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POTTS PARTITION FUNCTION AND ISOMORPHISM OF WEIGHTED
TREES

MARTIN LOEBL AND JEAN-SÉBASTIEN SERENI

Abstract. We consider a question pertaining to the topic of graph reconstruction, which
entertains links with the W -polynomial and (theoretical) statistical physics. Motivated by
several open questions, we slightly deviate from the usual approaches to study, in the context
of weighted trees, whether a given data (which can be obtained from the W -polynomial)
distinguishes non-isomorphic weighted trees. We prove that this is the case if one restricts to
any good class of vertex-weighted trees. Good classes are rich: letting C be the class of all
vertex-weighted trees, one can obtain for each weighted tree (T,w) a weighted tree (T ′, w′)
in polynomial time, so that C′ := {(T ′, w′) : (T,w) ∈ C} is good and two elements (A, b)

and (X, y) of C are isomorphic if and only if (A′, b′) and (X′, y′) are.

1. Introduction

As far back as 1941, Kelly and Ulam formulated a conjecture known today as the reconstruction
conjecture (see [13, 30]). They affirmed that the family of the vertex-deleted subgraphs of a graph
determines the graph up to isomorphism. To be more precise, for a graph G = (V,E) let D(G)
be the multiset {G− v : v ∈ V }. The reconstruction conjecture states that for every graph G
with at least 3 vertices, if H is a graph such that D(G) = D(H) then G and H are isomorphic.

This conjecture, which seems so true, stays stubbornly open to this day. It spawned a plethora
of research: one can consult a survey was written by Bondy and Hemminger [6] in the late 1970s.
The conjecture has been verified for graphs with at most 10 vertices by McKay [17]. Weaker
versions have been studied, in particular by considering only some particular class of graphs:
restricting to the class of regular graphs, or that of disconnected graphs or that of trees leads to
a true statement [5, 21].

A variant of the conjecture is obtained by considering the multiset of edge-deleted subgraphs,
instead of that of vertex-deleted subgraphs. The corresponding conjecture, in which the graph is
required to have at least four edges, is known as the edge-reconstruction conjecture. This weaker
conjecture — that it is a weaker form is not obvious — was formulated by Harary [12]. This
problem is somehow more understood, partly thanks to some tools that can be applied. For
instance, using the Möbius inversion formula, the edge-reconstruction conjecture was established
for n-vertex graphs with more than 1

2

(
n
2

)
edges [16], and for n-vertex graphs with more than

log2(n!) + 1 edges [20]. However, even this edge version remains rather widely open.
Seemingly a purely combinatorial problem, it turns out that graph reconstruction is linked to

various topics. Algebraic aspects of the problem appear, for instance, in the work by Statman [28],
which provides an equivalent conjecture in terms of algebraic properties of certain directed
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trees and their homomorphic images. Another deep aspect is the links of this conjecture with
the graph isomorphism question and to graph polynomials in general. It is these relations
with graph polynomials and statistical physics that motivate us to investigate a variant of the
edge-reconstruction conjecture.

As we have seen, the reconstruction conjectures are known to be true over the class of trees.
We investigate a natural stronger statement. Before explaining its roots in the field of graph
polynomials, let us state the problem in a graph-reconstruction fashion. Consider the following
data D(T ) associated with a tree T : for every integer n and every partition P of n, we are
given the number of subsets X of edges of T such that P is equal to the multiset formed by the
orders of the components of T −X. Note that this number is 0 if n is not the number of vertices
of T . Note also that if P is composed of t integers, the corresponding subsets X, if any, all
have cardinality t− 1. For instance, one can determine the number of vertices of T by checking,
for each positive integer n, whether the trivial partition {n} returns a non-zero value (which,
necessarily, will be 1). Once the number of vertices of T is known, the number of leaves of T is
precisely the number returned by the partition {|V (T )| − 1, 1}, which corresponds to the number
of edges e such that T − e has one component of order 1. The problem is to know whether this
information distinguishes non-isomorphic trees. In other words, if T and T ′ are two trees such that
D(T ) = D(T ′), is it true that necessarily T and T ′ are isomorphic? That such a reconstruction is
always possible was suggested by different authors. Another important remark we shall make is
that, similarly as for the reconstruction conjecture, there could be non-constructive proofs of the
statement. Thus it is a different (harder) problem to be able to effectively recover the tree T
from the knowledge of D(T ) (or the graph G from the knowledge of D(G), for that matter).

In this work, we investigate a weighted version of this problem, bearing in mind its connections
with graph polynomials, graph colouring and the Potts model.

1.1. The Noble and Welsh conjecture. Motivated by the combinatorial aspects of the rela-
tionship between chord diagrams and Vassiliev invariants of knots, Noble and Welsh [22] introduced
a polynomial of weighted graphs, the W -polynomial, which includes several specialisations in
combinatorics, such as the Tutte polynomial, the matching polynomial (of ordinary graphs) and
the polymatroid polynomial of Oxley and Whittle [23]. We need to introduce some terminology
to define W .

A weighted graph is a graph G = (V,E) together with a function w : V → Z+. The weight
of a subset V ′ of vertices is w(V ′) :=

∑
v∈V ′ w(v). If A ⊆ E, we let cV (A) be the number of

components of the graph (V,A), where we may omit the subscript when there is no risk of
confusion. Further, let n1, . . . , nc(A) be the weights of the vertex sets of these components, listed
in decreasing order: n1 > . . . > nc(A). We write x(A) to mean

∏c(A)
i=1 xni . Let

WG(z, x1, x2, . . .) :=
∑
A⊆E

x(A)(z − 1)|A|−|V |+c(A).

In particular, WG depends on z if and only if G contains a cycle [22, Proposition 5.1-1)]. Unlike
the Tutte polynomial, the W -polynomial is #P -hard to compute even for trees [22, Theorems 7.3
and 7.12] and for complete graphs [22, Theorems 7.11 and 7. 14].

In the case of unweighted graphs, which corresponds here to the weight function w being
identically 1, Noble and Welsh refers to the W -polynomial as to the U-polynomial. While
computing W is hard for complete graphs, Annan [1] proved that UKn(z, x1, x2, . . .) can be
computed in polynomial time, which is also the case for the Tutte polynomial, for instance.
However, U also exhibits differences with the Tutte polynomial: while finding two non-isomorphic
graphs with the same Tutte polynomial is easy, the same problem is harder for U . Sarmiento [24]
managed to achieve such a construction, but the question remains open for trees: does the
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U -polynomial distinguishes non-isomorphic trees? That this is the case became known as the
Noble and Welsh conjecture. As we shall see, this problem is very much related to the partition
question stated earlier.

Noble and Welsh also discovered a very interesting specialization of U : they demonstrated
the U -polynomial to be equivalent to the symmetric function generalisation of the bad colouring
polynomial, a function introduced by Stanley [26].

1.2. The Stanley Conjecture. To introduce Stanley’s isomorphism conjecture let us first define
graph colouring. A colouring of a graph G = (V,E) is a mapping s : V → N+. We define b(s) to
be the number of monochromatic edges in s, that is, the number of edges uv such that s(u) = s(v).
The mapping s is a k-colouring if s(V ) ⊆ {1, . . . , k} and s is proper if b(s) = 0, that is, s(u) 6= s(v)
whenever u and v are two adjacent vertices of G. We let Col(G; k) be the set of proper k-colourings
of G and Col(G) be the set of all proper colourings of G, that is, Col(G) := ∪k∈N+ Col(G; k).

As was discovered by Birkhoff [3] while working on the Four colour problem, the number of
proper k-colourings of a graph G is polynomial in k. More precisely, defining p`(G) to be the
number of partitions of V (G) into ` non-empty parts, each inducing an edgeless graph, it follows
that

Col(G; k) =
∑
`>0

p`(G) · (k)`

where (k)` is the `th-falling factorial of k, that is, (k)` := k(k − 1) . . . (k − `+ 1), so (k)` = 0 if
k < `. In particular, only a finite number of summands of the sum are non-zero. The univariate
polynomial

∑
`>0 p`(G) · (X)` is the chromatic polynomial of the graph G, a topic of extensive

study.
In the mid 1990s, Stanley [26] introduced the symmetric function generalization of the chromatic

polynomial, defined to be

XG(x1, x2, . . .) :=
∑

S∈Col(G)

∏
v∈V

xs(v).

This is a homogeneous symmetric function in (x1, x2, . . .) of degree |V |. As is expectable, XG does
not distinguish non-isomorphic graphs: there exist two non-isomorphic graphs on 5 vertices with
the same function X. However, Stanley [26] asked whether the polynomial XG distinguishes non-
isomorphic trees. The assertion that is does became known as Stanley’s isomorphism conjecture.
A step towards Stanley’s conjecture has been made recently by Aliste-Prieto and Zamora [2],
who established the statement restricted to the class of proper caterpillars: a caterpillar is a tree
where all edges not incident with a leaf form a path; a caterpillar is proper if every vertex is
a leaf or adjacent to a leaf. Prior to that, partial results had been obtained by Martin, Morin
and Wagner [18] who had established the statement for a subclass of proper caterpillars (where
no two non-leaf vertices are adjacent to the same number of leaves) and also to the class of
spiders, which is composed of all trees with a unique vertex of degree greater than 2.1 To obtain
these results, these authors built upon Tutte polynomials for trees introduced by Chaudhary
and Gordon [8]. Other related results can be found in the undergraduate thesis by Fougere [11]
and the MSc thesis by Morin [19]. Finally, it is reported that Tan checked by computer that
Stanley’s conjecture is true for trees with at most 23 vertices (see [18, p. 238]).

Further, Stanley [27] later initiated the study of a common generalisation of X and the Tutte
polynomial, namely the symmetric function generalisation of the bad colouring polynomial, defined

1It is worth mentioning that Martin, Morin and Wagner [18] also demonstrated that the polynomial XG

distinguishes non-isomorphic graphs in the class of all graphs with a unique cycle and exactly one vertex of degree
greater than 2.
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for every graph G = (V,E) by

XG(t, x1, x2, . . .) :=
∑

s : V→N+

(1 + t)b(s)
∏
v∈V

xs(v).

Note that the sum runs over all colourings of G, not only the proper ones. Noble and Welsh [22,
Theorem 6.2] proved XG(t, x1, x2, . . .) to be a specialisation of the U -polynomial of G.

A first hint as to why Stanley’s conjecture could be related to our question is given by a
theorem of Whitney [31], stating that for every (multi)graph G = (V,E), the univariate chromatic
polynomial of G is equal to ∑

S⊆E

(−1)|S|XcV (S).

In fact, the strong link between Stanley’s conjecture and our question was clarified by Thatte. Let
us introduce the following notation: given a tree T = (V,E) and two integer vectors v = (v1, . . . , vr)
and e = (e1, . . . , er), let θ(T,v, e) be the number of (ordered) partitions (V1, . . . , Vr) of V such
that for each i ∈ {1, . . . , r}, the subgraph of T induced by Vi has precisely vi vertices and ei
edges. Thatte [29, Lemma 4.11] established that θ can be computed from XT .

In other words, and summing-up: as reported earlier, Noble and Welsh [22, Theorem 6.2]
showed that X(t, x1, x2, . . .) is a specialization of the U -polynomial in general. For trees, it turns
out that these two functions are actually equivalent. Thus Noble and Welsh’s conjecture amounts
to saying that X(t, x1, x2, . . .) distinguishes non-isomorphic trees. So a priori it seems that Noble
and Welsh’s conjecture is weaker than Stanley’s. However, what Thatte [29, Theorem 4.12]
found out is that for trees, X(t, x1, x2, . . .) and X(x1, x2, . . .) are equivalent, thereby implying
the equivalence of the two conjectures (that of Noble and Welsh and that of Stanley).

1.3. Further Links and Conjectures. It turns out that the fundamental question raised by
Noble and Welsh and by Stanley is linked to further polynomials, related to some aspects of
knot theory and (theoretical) statistical physics. Indeed, a connection between the Potts model
and the U -polynomial was given by Ellis-Monaghan and Moffatt [10]. We review below another
(slightly more recent) such connection.

We consider a standard model where magnetic materials are represented as lattices: vertices
are atoms and weighted edges are nearest-neighbourhood interactions. We assume that each
atom has one out of k possible magnetic moments, for a fixed positive integer k. Thus we let
S := {0, . . . , k− 1}. Every element of S is called a spin. A state of a graph G = (V,E) is then an
assignment of a single spin to each vertex of G, that is a function s : V → S. We assume that all
the coupling constants (nearest-neighbourhood interactions) are equal to a constant J . For each
state s, the Potts model energy of the state s is then E(P k)(s) :=

∑
uv∈E Jδ(s(u), s(v)) where, as

is customary, δ is the Kronecker delta function defined by δ(a, b) := 1 if a = b and δ(a, b) := 0
otherwise. The k-state Potts model partition function is then∑

s:V→S
M(s, J)eE(Pk)(s).

Loebl [15] introduced the q-chromatic functions. Let k ∈ N. The q-chromatic function of a
graph G = (V,E) is

(1.1) MG(k, q) :=
∑

s∈Col(G;k)

q
∑
v∈V s(v).

It is known [15] that
MG(k, q) =

∑
A⊂E

(−1)|A|
∏

C∈C (A)

(k)q|C| ,
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where C (A) is the set of components of the spanning subgraph (V,A) and |C| is the number of
vertices in the component C. Moreover Loebl also introduced the q-dichromate, defined as

BG(x, y, q) :=
∑
A⊂E

x|A|
∏

C∈C (A)

(y)q|C| .

He proved that for each real J ,

(1.2) BG(eJ − 1, k, q) =
∑

s:V→S
q
∑
v∈V s(v)eE(Pk)(s).

Hence BG(x, y, q) specializes to the k-state Potts model partition function (with certain magnetic
field contributions), as given above.

Recently a variant of the q-dichromate, Br,G(x, k, q), was proposed by Klazar, Loebl and
Moffatt [14]:

Br,G(x, k, q) :=
∑
A⊆E

x|A|
∏

C∈C (A)

k−1∑
i=0

r|C|q
i

.

They established that if (k, r) ∈ N2 with r > 1 and x := eβJ − 1, then

(1.3) Br,G(x, k, q) =
∑

σ : V→S
eβ

∑
uv∈E(G) Jδ(σ(u),σ(v))r

∑
v∈V q

σ(v)

.

Hence Br,G(x, k, q) is the k-state Potts model partition function with magnetic field contribution
r
∑
v∈V q

σ(v)

. They also proved that Br,G is equivalent to UG, thereby showing a link with our
setting.

In addition, Loebl conjectured that the q-dichromate is equivalent to the U -polynomial. Further,
he conjectured also that the q-dichromate actually distinguishes non-isomorphic chordal graphs.
An incomplete argument against the former conjecture was presented recently [14].

Arguably, there could be a close link between the latter conjecture and that of Stanley: chordal
graphs have a very distinguished tree structure — in graph theory, they are often referred to as
’blown-up trees’. Indeed, a folklore theorem [4] states that the class of chordal graphs is precisely
the class of intersection graphs of subtrees of a tree, that is, for each chordal graph G, there exists
a tree T and a mapping f that assigns to each vertex of G a subtree T such that: two vertices u
and v of G are adjacent if and only if f(u) ∩ f(v) 6= ∅.

On the other hand, another well-known fact is that the isomorphism problem for general
graphs is equivalent to the isomorphism problem restricted to chordal graphs: given a graph
G = (V,E), consider the chordal graph G′ = (V ′, E′) so that V ′ := V ∪ E and E′ =

(
V
2

)
∪

{{u, e}, {v, e} : {u, v} = e ∈ E}. It clearly holds that G and H are isomorphic if and only if
G′ and H ′ are isomorphic. It thus seems particularly interesting to determine whether the
U -polynomial does distinguish non-isomorphic chordal graphs.

In that respect, it seems natural to study weighted trees, rather than unweighted trees. (Thus
bringing us to the setting of Noble and Welsh more than to that of Stanley.) Indeed, the tree
mentioned in the characterisation of the class of chordal graphs can be chosen to be a clique-tree,
where the vertices of the tree are the maximal cliques of the graph. Now, if v is a vertex of a
weighted tree with weight w(v), one can think of v as a clique of order w(v), thus obtaining an
unweighted chordal graph. This is what motivates to work in the (seemingly harder) setting of
weighted trees and maybe deviate from the original conjectures of Noble and Welsh and Stanley.

1.4. Main Results. Two weighted graphs are isomorphic if there is an isomorphism of the graphs
that preserves the vertex weights. The purpose of this work is to prove that the W -polynomial
distinguishes non-isomorphic weighted trees when restricting to collections of weighted trees
satisfying some properties made precise later. We call any such collection a good family. Good
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families are rich: we provide examples of good families F so that the isomorphism problem for
general weighted trees is equivalent to the isomorphism problem in F . We hope that eventually
it will be possible to introduce an analogous notion restricted to chordal graphs, relying on the
extensively studied tree-decomposition theory.

Let (T,w) be a weighted tree. We write V (T ) and E(T ) for the vertex set and the edge set of
T , respectively. We define Ex(T ) to be the multi-set composed of all the vertex weights (with
multiplicities) of T . If e ∈ E(T ), then T − e is the disjoint union of two trees, which we consider
to be weighted and rooted at the endvertex of e that they contain. A rooted weighted tree (S,wS)
is a shape of (T,w) if 2 6 |V (S)| 6 |V (T )| − 2 and there exists an edge e ∈ E(T ) such that S is
one of the two components of T − e; moreover wS is the restriction of w to the vertex set of S.
We consider S rooted at the end-vertex of e. We usually shorten the notation and write S for the
shape (S,wS). In a tree, a vertex of degree one is called a leaf.

Definition 1.1. A set T of weighted trees (T,w) is good if it satisfies the following properties.
(1) If a vertex of T is adjacent to a leaf, then all its neighbours but one are leaves.
(2) If v is a leaf or has a neighbour that is a leaf, then w(v) = 1.
(3) Let (T,w), (T ′, w′) ∈ T and let S be a shape of T and such that w(S) 6 w(T )/2. Let S′

be a shape of T ′ such that Ex(S′) = Ex(S). Then S′ is isomorphic to S.

Example 1.2. Many good families F can be defined inductively. For example, let F initially
consist of some stars with more than one leave. In each step we consider a tree T ∈ F and a
vertex v of T that is adjacent to a leaf. Let `1, . . . , `s be the leaves adjacent to v. We execute the
following steps:

• replace each `i by a star of F ;
• change w(v) from being equal to one to a value that does not violate property (3); and
• add the new tree to F .

Definition 1.3. A set Z of weighted trees is relevant if there is an efficient algorithm that
computes, for each weighted tree (T,w), a weighted tree (T ′, w′) ∈ Z so that whenever (T1, w1)
and (T2, w2) are weighted trees, (T1, w1) is isomorphic to (T2, w2) if and only if (T ′1, w

′
1) is

isomorphic to (T ′2, w
′
2).

An example of a good relevant set of weighted trees is that composed of all weighted single
vertices. Indeed, the classical isomorphism test for trees can easily be extended to the weighted
trees; it amounts to coding n-vertex-weighted trees by 0-1 vectors of length polynomial in n.
This can be seen as assigning a non-negative integer weight to a single vertex. Such weighted
single vertices are of course distinguished by the W -polynomial. Our purpose is to provide a wide
generalisation of this fact, by proving the next statement.

Theorem 1. The W -polynomial distinguishes non-isomorphic weighted trees in any good set.

Our proof of Theorem 1 is not constructive in the sense that we are not able to reconstruct the
weighted tree (T,w) from W(T,w). The difficulty in proving the theorem is that while the main
defining property of a good family is about shapes, the W -polynomial does not “see” shapes.

We illustrate the richness of good sets of weighted trees by our next theorem. Let C be the
class of all vertex-weighted trees (T,w) with max {w(v) : v ∈ V (T )} 6 2|V (T )|, where we assume
for convenience that each weight is given as a binary number with exactly |V (T )| bits. For each
tree T we define T ′ to be the tree obtained from T by identifying each leaf h with the root of one
new star Sh with three vertices.

Theorem 2. For each (T,w) ∈ C, one can construct a weight function w′ for the vertices of T ′
such that two elements (T1, w1) and (T2, w2) of C are isomorphic if and only if the corresponding
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elements (T ′1, w
′
1) and (T ′2, w

′
2) are isomorphic. Furthermore, the set C ′ := {(T ′, w′) : (T,w) ∈ C}

is good.

Proof. Let (T,w) ∈ C. We start by showing how to construct a weight function w′ for T ′. First,
we let the weight of each leaf of T ′, that is, each vertex of T ′ \ T , be 1. Next we perform,
on (T,w) ⊂ (T ′, w), a variant of the coding for the classical isomorphism test for weighted trees
mentioned above. The coding gradually assigns a binary vector w′′(v) to each vertex v, starting
with the neighbours of the leaves of T ′, i.e., the leaves of T , which are all assigned (01) in the
first step. We assume binary vectors to be ordered according to the positive integer they code.

In each further step t > 1, we let At be the set of the vertices v with exactly one neighbour that
has not been assigned its w′′-code before step t. For each v ∈ At, we define c(v) to be obtained
from w(v) and from the constructed w′′-codes z1 > z2 > . . . zm of all but one of the neighbours
of v, as follows:

c(v) := (0z1 . . . zm1w(v)).

We choose one vertex x in At such that c(x) = min {c(v) : v ∈ At} and we set w′′(x) := c(x).
This finishes step t.

We observe that the following hold after each step t.
(i) If a vertex x is assigned its code w′′(x) in step t and its neighbour y is assigned its

code w′′(y) in an earlier step, then w′′(x) > w′′(y).
(ii) If a vertex x is assigned its code w′′(x) in step t, then there is exactly one shape S(x)

rooted at x such that each vertex v of S(x) \ x has been assigned its w′′-code before
step t.

The coding terminates if there is a vertex r such that all of its neighbours have been assigned
a w′′-code. We observe that when the coding terminates, each vertex but r has been assigned
its w′′-code. Finally, if v 6= r, then w′(v) is the positive integer coded by w′′(v) and we set
w′(r) := w(r) +

∑
v 6=r w

′(v). The vertex r is the root of (T ′, w′). This finishes the construction
of (T ′, w′).

Let us observe that (T,w) can be reconstructed from (T ′, w′): first, notice that T is obtained
from T ′ by deleting all the leaves. In particular we thus know |V (T )|. Next, the vertex r is the
unique vertex of T ′ with the largest weight. Moreover, w(r) = w′(r) −

∑
v∈V (T ′)\{r} w

′(v). In
addition, for each vertex v 6= r the weight w(v) can be deduced from w′(v) as follows: the binary
representation of w(v) is equal to the last |V (T )| digits of the binary representation of w′(v).
This proves the first part of the statement of Theorem 2.

It remains to show that C′ is a good class of weighted trees. Clearly, Properties (1) and (2)
of Definition 1.1 hold and so it remains to show that so does (3). Let (A′, b′) be an element
of C′ and let S be a shape of A′ such that b′(S) 6 b′(A)/2. Then the root of (A′, b′) does not
belong to S. Hence, letting s be the root of S we infer that S = S(s) thanks to Property (ii)
above. It follows that s is the unique vertex of S with maximum b′-weight and S can be uniquely
reconstructed from b′′(s). This shows the second part of the statement of Theorem 2, thereby
ending the proof. �

2. The Structure of the Proof of Theorem 1.

We fix a good set of weighted trees and, from now on, we say that a weighted tree is good if it
belongs to this set. We write down a procedure and with its help prove Theorem 1. The rest of
the paper then describes our realisation of the procedure.

A j-form is an isomorphism class of rooted weighted trees with total weight j. Thus a j-form F
is a collection of rooted weighted trees and, viewing a shape of a tree T as a rooted weighted tree,
a shape can belong to a j-form. We start with an observation.
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Observation 2.1. Let (T,w) be a weighted tree. Assume that for each j 6 w(T )/2 and each
j-form F , we know the number of shapes of (T,w) that belong to F . Then we know T .

Proof. We use an easy but important observation that if two shapes of T have a common vertex
then one is contained in the other. We order the shapes of (T,w) of weight at most w(T )/2
decreasingly according to their weights. Let m be the maximum weight of such a shape of T and
let S1, . . . , Sa be the shapes with weight m. Note that we know precisely these a trees. In addition,
either the shapes S1, . . . , Sa are joined in T to the same vertex, or a = 2 and m = w(T )/2. In the
latter case (m = w(T )/2) we know that T consists of the two weighted rooted trees S1 and S2

(each of weight m) with and edge between their roots. In the first case, let r be the vertex of T
to which each of S1, . . . , Sa is joined. We show by descending induction on j ∈ {1, . . . ,m} that
we know the subtree of T induced by all shapes of T with weight in {j, . . . , bW (T )/2c}. The
induction has thus been initialized above, so assume that j 6 m− 1. Let S1, . . . , St be the shapes
of T with weight in {j + 1, . . . , bW (T )/2c}. Note that we know, in particular, each of these t
trees. The shapes of T of weight equal to j, if any, are either shapes of S1, . . . , St or joined to r by
an edge from their root. Fix a j-form F . Since we do know the total number of shapes belonging
to F and contained in each of S1, . . . , St (because we know precisely those subtrees), we can
deduce the number of shapes that belong to F and are attached to r. As this argument applies to
all j-forms F , we infer that we know the subtree of T formed by all shapes with weight contained
in {j, . . . , bw(T )/2c}. This concludes the proof. �

3. Isomorphism of good weighted trees is W -recognisable

Let (T,w) be a good weighted tree. Let α(T ) = (α1, . . . , αn) be the weights of the shapes
of T , with α1 < . . . < αn. The definition of a shape implies that α1 > 2. We shall consider both
partitions of the integer w(T ) and partitions of the tree T . To distinguish between them clearly,
partitions of an integer are referred to as expressions. For each partition P of T , the weights of
the parts of T form an expression of w(T ), which we call the characteristic of P .

• A j-expression of an integer m is a partition of m where one of the parts is equal to m−αj .
In particular, if S is a shape of T with weight αj , then (Ex(S), w(T )−αj) is a j-expression
of w(T ).
• A j-partition of T is a partition of T whose characteristic is a j-expression of w(T ).
• A j-partition (T0, . . . , Tk) of T with w(T0) = w(T )−αj is shaped if there exists an edge e

of T such that T0 is one of the components of T − e.
• If S is a shape of T with weight αj and vertex set V (S) = {v1, . . . , vs}, we define P (S)

to be (V (T ) \ V (S), {v1}, . . . , {vs}), which is a shaped j-partition of T .
For an expression E of a positive integer, we let θ(T,w,E) be the number of partitions of (T,w)
with characteristic E. Note that this number is 0 if E is not an expression of w(T ). We notice
that, for each expression E, the polynomial W(T,w) determines θ(T,w,E). We note that among
the partitions of T corresponding to a given expression, some are shaped and others are not.

The proof of Theorem 1 relies on the following procedure.

Procedure 1.
input: The polynomial W(T,w), an integer j ∈ {α1 + 1, . . . , w(T )/2}, a j-expression E and, for
each j′ < j and each j′-form F , the number of shapes of T that belong to F .
output: The number of shaped j-partitions of T with characteristic E.

Let us see how this procedure allows us to establish Theorem 1.

Proof of Theorem 1. Let T be a good family of trees. Fix two weighted trees (T,w) and (T ′, w′)
in T with W(T,w) = W(T ′,w′). By Observation 2.1, (T,w) and (T ′, w′) are isomorphic if w(T ) =
w′(T ′) and for each j-form F where j 6 w(T )/2, the numbers of shapes of T and of T ′ that
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belong to F are equal. To establish this, first note that the vector α(T ) = (α1, . . . , αn) can be
computed from W(T,w), since the coordinates correspond to the partitions of T into two subtrees
(each with at least two vertices). Thus α(T ′) = α(T ).

We prove by induction on j ∈ {α1, . . . , bw(T )/2c} that for every j-form F , the numbers of
shapes of T and of T ′ that belong to F are the same. So suppose first that j = α1. Recall that
α1 > 2. Furthermore, a shape S of T or T ′ belongs to an α1-form if and only if S is the star on
α1 vertices rooted at its centre. This is because the leaves and their neighbours have weight 1. It
follows that the number of shapes of T of weight α1 can be calculated from W(T,w) and thus this
number is the same for (T ′, w′).

Now let j ∈ {α1 +1, . . . , bw(T )/2c}. We assume that the statement is true for j′ ∈ {α1, . . . , j−
1} and we establish it for j. We do so by setting a partial order on the j-forms, which allows
us to link tree partitions with j-forms. Given a j-form F , we define Ex(F ) to be Ex(f) for an
arbitrary representative f of F . (This definition is valid, since all representatives of a j-form are
isomorphic rooted weighted trees.) A j-form F ′ is smaller than a j-form F if Ex(F ′) is a proper
refinement of Ex(F ). If P = (T0, . . . , Tk) is a shaped j-partition of T where w(T0) = w(T )− αj ,
we define S(P ) to be the shape of T formed by the union of all parts of T different from T0, that
is, S(P ) := ∪ki=1Ti.

A key observation is that if P is a shaped j-partition of T with characteristic Ex(F ) for some
j-form F , then Ex(S(P )) is a refinement of Ex(F ), possibly equal to Ex(F ): actually, there is
equality if and only if S belongs to F . We are now ready to argue the final step of the proof.
Fix an arbitrary j-form F : our goal is to prove that the numbers of shapes of T and of T ′
that belong to F are the same. By applying Procedure 1 both in (T,w) and in (T ′, w′) for the
j-expression (Ex(F ), w(T )− αj), our induction hypothesis ensures that T and T ′ have the same
number of shaped j-partitions with characteristic (Ex(F ), w(T )− αj). If P is not one of these
partitions, then S(P ) /∈ F . Otherwise, S(P ) may belong to F or not. Consequently, it is enough
to prove that for every j-form F , the number of shaped j-partitions P of T such that S(P ) 6= F
is equal to the analogous number for T ′. If F is a j-form, let nT (F ) be the number of shapes
of T that belong to F ; we use a similar notation for T ′.

We proceed by induction on the j-form F considered (with respect to the partial order defined
above). So we first deal with the case where T has no shape that belongs to a j-form F ′ such that
Ex(F ′) is a proper refinement of Ex(F ). Suppose that NT (F ) = 0. Then, as explained above, T
has no shaped j-partition with characteristic Ex(F ). Hence neither has T ′, so nT ′(F ) = 0. We
may now assume that both T and T ′ contain a shape belonging to F . If P is a shaped j-partition
of T with characteristic Ex(F ), then Ex(S(P )) is a refinement of Ex(F ), which by our hypothesis
on F must be equal to Ex(F ). Therefore we only need to prove that every shaped j-partition
P ′ of T ′ with characteristic Ex(F ) satisfies that S(P ′) ∈ F . As before, if that were not the case
then T ′ would contain a shape S′ such that Ex(S′) is a proper refinement of Ex(F ), which would
imply that T contains a shaped j-partition with characteristic (Ex(S′), w(T )−αj), hence a shape
S′′ such that Ex(S′′) is a proper refinement of Ex(F ), a contradiction.

For the general case, we may now assume that nT (F ′) = NT ′(F ′) for every j-form F ′ such
that Ex(F ′) is a proper refinement of Ex(F ). Observe that for each j-form F ′ with F ′ < F ,
each shape of T that belongs to F ′ gives rise to a certain number of shaped j-partition of T
with characteristic Ex(F ), and this number depends only on F ′. Thus the number of shaped
j-partitions of T with characteristic (Ex(F ), w(T ) − αj) such that S(P ) /∈ F depends only on
the multi-set {nT (F ′) : F ′ < F}. As {nT (F ′) : F ′ < F} = {nT ′(F ′) : F ′ < F}, the conclusion
follows. �
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4. Designing Procedure 1

An αj-situation σ is a tuple ((σ1, w1), . . . , (σt(σ), wt(σ))) of disjoint weighted rooted trees with
t(σ) > 2 such that w1(σ1) 6 . . . 6 wt(σ)(σt(σ)) and

∑t(σ)
i=1 wi(σi) = αj . An αj-situation σ is said

to occur in a tree T if there exists a subtree T ′ of T and t(σ) distinct edges e1, . . . , et(σ) with
exactly one end in V (T ′) such that, for each i ∈ {1, . . . , t(σ)}, there is an isomorphism preserving
the root and the weights between σi and the component of T − ei different from T ′. Note that if
σ occurs in T , then for each i ∈ {1, . . . , t(σ)} the tree T has a shape isomorphic to σi.

We proceed in steps, the first one being an exhaustive listing that depends only on αj .
Step 1. Explicitly list all αj-situations for αj 6 w(T )/2.
Step 2. For each αj 6 w(T )/2 and each αj-situation σ from Step 1, compute the number mT (σ)
of times σ occurs in T .

Before designing Step 2, we show how Steps 1 and 2 accomplish Procedure 1. Suppose that
the two steps are completed. Let E = {w(T )− αj , E1, . . . , Ek} be a j-expression of w(T ).

For each αj-situation σ = ((σ1, w1), . . . , (σt(σ), wt(σ))), let Ψσ be the collection of all surjections
from the expression {E1, . . . , Ek} to {σ1, . . . , σt(σ)}. Two elements f and g of Ψσ are equivalent
if the multi-set f−1(σi) is equal to the multi-set g−1(σi) for every i ∈ {1, . . . , k}. We consider
the equivalence classes for this relation on Ψσ and we form Ψ′σ by arbitrarily choosing one
representative in each equivalent class. We observe that the number X of non-shaped j-partitions
of T with characteristic E is

(4.1)
∑

αj-situation σ

mT (σ)
∑
f∈Ψ′

σ

t(σ)∑
i=1

θ(σi, wi, f
−1(σi)),

where the multi-set f−1(σi) is naturally interpreted as an expression. Indeed, a non-shaped parti-
tion of T with characteristic E corresponds precisely to the occurrence of some αj-situation σ =
((σ1, w1), . . . , (σt(σ), wt(σ))) where the trees σ1 . . . , σ` are also partitioned (possibly trivially).
Recalling that θ(σi, wi, E′) is zero if E′ is not an expression of wi(σi), the formula (4.1) follows.
Notice that (4.1) does allow us to compute X: for each i ∈ {1, . . . , t(σ)}, the tree σi is given by
σ, hence the W -polynomial of σi can be computed. Consequently, we can compute the number of
shaped j-partitions of T with characteristic E, which is

θ(T,w,E)−X.
This accomplishes Procedure 1.

It remains to design Step 2. Fix an αj-situation σ = ((σ1, w1), . . . , (σt, wt)).

Observation 4.1. For every pair (i, j) ∈ {1, . . . , t}2, if Ti and Tj are two shapes of a tree T that
are isomorphic to σi and σj, respectively, then either Ti ⊆ Tj or Tj ⊆ Ti or Ti ∩ Tj = ∅.

To see this, let ek be the edge of T such that Tk is a component of T − ek for k ∈ {i, j}. Then,
either ej ∈ E(Ti) or ej ∈ E(T − Ti). If ej ∈ E(T − Ti), then either Tj ⊆ Ti or Tj ⊆ T − Ti, in
which case Tj ∩ Ti = ∅. If ej ∈ E(Ti), then Tj ⊆ Ti: otherwise, Tj ∩ Ti 6= ∅ and T − Ti ⊂ Tj , so
that w(Ti) + w(Tj) > w(T ). This would contradict the hypothesis that

∑t(σ)
k=1 wk(σk) = αj , since

αj 6 w(T )/2. This concludes the proof of Observation 4.1.
Define Λ to be the set of all t-tuples (T1, . . . , Tt) such that for each i ∈ {1, . . . , t},
• Ti is a shape of T that is isomorphic to (σi, wi), and
• if j ∈ {1, . . . , t} \ {i}, then Ti is not a subtree of Tj .

Observation 4.2. The number of times that σ occurs in T is equal to |Λ|.

Proof. We prove that the elements of Λ are exactly occurrences of σ in T . By the definition, each
occurrence of σ gives rise to an element of Λ.
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Conversely, let (T1, . . . , Tt) be an element of Λ. Observation 4.1 implies that the shapes Ti are
mutually disjoint. For each k ∈ {1, . . . , t}, let ek be the edge of T associated to the shape Tk and
let vk be the endvertex of ek that does not belong to Tk. Note that vk /∈ ∪tj=1Tj since no tree Ti
is a subtree of another tree Tj and αj 6 w(T )/2. Set T ′0 := T and T ′k := T ′k−1 − Tk for k > 1.

Observe that each of Tk+1, . . . , Tt is a shape of T ′k. Hence T ′k is connected and contains all
vertices v1, . . . , vt. Therefore setting T ′ := T ′t shows that (T1, . . . , Tt) occurs in T . �

Our goal is to compute |Λ|. For a weighted tree (T ′, w′), define Λ0(T ′, w′) to be the set
of all t-tuples (T1, . . . , Tt) such that Ti is a shape of T ′ that is isomorphic to (σi, wi) for each
i ∈ {1, . . . , t}. Set Λ0 := Λ0(T,w). In this notation, the weight shall be omitted when there is no
risk of confusion. The advantage of Λ0 is that its size can be computed. Indeed,

|Λ0| =
t∏
i=1

]((σi, wi) ↪→ (T,w)),

where ]((σi, wi) ↪→ (T,w)) is the number of shapes of T that are isomorphic to (σi, wi). This
number is given in the input of Procedure 1, since wi(σi) < αj .

Next, we compute |Λ| using the principle of inclusion and exclusion. Setting I := {1, . . . , t}2 \
{(i, i) : 1 6 i 6 t}, we have

|Λ| = |Λ0| −

∣∣∣∣∣∣
⋃

(i,j)∈I

Λ(i,j)

∣∣∣∣∣∣ ,
where Λ(i,j) is the subset of Λ0 composed of the elements (T1, . . . , Tt) with Ti ⊆ Tj .

By the principle of inclusion-exclusion, we deduce that the output of Step 2 is equal to

|Λ0| −
∑

∅6=J⊆I
(−1)|J|−1

∣∣∣∣∣∣
⋂

(i,j)∈J

Λ(i,j)

∣∣∣∣∣∣ .
It remains to compute

∣∣∣⋂(i,j)∈J Λ(i,j)

∣∣∣ for each non-empty subset J of I. We start with an
observation, which characterises the sets J for which the considered intersection is not empty.

Observation 4.3. Let J ⊆ I. Then,
⋂

(i,j)∈J Λ(i,j) 6= ∅ if and only if for every (i, j) ∈ J , either
σi is isomorphic to σj, or σj has a shape that is isomorphic to σi.

From now on, we consider only contributing sets J . We construct four directed graphs
A0, A1, A2 and A3 that depend on J . Each vertex x of Ak is labeled by a subset `(x) of
{(σ1, w1), . . . , (σt, wt)}. These labels will have the following properties.

(1) (`(x))x∈V (Ak) is a partition of {(σ1, w1), . . . , (σt, wt)}.
(2) For each vertex x of Ak, all weighted trees in `(x) are isomorphic.
(3)

∣∣∩(i,j)∈JΛ(i,j)

∣∣ is equal to the number of elements (T1, . . . , Tt) of Λ0 such that
• for each vertex x of Ak, if (σi, wi), (σj , wj) ∈ `(x) then Ti = Tj ; and
• for every arc (x, y) of Ak, if ((σi, wi), (σj , wj)) ∈ `(x)× `(y), then Ti ⊆ Tj .

The directed graph A0 is obtained as follows. We start from the vertex set {z1, . . . , zt}. For
each i ∈ {1, . . . , t}, the label `(zi) of zi is set to be {(σi, wi)}. For each (i, j) ∈ J , we add an arc
from zi to zj . Thus A0 satisfies properties (1)–(3). Note that A0 may contain directed cycles,
but by Observation 4.3, if C is a directed cycle then all elements in ∪x∈V (C)`(x) are isomorphic.

Now, A1 is obtained from A0 by the following recursive operation. Let (x, y, z) be a triple of
vertices such that (x, y) and (x, z) are arcs, but neither (y, z) nor (z, y) are arcs. Let (σy, wy) ∈ `(y)
and (σz, wz) ∈ `(z). We add the arc (y, z) if |V (σy)| 6 |V (σz)|, and the arc (z, y) if |V (σz)| 6
|V (σy)|. (In particular, if |V (σy)| = |V (σz)|, then both arcs are added.)
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We observe that A1 satisfies (1)–(3). Since neither the vertices nor the labels were changed,
the only thing that we need to show is that if the arc (y, z) was added, then for all tuples
(T1, . . . , Tt) ∈ ∩(i,j)∈JΛ(i,j) and all ((σi, wi), (σj , wj)) ∈ `(y)× `(z), it holds that Ti ⊆ Tj . This
follows from Observation 4.1: since (y, z) was added, there exists s ∈ {1, . . . , t} such that Ts is
contained in both Ti and Tj .

The directed graph A2 is obtained from A1 by recursively contracting all directed cycles of A1.
Specifically, for each directed cycle C, all the vertices of C are contracted into a vertex zC (parallel
arcs are removed, but not directed cycles of length 2), and `(zC) := ∪x∈V (C)`(x). We again
observe that A2 satisfies properties (1)–(3).

Finally, A3 is obtained from A2 by recursively deleting transitivity arcs, that is, the arc (y, z)
is removed if there exists a directed path of length greater than 1 from y to z. Note that A2

and A3 have the same vertex-set, and every arc of A3 is also an arc in A2. Again, A3 readily
satisfies properties (1)–(3).

Now, let us prove that each component of A3 is an arborescence, that is a directed acyclic graph
with each out-degree at most one. We only need to show that every vertex of A3 has outdegree
at most 1. Assume that (x, y) and (x, z) are two arcs of A3. First, note that, in A2, there is
no directed path from y to z or from z to y, for otherwise the arc (x, y) or the arc (x, z) would
not belong to A2, respectively. Therefore, regardless whether y and z arose from contractions
of directed cycles in A1, there exist three vertices x′, y′ and z′ in A1 such that both (x′, y′)
and (x′, z′) are arcs but neither (y′, z′) nor (z′, y′) is an arc. This contradicts the definition of A1.
Consequently, every vertex of A3 has outdegree at most 1, as wanted.

We define τi to be the ordered (t+ 1)-tuple

(]((σi, wi) ↪→ (T,w)), ]((σi, wi) ↪→ (σ1, w1)), . . . , ]((σi, wi) ↪→ (σt, wt)))

We recall that τ1, . . . , τt are known from the assumptions of Procedure 1. Step 2 is completed by
the following procedure.

Procedure 2.
input: A labeled directed forest A of arborescences and the (t+ 1)-tuples τ1, . . . , τt.
output: For each H ∈ {(T,w), (σ1, w1), . . . , (σt, wt)}, the number P3(H,A, τ(T )) of elements
(T1, . . . , Tt) of Λ0(H) such that

• for each vertex x of A, if (σi, wi), (σj , wj) ∈ `(x) then Ti = Tj ; and
• for every arc (x, y) of A, if ((σi, wi), (σj , wj)) ∈ `(x)× `(y), then Ti ⊆ Tj .

The output of Procedure 2 can be recursively computed as follows. Let Vmax be the set of
vertices of A with outdegree 0. For each vertex x of A, let (σx, wx) be a representative of `(x).

P3(H,A, τ(T )) =
∏

x∈Vmax

(]((σx, wx) ↪→ H)) · P3((σw, wx), Ã(w), τ(T )),

where Ã(w) is obtained from the component of A that contains x by removing x.
By property (3) of the labels, the output P3(T,A3, τ(T )) is equal to

∣∣∩(i,j)∈JΛ(i,j)

∣∣. This
concludes the design of Procedure 1.
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