure that there is no LMM SLMM 3.78 13.21 6.83
pure pixel in the images. All images have been corrupted ULMM 0.66 10.87 4.21
by an additive independent and identically distributed (i.i.d) PPNMM |_SPPNMM | 4.18 6.04 4.13
Gaussian noise of variance? = 104, corresponding to UPPNMM | 0.37 0.81 1.38
GBM 4.18 11.15 5.02

an average signal-to-noise ratio SNR 31dB for the three
images. The noise is assumed to be i.i.d. to fairly compare
unmixing performance with SU algorithms assuming i.i.d.
Gaussian noise. The nonlinearity coefficients are uniformly
drawn in the set[0, 1] for the GBM. The parameterb,
have been generated uniformly in the $e0.3, 0.3] for the
PPNMM.

B. Comparison With Other SU Procedures

Different estimation procedas have been considered for

the three mixing models. More precisely,

« Two unmixing algorithms have been considered for the::
LMM. The first strategy extracts the endmembers from .
the whole image using the N-FINDR algorithm [28] and "
estimates the abundances using the FCLS algorithm [Z
(it is referred to as “SLMM” for supervised LMM). The
second strategy is a Bayesian algorithm which jointly
estimates the endmembers and the abundance matrix [41] ()
(it is referred to as “ULMM” for unsupervised LMM).

- ig. 3. Visualization of theN = 2500 pixels (blue dots) of (a)y, (b) I
- Two approaches have also been considered for tﬁr?d (c)13 using the first principal componenprovided by the standard PCA.

PPNMM. The first strategy uses the nonlinear EEAne green stars correspond to the actual endmembers and the triangles are
studied in [31] and the gradient-based approach basedtamnsimplexes defined by the endmembers estimated by the Heylen's method

the PPNMM studied in [27] for estimating the abundancég?ack) and the proposed method (red).
and the nonlinearity parameter. This strategy is referred

to as “SPPNMM" (supervised PPNMM). The second
strategy is the proposed unmixing procedure referred
as “UPPNMM"” (unsupervised PPNMM).

gdmembers (green stars). For visualization, the observed
pixels and the actual and estimated endmembers have been

« The unmixing strategy used for the GBM is the nonIineé};%e%ﬁgn?n;zatri_;hr_?ﬁ;g:‘t faxerfasprsor:/c!de(ih?t/ iﬂg prrlgcz)psael d
EEA studied in [31] and the gradient-based algorithrﬁnm&in rocedﬁrle. rovides f!\?:lcjzurate es\;\ilmated end?ne?nbers
presented in [44] for abundance estimation. gp P

) . or the three imagek; to I3. Due to the absence of pure pixels
The quality of the unmixing procedures can be measured gefy o s pure p

ina th timated and actual abund ‘ ) the image, the manifold generated by the observed piels
comparing the estimated and actual abundance Vector usingiigitic it to estimate. This explains the limited performance

root normalized mean square error (RNMSE) defined by obtained with Heylen’s method. Conversely, the use of the
1 N prior (12) allows the endmembens; to depart from the prior
RNMSE= | — Z lan — an ||2 (38) estimationsm, leading to improved performance.
NR— The quality of endmember estimation is also evaluated by

where a, and &, are the actual and estimated abundané@e spectral angle mapper (SAM) defined as

vectors for thenth pixel of the image andN is the number (mr, mr)
of image pixels. Table | shows the RNMSEs associated with SAM = arcco T [ mel (39)
the imagedly, ..., I3 for the different estimation procedures. ' '

These results show that the proposed UPPNMM performs betherem, is therth actual endmember ani, its estimate.

ter (in terms of RNMSE) than the other considered unmixinghe smaller|SAM|, the closer the estimated endmembers
methods for the three images. Moreover, the proposed methodtheir actual values. Table Il compares the performance
provides similar results when compared with the ULMM foof the different endmember estimation algorithms. This table
the linearly mixed imagé;. shows that the proposed UPPNMM generally provides more

Fig. 3 compares the endmember simplexes estimated dxcurate endmember estimatean the others methods. More-

Heylen’s method [31] (black) (used to build the endmenwver, these results illustrate the robustness of the PPNMM
ber prior) and by the proposed method (red) to the actuaigarding model mis-specification. Note that the ULMM and



TABLE 1l . 1 1 I

SAMS (x1072): SYNTHETIC IMAGES 12 28 8
8 2 8|
N-Findr | ULMM | Heylen | UPPNMM . et _
mj 5.68 0.95 6.42 0.27 4
I mo 5.85 0.32 7.46 0.36 4| 1]
m; 331 0.30 5.26 0.27 3 a5l 2|
mj 9.27 9.68 6.71 0.59 i 6 ol
Io | mo 8.58 8.67 11.80 0.38 £ 0 5 05 0 05 02 0 0.2
ms | 447 6.34 498 0.26 x 10°
mi 7.35 342 6.48 1.50 Fig. 4. Distributions of the nonlinearity parametdss for the imageslq
I ms | 1068 | 313 | 1188 3.22 (left), 1 (middle) and|3 (right).
ms 4.34 7.44 3.20 0.85
TABLE IV
TABLE 1l UNMIXING PERFORMANCE SYNTHETIC IMAGES

RESs (x1072): SYNTHETIC IMAGES

R=4| R=5| R=6

I I I SPPNMM | 7.76 | 10.78 | 18.53
A SAMs (x10—2
(LMM) | (PPNMM) | (GBM) verage s 075 —GrpNMM | 0.47 0.81 1.09
SLMM 1.04 1.74 15.16 SPPNMM | 7.58 | 10.95 | 16.52
LMM RNMSEs (x10~2

ULMM 0.99 1.43 1.07 SEs (x1075) UPPNMM | 0.78 123 1.47

SPPNMM | 1.26 1.27 1.31 . ‘ .
PPNMM REs (x10-2) SPPNMM | 1.36 | 1.46 | 1.64
UPPNMM | 0.99 0.99 0.99 UPPNMM | 099 | 099 | 0.99

GBM 1.27 1.64 1.33

endmembers R € {4,5,6}) by unmixing three synthetic
) o ) images of N = 2500 pixels distributed according to the
the UPPNMM provide similar results (in terms of SAMs) folopnMM. The endmembers contained in these images have

the imagel, generated according to the LMM. been extracted from the spectidiraries provided with the
Finally, the unmixing quality can be evaluated by thgny) software [43]. For each image, the abundance vectors
reconstruction error (RE) defined as an,n=1,..., N have been randomly generated according to
N a uniform distribution over the admissible set (37). All images
RE = iznyn_ynnz (40) have been_corrupted byian additive white Gaussian noise
NL ~ corresponding tas2 = 104, corresponding to an average

h is the nth ob i N o it fimat signal-to-noise ratio SNR~ 31dB for the three images.
whereyn 1S the nth observation vector angly Ns estimate. g nonlinearity coefficient®, are uniformly drawn in the
Table Ill compares the REs obtained for the different synthe t[—0.3,0.3]. Tables IV compares the performance of the
IMages. Th.ese result§ show that _the REs are close for the oposed method in terms of endmember estimation (average
ferent unmixing algorithms even if the estimated abundancg;_\MS of the R endmembers), abundance estimation and
can vary more significantly (see Table I). Again, the pr0p°$$gconstruction error. These rd!sus, how a general degradation

PPNMM seems to be more robust than the other mixn}g the abundance and endmember estimations WRefs

models to deviations from the actual model in terms of RE1ncreasing (this is intuitive since estimator variances usually

increase with the number of maneters to be estimated).

C. Analysis of the Estimated Nonlinearity Parameters However, this degradation is reasonable when compared to
As mentioned above, one of the major properties of th#eylen's method. The proposed algorithm still provides accu-
PPNMM is its ability to charactéze the linearity/nonlinearity rate estimates, as illustrated in Fig. 5 which compares the
of the underlying miing model for each pixel of the image viaactual and estimated endmembers associated with the image

the nonlinearity parametds,. Fig. 4 shows the nonlinearity containingR = 6 endmembers.

parameter distribution estimated for the three image® I3

using the UPPNMM. This figure shows that the UPPNMM VII. SIMULATIONS ON REAL DATA

clearly identifies the linar mixtures of the imagé, whereas a pata Sets

more nonlinearly mixed pixels can be identified in the images
I> and I3. The analysis of Fig. 4 also shows that the nonlir5
earities contained in the imadg (GBM) are generally less
significant than the nonlinearities affecting (PPNMM) for
a same signal-to-noise ratio (SNR31dB).

The real image considered inighsection was acquired in
010 by the Hyspex hyperspealt scanner over Villelongue,
France (00° 03'W and 42°57'N)L = 160 spectral bands
ranging from about 408nm to 985nm were recorded, with
a spectral resolution of .8nm and a spatial resolution of
) 0.5m. This dataset has already been studied in [21] and [45]
D. Performance for Different Numbers of Endmembers  5n4 is mainly composed of forested and urban areas. More
The next set of simulations analyzes the performance @étails about the data acquisition and pre-processing steps are
the proposed UPPNMM algorithm for different numbers odvailable in [45]. Two sub-images denoted as scene #1 and
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Fig. 8. TheR =4 endmembers estimated by N-Findr (blue lines), ULMM
(green lines), Heylen’s method (black lines) and the UPPNMM (red lines) for
the scene #2.

is no pure pixel in the image (as it occurs with shadowed
pixels in the scene #2). Conversely, the ULMM and UPPNMM
methods, which jointly estimate the endmembers and the
abundances seem to provide more relevant shadow spectra
(of lower amplitude). Examples of abundance maps for the
Fig. 6. Top: real hyperspectral adonna data acquired by the Hyspexscene #1 (resp. scene #2), estimated by the ULMM and the
hyperspectral scanner over Villelongueafce. Bottom: Scene #1 (left) and yppNMM algorithms are presented in Fig. 9 (resp. Fig. 10).
Scene #2 (right) shown in true colors. The abundance maps obtained by the UPPNMM are similar
to the abundance maps obtained with ULMM.

scene #2 (of size 3% 30 and 50x 50 pixels) are chosen here

to evaluate the proposed unmixing procedure and are depicted

in Fig. 6 (bottom images). The scene #1 is mainly composéd Analysis of Nonlinearities

of road, ditch and grass pixels. The scene #2 is more complexjg. 11 shows the estimated maps pf for the two con-

since it includes shadowed pixels. For this image, shadowggjered images. Different nonlinear regions can be identified

considered as an additional endmember, resultin@ie= 4 i the scene #1, mainly in the grass-planted region (probably

endmembers, i.e., tree, grass, soil and shadow. due to endmember variability) and near the ditch (presence of
relief). For the scene #2, nonlinear effects are mainly detected

B. Endmember and Abundance Estimation in shadowed pixels.

The endmembers extracted by N-FINDR, the ULMM o _ _
algorithm [41] and Heylen’s method [31] witR = 3 (resp. D- Estimation of Noise Variances
R = 4) for the scene #1 (resp. scene #2) are compared withFig. 12 compares the noise variance estimated by the
the endmembers estimated by the UPPNMM in Fig. 7 (reSgPPNMM for the two real images with the noise variance
Fig. 8). For the scene #1, the four algorithms provide similastimated by the HySime algorithm [46]. The HySime algo-
endmember estimates wherdghg estimated shadow spectraithm assumes additive noise and estimates the noise covari-
are different for the scene #2. The N-FINDR algorithm andnce matrix of the image using multiple regression. Fig. 12
Heylen's method estimate endmembers as the purest pixai®ws that the two algorithms provide similar noise variance
of the observed image, which can be problematic when thastimates. Moreover, these results motivate the consideration
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Fig. 12. Noise variances estimated by the UPPNMM (red) and the Hysime
algorithm (blue) for the scene #1 (top) and the scene #2 (bottom).

Tree
= TABLE V
§ RES (x1072): REAL IMAGE
Scene #1 | Scene #2

LMM SLMM 1.53 1.04
ULMM 1.11 0.88
PPNMM SPPNMM 1.50 1.17
UPPNMM 1.08 0.89
GBM 1.72 1.25

UPPNMM

VIIl. CONCLUSION AND FUTURE WORK

_ _ We proposed a new hierarchical Bayesian algorithm for
Ellgiaéf\)/.lM ;ﬁ;’gr?tﬂﬂ‘giomﬁzssgsgzzfd by the SLMM, the GBM and thgnsnervised nonlinear spectral unmixing of hyperspectral
images. This algorithm assumed that each pixel of the image

is a post-nonlinear mixture of the endmembers contaminated

» by additive Gaussian noise. The physical constraints for the
o s abundances and endmembers were included in the Bayesian

5 framework through appropriate prior distributions. Due to

o2 the complexity of the resulting joint posterior distribution, a

o Markov chain Monte Carlo method was used to approximate

22 the MMSE estimator of the unknown model parameters.

04 Because of the large number of parameters to be estimated,

(b)

Hamiltonian Monte Carlo methods were used to reduce the
sampling procedure complexity and to improve the mixing
Fig. 11. Maps of the nonlinearity parametgy estimated by the UPPNMM properties of the proposed sampler. Simulations conducted
for the real images. (a) Scene #1. (b) Scene #2. on synthetic data illustrated the performance of the proposed
algorithm for linear and nonlinear spectral unmixing.
of non i.i.d. noise for hyperspectral images since the noiag importan[ advantage of the proposed a|gori’[hm is its
variances increase for the higher wavelengths for the twiexibility regarding the absence of pure pixels in the image.
images. Another interesting propertyesulting from the post-nonlinear
mixing model is thepossibility of deteting nonlinearly from
linearly mixed pixels. This detection can identify the image
regions affected by nonlinearities in order to characterize the
The proposed algorithm is finally evaluated from theonlinear effects more deeply. The number of endmembers
REs associated with the two real images. These REs amntained in the hyperspectral image was assumed to be
compared in Table V with those obtained by assuming othlenown in this work. Even if LMM-based methods could
mixing models. The two unsupervised algorithms (ULMMe used to estimate the number of components in a scene
and UPPNMM) provide smaller REs than the SU procedurg$6], [47], estimating the number of components present in
decomposed into two steps. This observation motivates tingage containing nonlinear mixtures is an important issue that
use of joint abundance and endmember estimation algorithralsould be considered in future work. A full Bayesian approach

E. Image Reconstruction



was used in this paper. However, it could be interesting to
consider other strategies (e.g., nonlinear optimization methodﬁa
for nonlinear unmixing with reduced computational com-
plexity. Finally, considering endmember variability in linear

mixtures has received much attention in the literature [3], anf

[48]-[50]. Extending these results to nonlinear mixtures
clearly an interesting prospect.

APPENDIX
DERIVATION OF THE POTENTIAL FUNCTIONS

The potential energy (28) can be rewritten
U(zn) = Ui(an) + U2(zn) (41)

where

1
Us(@n) = 3 [yn = n Man)]" =7 [yn — g, (Man)].

R-1
Uz(z) = — . log (Z%" ).
r=1

Partial derivatives ofJ (z,) with respect taz, is obtained using
the classical chain rule

oU(zn) _ oUi(an) dan  0U2(zn)
0zn  dan Ozn d2Zn
Straightforward computations lead to
oUi(an) Te-1 T
0 if 0>t
oarn &rn if i=r
—— =12Zn—1
azi,n ar'n .
: if i<r
Zin
ouU R—i-1
0Zin Zin
Similarly, the potential energy (30) can be rewritten
V(mg,:) = Vi(te) + Va(zn) (43)

with t; = ATmg . + diag(b) [(ATm,,.) © (ATm¢.)] and

Iye,: — tell?
Vi(ty) = DL
20€
Ime,. — eI
Vo(me,) = ——5——

is

(3]

(4]

(5]

6]

(7]

8

B

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(28]

[29]

The patrtial derivatives of the potential energy (30) can be

obtained using the chain rule

ov(me) _ oVa(ty) ot N oVa(mg,.)
omg,. oty omg,. omg,.
and

oVilt) _ (e — te)"
oty of
ot .

£ — AT 4 2diag(b) [(AT mg,;lﬁ) o) AT]
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