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POTTS PARTITION FUNCTION AND ISOMORPHISMS OF TREES

MARTIN LOEBL AND JEAN-SÉBASTIEN SERENI

Abstract. We explore the well-known Stanley conjecture stating that the symmetric chromatic
polynomial distinguishes non-isomorphic trees. The graph isomorphism problem has been

extensively studied for decades. There are strong algorithmic advances, but our research
concentrates on the following question: is there a natural function on graphs that decides graph
isomorphism? Curiously, in mathematics and in physics the concepts of a “natural” graph

function bear strong similarities: it essentially means that the function comes from the Tutte
polynomial, which in physics is called the Potts partition function. Somewhat surprisingly,
after decades of study, this bold project is still not infirmed. The aim of our research is to

present a result that supports the project: we prove that the Stanley isomorphism conjecture
holds for every good class of vertex-weighted trees. Good classes are rich: letting C be the
class of all vertex-weighted trees, one can obtain for each weighted tree (T,w) a weighted tree

(T ′, w′) in polynomial time, so that C′ := {(T ′, w′) : (T,w) ∈ C} is good and two elements
(A, b) and (X, y) of C are isomorphic if and only if (A′, b′) and (X′, y′) are.

1. Introduction

We are interested in the classical question about the existence of a natural function on graphs
that decides graph isomorphism. We start by introducing Stanley’s conjecture along with related
graph polynomials.

Stanley’s conjecture. A k-colouring of a graph G = (V,E) is a mapping s : V → N. The
colouring s is a k-colouring if f(V ) = {0, . . . , k − 1}, and it is proper if s(u) 6= s(v) whenever
uv ∈ E. We let Col(G; k) be the set of proper k-colourings of G and Col(G) be the set of all
proper colourings of G, that is, Col(G) := ∪k∈N Col(G; k).

The symmetric function generalisation of the chromatic polynomial [8] is defined by

XG(x0, x1, . . . ) :=
∑

s∈Col(G)

∏

v∈V

xs(v).

Further, the symmetric function generalisation of the bad colouring polynomial [8] is defined by

XBG(t, x0, x1, . . . ) :=
∑

s : V→N

(1 + t)b(s)
∏

v∈V

xs(v),

where b(s) := |{uv ∈ E : s(u) = s(v)}| is the number of monochromatic edges of f (note that the
sum ranges over all (not necessarily proper) colourings of G).

The Stanley isomorphism conjecture proposes that XG distinguishes non-isomorphic trees. As
far as we know, the only result towards the Stanley’s conjecture has been recently verified for
the class of proper caterpillars [1]. (A caterpillar is a tree where the edges not-incident to a leaf
form a path, and a caterpillar is proper if each vertex is a leaf or adjacent to a leaf.) Let us also
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2 MARTIN LOEBL AND JEAN-SÉBASTIEN SERENI

mention that Conti, Contucci and Falcone [3] defined a polynomial PT for each tree T so that
PT = P ′

T only if the trees T and T ′ are isomorphic. However, the polynomial PT is not related to
the Tutte polynomial.

Noble and Welsh’s conjecture. Noble and Welsh [6] defined the U-polynomial and showed
that it is equivalent to XBG. Sarmiento [7] proved that the polychromate defined by Brylawski [2]
is also equivalent to the U-polynomial. Hence the U-polynomial serves as ’the’ mighty polynomial
graph invariant. It is defined as follows. Given a partition τ = (C1, . . . , Cℓ) of a set, we define
x(τ) to be x|C1| . . . x|Cℓ|.

UG(z, x1, x2 . . . ) :=
∑

A⊆E(G)

x(τA)(z − 1)|A|−|V |+c(A),

where τA = (C1, . . . , Cℓ) is the partition of |V | given by the components of the spanning subgraph
(V,A) of G.

Noble and Welsh conjectured that UG distinguishes non-isomorphic trees. As observed by
Thatte [9], it turns out that Stanley’s and Noble and Welsh’s conjectures are equivalent.

Loebl’s conjectures. Let k ∈ N. The q-chromatic function [5] of a graph G = (V,E) is

(1.1) MG(k, q) :=
∑

s∈Col(G;k)

q
∑

v∈V s(v).

It is known [5] that

MG(k, q) =
∑

A⊂E

(−1)|A|
∏

W∈C(A)

(k)q|W | ,

where C(A) is the set of components of the spanning subgraph (V,A) and |C| is the number of
vertices in the component C. Moreover the q-dichromate is defined as

BG(x, y, q) :=
∑

A⊂E

x|A|
∏

W∈C(A)

(y)q|W |

and it is known that BG(x, y, q) is equal to the partition function of Potts model with certain
magnetic field contribution.

Loebl conjectures that the q-dichromate is equivalent to the U-polynomial, and that q-
dichromate distinguishes non-isomorphic chordal graphs. There is a close link between these
strong conjectures and Stanley’s conjecture, since chordal graphs have a very distinguished tree
structure — in graph theory, they are often referred to as ’blown-up trees’. On the other hand,
the isomorphism problem for general graphs is equivalent to the isomorphism problem restricted
to chordal graphs: given a graph G = (V,E), consider the chordal graph G′ = (V ′, E′) so that

V ′ := V ∪ E and E′ =
(

V
2

)

∪ {{u, e}, {v, e} : {u, v} = e ∈ E}. It clearly holds that G and H are
isomorphic if and only if G′ and H ′ are isomorphic.

Recently a variant of the q-dichromate, Br,G(x, k, q), was proposed [4]:

Br,G(x, k, q) :=
∑

A⊆E(G)

x|A|
∏

C∈C(A)

k−1
∑

i=0

r|C|qi .

It is proved that if (k, r) ∈ N2 with r > 1 and x := eβJ − 1, then

(1.2) Br,G(x, k, q) =
∑

σ : V→{1,...,k}

eβ
∑

uv∈E(G) Jδ(σ(u),σ(v))r
∑

v∈V qσ(v)

Hence Br,G(x, k, q) is the Potts partition function with variable (k) number of states and with

magnetic field contribution r
∑

v∈V qσ(v)

. Moreover, it is proved that Br,G is equivalent to UG.
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Summarising, establishing the conjecture that UG distinguishes non-isomorphic chordal
graphs would successfully finish the isomorphism project since UG is equivalent to the Potts
partition function with variable number of states and with magnetic field contribution, and the
isomorphism problem for general graphs is equivalent to the isomorphism problem of the chordal
graphs. Moreover the Stanley’s conjecture is equivalent to the assertion that UG distinguishes
non-isomorphic trees.

The purpose of this work is to prove that the U-polynomial distinguishes non-isomorphic
weighted trees in any good family. Good families are rich: we provide examples of good families
F so that the isomorphism problem for general weighted trees is equivalent to the isomorphism
problem in F . We hope that eventually it will be possible to introduce an analogous notion
restricted to chordal graphs, relying on the extensively studied tree-decomposition theory.

1.1. Main Results. A weighted tree is a pair (T,w) where T is a tree and w : V (T ) → N+ is
a positive integer vertex-weight function on T . Two weighted trees are isomorphic if there is
an isomorphism of the trees that preserves the vertex weights. If (T,w) is a weighted tree then
naturally

U(T,w)(z, x1, x2 . . . ) =
∑

A⊂E(G)

x(αA)(z − 1)|A|−
∑

v w(v)+c(A),

where αA = (V1, . . . , Vℓ) is the partition of V determined by the components of the spanning
subgraph (V,A) of G.

Let (T,w) be a weighted tree. If e ∈ E(T ), then T − e is the disjoint union of two trees, which
we consider to be weighted and rooted at the endvertex of e that they contain. A rooted weighted
tree (S,wS) is a shape of (T,w) if 2 6 |V (S)| 6 |V (T )| − 2 and there exists an edge e ∈ E(T )
such that S is one of the two components of T − e; moreover wS is the restriction of w to the
vertices of S. We consider S rooted at the end-vertex of e. We usually shorten the notation and
write S for the shape (S,wS). In a tree, a vertex of degree one is called a leaf.

Definition 1.1. A set T of weighted trees (T,w) is good if it satisfies the following properties:

(1) If a vertex of T is adjacent to a leaf, then all its neighbours but one are leaves.
(2) If v is a leaf or has a neighbour that is a leaf, then w(v) = 1.
(3) Let (T,w), (T ′, w′) ∈ T and let S be a shape of T and such that w(S) 6 w(T )/2. Let

S′ be a shape of T ′ such that the multi-set of the vertex weights with multiplicities of
S is equal to the multi-set of the vertex weights with multiplicities of S′. Then S is
isomorphic to S′.

Definition 1.2. A set S of weighted trees is relevant if there is an efficient algorithm that
computes, for each weighted tree (T,w), a weighted tree (T ′, w′) ∈ S so that whenever (T1, w1)
and (T2, w2) are weighted trees, (T1, w1) is isomorphic to (T2, w2) if and only if (T ′

1, w
′
1) is

isomorphic to (T ′
2, w

′
2).

An example of a good relevant set of weighted trees is that composed of all weighted single
vertices. Indeed, the classical isomorphism test for trees can easily be extended to the weighted
trees; it amounts to coding n-vertex-weighted trees by 0-1 vectors of length polynomial in n. This
can be seen as assigning a non-negative integer weight to a single vertex. Such weighted single
vertices are of course distinguished by the U-polynomial.

Our purpose is to provide a wide generalisation of this fact, by proving the next statement.

Theorem 1. The U-polynomial distinguishes non-isomorphic weighted trees in any good set.

Our proof of Theorem 1 is not constructive in the sense that we are not able to reconstruct
the weighted tree T from UT .
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We illustrate the richness of good sets of weighted trees by our next theorem. Let C be the
class of all vertex-weighted trees (T,w) with max {w(v) : v ∈ V (T )} 6 2|V (T )|, where we assume
for convenience that each weight is given as a binary number with exactly |V (T )| bits. For each
tree T we define T ′ to be the tree obtained from T by identifying each leaf h with the root of one
new star Sh with three vertices.

Theorem 2. For each (T,w) ∈ C, one can construct a weight function w′ for the vertices of T ′

such that two elements (T1, w1) and (T2, w2) of C are isomorphic if and only if the corresponding

elements (T ′
1, w

′
1) and (T ′

2, w
′
2) are isomorphic. Furthermore, the set C ′ := {(T ′, w′) : (T,w) ∈ C}

is good.

Proof. Let (T,w) ∈ C. We start by showing how to construct a weight function w′ for T ′. First,
we let the weight of each leaf of T ′, that is, each vertex of T ′ \ T , be 1. Next we perform, to
(T,w) ⊂ (T ′, w), a variant of the coding for the classical isomorphism test for weighted trees
mentioned above. The coding gradually assigns a binary vector w′′(v) to each vertex v, starting
with the neighbours of the leaves of T ′, i.e., the leaves of T , which are all assigned (01) in the
first step. We assume binary vectors to be ordered according to the positive integer they code.

In each further step t > 1, we let St be the set of the vertices v with exactly one neighbour that
has not been assigned its w′′-code before step t. For each v ∈ St, we define c(v) to be obtained
from w(v) and from the constructed w′′-codes z1 > z2 > . . . zm of all but one of the neighbours
of v, as follows:

c(v) := (0z1 . . . zm1w(v)).

We choose one vertex x in St such that c(x) = min {c(v) : v ∈ St} and we set w′′(x) := c(x).
This finishes step t.

We observe that the following hold after each step t.

(i) If a vertex x is assigned its code w′′(x) in step t and its neighbour y is assigned its code
w′′(y) in an earlier step, then w′′(x) > w′′(y).

(ii) If a vertex x is assigned its code w′′(x) in step t, then there is exactly one shape S(x)
rooted at x such that each vertex v of S(x) \ x has been assigned its w′′-code before step
t.

The coding terminates if there is a vertex r such that all of its neighbours have been assigned
a w′′-code. We observe that when the coding terminates, each vertex but r has been assigned its
w′′-code.

Finally, if v 6= r, then w′(v) is the positive integer coded by w′′(v) and we set w′(r) :=
w(r) +

∑

v 6=r w
′(v). The vertex r is the root of (T ′, w′). This finishes the construction of (T ′, w′).

Let us observe that (T,w) can be reconstructed from (T ′, w′): first, notice that T is obtained
from T ′ by deleting all the leaves. In particular, we thus know |V (T )|. Next, the vertex r is the
unique vertex of T ′ with the largest weight. Moreover, w(r) = w′(r) −

∑

v∈V (T ′)\{r} w
′(v). In

addition, for each vertex v 6= r the weight w(v) can be deduced from w′(v) as follows: the binary
representation of w(v) is equal to the last |V (T )| digits of the binary representation of w′(v).
This proves the first part of the statement of Theorem 2.

It remains to show that C′ is a good class of weighted trees. Clearly, Properties (1) and (2) of
Definition 1.1 hold and so it remains to show that so does (3). Let (A′, b′) be an element of C′

and let S be a shape of A′ such that b′(S) 6 b′(A)/2. Then the root of (A′, b′) does not belong to
S. Hence, letting s be the root of S we infer that S = S(s) thanks to Property (ii). It follows that
s is the unique vertex of S with maximum b′-weight and S can be uniquely reconstructed from
b′′(s). This shows the second part of the statement of Theorem 2, thereby ending the proof. �
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2. The Structure of the Proof of Theorem 1.

We fix a good set of weighted trees and, from now on, we say that a weighted tree is good if it
belongs to this set. We write down a procedure and with its help prove Theorem 1. The rest of
the paper then describes our realisation of the procedure.

A j-Shape is an isomorphism class of rooted weighted trees with total weight j. We note that
a shape is a weighted rooted subtree, while a j-Shape is an isomorphism class. We start with an
observation.

Observation 2.1. Let (T,w) be a weighted tree. Assume that for each j-Shape S and each

j 6 w(T )/2, we know the number of shapes of (T,w) that are isomorphic to S. Then we know T .

Proof. We use an easy but important observation that two shapes of T are either disjoint or one
is contained in the other. Let us order the shapes of (T,w) of weight at most w(T )/2 decreasingly
according to their weight. Let m be the maximum weight of a shape of T and let S1, . . . , Sa

be the shapes with weight m. Clearly, either the shapes S1, . . . , Sa are joined in T to the same
vertex, or a = 2 and m = w(T )/2. In the latter case, T is determined. In the former case, let r be
the vertex of T to which each of S1, . . . , Sa is joined. The shapes of T of weight equal to m− 1, if
any, are either shapes of S1, . . . , Sa, which we know, or joined by an edge to r. Continuing in this
way with weights m − 2,m − 3, . . ., we gradually increase the tree containing r until we reach
weight w(T ). The resulting tree is T . �

2.1. Isomorphism of good weighted trees is U-recognisable. Let (T,w) be a good weighted
tree. Let α(T ) = (α1, . . . , αn) be the weights of the shapes of T , with α1 < . . . < αn. The
definition of a shape implies that α1 > 2. We shall consider both partitions of the integer w(T )
and partitions of the tree T . To distinguish between them clearly, partitions of an integer are
referred to as expressions. For each partition P of T , the weights of the parts of T form an
expression E of w(T ), which we call the characteristic of P .

• A j-expression of an integer W is a partition of W in which one of the part has size
W − j.

• A j-partition of T is a partition of T whose characteristic is a j-expression of w(T ).
• A j-partition (T0, . . . , Tk) of T with w(T0) = w(T )− j is shaped if there exists an edge e
of T such that T0 is one of the components of T − e.

For an expression E of a positive integer, we let U(T,w,E) be the number of partitions of
(T,w) with characteristic E. Note that this number is 0 if E is not an expression of w(T ). We
notice that, for each expression E, the polynomial U(T,w) determines U(T,w,E).

We note that among the partitions of T corresponding to an expression, some are shaped and
others are not. The proof of Theorem 1 relies on the following procedure.

Procedure 1.

input: The polynomial U(T,w), an integer j ∈ {α1 + 1, . . . , w(T )/2}, a j-expression E and, for
each j′ < j and each j′-Shape S, the number of shapes of T that are isomorphic to S.
output: The number of shaped j-partitions of T with characteristic E.

Let us see how this procedure allows us to establish Theorem 1.

Proof of Theorem 1. Let (T,w) and (T ′, w′) be good weighted trees with U(T,w) = U(T ′,w′). The
vector α(T ) = (α1, . . . , αn) can be computed from the U-polynomial, since its coordinates
correspond to the partitions of T into two subtrees, each of weight at least 2. (The same applies
for T ′.)

Recall that α1 > 2. Furthermore, a shape S of T or T ′ is isomorphic to an α1-Shape if and
only if S is the star S1 on α1 vertices rooted at its centre. This is because the leaves and their
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neighbours have weight 1. It follows that the number of shapes of T of weight α1 can be calculated
from U(T,w) and thus this number is the same for (T ′, w′).

By Observation 2.1, (T,w) and (T ′, w′) are isomorphic if w(T ) = w′(T ′) and the numbers of all
their shapes isomorphic to any given j-Shape of weight j 6 1/2w(T ) are the same. To prove this
we apply Procedure 1 inductively for each j 6 1/2w(T ), starting with j = α1 + 1. By its validity
we know that for each j-expression E, the numbers of shaped j-partitions with characteristic E
of T and of T ′ are the same. In order to move to j + 1, we need to show the following.

Assertion 2.2. For any given j-Shape S, the numbers of shapes of T and of T ′ isomorphic to S
are the same.

This can be argued as follows. A j-expression E is valid if there is a shaped j-partition of T
with characteristic E. If E is a j-expression, then we let W (E) be the multi-set consisting of
all the parts of E. We define S(E) to be the j-Shape isomorphic to a shape of T whose vertex
weights are given by W (E), which can be done thanks to (3) of Definition 1.1 since T is good. It
is possible that S(E) does not exist in which case E is redefined as invalid. (Indeed, S(E) does
not exist when the following holds: if S is a shape of T with shaped partition W , then at least
one part of W does not correspond to a single vertex of S.)

A valid j-expression E is minimal if no proper refinement of E is valid. If E is minimal, then
the number of shaped j-partitions of T with characteristic E is equal to the number of shapes of
T isomorphic to S(E). We note that we do not know S(E), but we do know that T and T ′ have
the same number of shapes isomorphic to S(E).

Finally, consider a valid j-expression E such that for each valid refinement E′ of E, we know
that T and T ′ have the same number n(E′) of shapes isomorphic to S(E′). Now, the number of
shapes of T (and of T ′) isomorphic to S(E) is equal to the number of shaped j-partition of T
with characteristic E minus a non-negative integer linear combination of n(E′), where E′ is a
valid refinement of E. Again we note that we do not know the coefficients n(E′), since we do not
know the Shapes S(E′). But we do know that these coefficients are the same in T ′ as well, and so
we can conclude that the numbers of shapes of T and of T ′ isomorphic to S(E) are the same. �

3. Designing Procedure 1

An αj-situation σ is a tuple ((σ1, w1), . . . , (σt(σ), wt(σ))) of disjoint weighted rooted trees with

t(σ) > 2 such that w1(σ1) 6 . . . 6 wt(σ)(σt(σ)) and
∑t(σ)

i=1 wi(σi) = αj . An αj-situation σ is said
to occur in a tree T if there exists a subtree T ′ of T and t(σ) distinct edges e1, . . . , et(σ) with
exactly one end in V (T ′) such that, for each i ∈ {1, . . . , t(σ)}, there is an isomorphism preserving
the root and the weights between σi and the component of T − ei different from T ′. Note that if
σ occurs in T , then for each i ∈ {1, . . . , t(σ)} the tree T has a shape isomorphic to σi.

We proceed in steps, the first one being an exhaustive listing that depends only on αj .
Step 1. Explicitly list all αj-situations for αj 6 w(T )/2.
Step 2. For each αj 6 w(T )/2 and each αj-situation σ from Step 1, compute the number mT (σ)
of times σ occurs in T .

Before designing Step 2, we show how Steps 1 and 2 accomplish Procedure 1. Suppose that
the two steps are completed. Let E = {E1, . . . , Ek} be an αj-expression of w(T ).

For each αj-situation σ = ((σ1, w1), . . . , (σt(σ), wt(σ))), let Ψσ be the collection of all surjections
from the expression {E1, . . . , Ek} to {σ1, . . . , σt(σ)}. We observe that the number X of non-shaped
j-partitions of T with characteristic E is

∑

αj-situation σ

mT (σ)
∑

f∈Ψσ

t(σ)
∑

i=1

U(σi, f
−1(σi)),
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where f−1(σi) is naturally interpreted as an expression. Notice that this formula allows us to
compute X: for each i ∈ {1, . . . , t(σ)}, the tree σi is given by σ, hence the U -polynomial of σi

can be computed. Consequently, we can compute the number of shaped αj-partitions of T with
characteristic E, which is

U(T,w,E)−X.

This accomplishes Procedure 1.
It remains to design Step 2. Fix a situation σ = ((σ1, w1), . . . , (σt, wt)).

Observation 3.1. For every pair (i, j) ∈ {1, . . . , t}2, if Ti and Tj are two shapes of a tree T that

are isomorphic to σi and σj, respectively, then either Ti ⊆ Tj or Tj ⊆ Ti or Ti ∩ Tj = ∅.

To see this, let ek be the edge of T such that Tk is a component of T − ek for k ∈ {i, j}. Then,
either ej ∈ E(Ti) or ej ∈ E(T − Ti). If ej ∈ E(T − Ti), then either Tj ⊆ Ti or Tj ⊆ T − Ti, in
which case Tj ∩ Ti = ∅. If ej ∈ E(Ti), then Tj ⊆ Ti: otherwise, Tj ∩ Ti 6= ∅ and T − Ti ⊂ Tj , so

that w(Ti) + w(Tj) > w(T ). This would contradict the hypothesis that
∑t(σ)

k=1 wk(σk) = αj , since
αj 6 w(T )/2. This concludes the proof of Observation 3.1.

Define Λ to be the set of all t-tuples (T1, . . . , Tt) such that for each i ∈ {1, . . . , t},

• Ti is a shape of T that is isomorphic to (σi, wi), and
• if j ∈ {1, . . . , t} \ {i}, then Ti is not a subtree of Tj .

Observation 3.2. The number of times that σ occurs in T is equal to |Λ|.

Proof. We prove that the elements of Λ are exactly occurrences of σ in T . By the definition, each
occurrence of σ gives rise to an element of Λ.

Conversely, let (T1, . . . , Tt) be an element of Λ. Observation 3.1 implies that the shapes Ti are
mutually disjoint. For each k ∈ {1, . . . , t}, let ek be the edge of T associated to the shape Tk and
let vk be the endvertex of ek that does not belong to Tk. Note that vk /∈ ∪t

j=1Tj since no tree Ti

is a subtree of another tree Tj and αj 6 w(T )/2. Set T ′
k := T ′

k−1 − Tk, where T ′
0 := T .

Observe that each of Tk+1, . . . , Tt is a shape of T ′
k. Hence, T ′

k is connected and contains all
vertices v1, . . . , vt. Therefore, setting T ′ := T ′

t shows that (T1, . . . , Tt) occurs in T . �

Our goal is to compute |Λ|. For a tree T ′, define Λ0(T
′) to be the set of all t-tuples (T1, . . . , Tt)

such that Ti is a shape of T ′ that is isomorphic to (σi, wi) for each i ∈ {1, . . . , t}. Set Λ0 :=
Λ0(T,w). In this notation, the weight shall be omitted when there is no risk of confusion. The
advantage of Λ0 is that its size can be computed. Indeed,

|Λ0| =
t
∏

i=1

♯((σi, wi) →֒ T ),

where ♯((σi, wi) →֒ T ) is the number of shapes of T that are isomorphic to (σi, wi). This number
is given in the input of Procedure 1, since wi(σi) < αj .

Next, we compute |Λ| using the principle of inclusion and exclusion. Setting I := {1, . . . , t}2 \
{(i, i) : 1 6 i 6 t}, we have

|Λ| = |Λ0| −

∣

∣

∣

∣

∣

∣

⋃

(i,j)∈I

Λ(i,j)

∣

∣

∣

∣

∣

∣

,

where Λ(i,j) is the subset of Λ0 composed of the elements (T1, . . . , Tt) with Ti ⊆ Tj .
By the principle of inclusion-exclusion, we deduce that the output of Step 2 is equal to

|Λ0| −
∑

∅ 6=F⊆I

(−1)|F |−1

∣

∣

∣

∣

∣

∣

⋂

(i,j)∈F

Λ(i,j)

∣

∣

∣

∣

∣

∣

.
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It remains to compute
∣

∣

∣

⋂

(i,j)∈F Λ(i,j)

∣

∣

∣
for each non-empty subset F of I. We start with an

observation, which characterises the sets F for which the considered intersection is not empty.

Observation 3.3. Let F ⊆ I. Then,
⋂

(i,j)∈F Λ(i,j) 6= ∅ if and only if for every (i, j) ∈ F , either

σi is isomorphic to σj, or σj has a shape that is isomorphic to σi.

From now on, we consider only contributing sets F . We construct four directed graphs
W0, W1, W2 and W3 that depend on F . Each vertex x of Wk is labeled by a subset ℓ(x) of
{(σ1, w1), . . . , (σt, wt)}. These labels will have the following properties.

(1) (ℓ(x))x∈V (Wk) is a partition of {(σ1, w1), . . . , (σt, wt)}.
(2) For each vertex x of Wk, all weighted trees in ℓ(x) are isomorphic.
(3)

∣

∣∩(i,j)∈FΛ(i,j)

∣

∣ is equal to the number of elements (T1, . . . , Tt) of Λ0 such that
• for each vertex x of Wk, if (σi, wi), (σj , wj) ∈ ℓ(x) then Ti = Tj ; and
• for every arc (x, y) of Wk, if ((σi, wi), (σj , wj)) ∈ ℓ(x)× ℓ(y), then Ti ⊆ Tj .

The directed graph W0 is obtained as follows. We start from the vertex set {z1, . . . , zt}. For
each i ∈ {1, . . . , t}, the label ℓ(zi) of zi is set to be {(σi, wi)}. For each (i, j) ∈ F , we add an arc
from zi to zj . Thus W0 satisfies properties (1)–(3). Note that W0 may contain directed cycles,
but by Observation 3.3, if C is a directed cycle then all elements in ∪x∈V (C)ℓ(x) are isomorphic.

Now, W1 is obtained by the following recursive operation. Let (x, y, z) be a triple of vertices
such that (x, y) and (x, z) are arcs, but neither (y, z) nor (z, y) are arcs. Let (σy, wy) ∈ ℓ(y) and
(σz, wz) ∈ ℓ(z). We add the arc (y, z) if |V (σy)| 6 |V (σz)|, and the arc (z, y) if |V (σz)| 6 |V (σy)|.
(In particular, if |V (σy)| = |V (σz)|, then both arcs are added.)

We observe that W1 satisfies (1)–(3). Since neither the vertices nor the labels were changed,
the only thing that we need to show is that if the arc (y, z) was added, then for all tuples
(T1, . . . , Tt) ∈ ∩(i,j)∈FΛ(i,j) and all ((σi, wi), (σj , wj)) ∈ ℓ(y)× ℓ(z), it holds that Ti ⊆ Tj . This
follows from Observation 3.1: since (y, z) was added, there exists s ∈ {1, . . . , t} such that Ts is
contained in both Ti and Tj .

The directed graph W2 is obtained by recursively contracting all directed cycles of W1.
Specifically, for each directed cycle C, all the vertices of C are contracted into a vertex zC
(parallel arcs are removed, but not directed cycles of length 2), and ℓ(zC) := ∪x∈V (C)ℓ(x). We
again observe that W2 satisfies properties (1)–(3).

Finally, W3 is obtained from W2 by recursively deleting transitivity arcs, that is, the arc (y, z)
is removed if there exists a directed path of length greater than 1 from y to z. Note that W2

and W3 have the same vertex-set, and every arc of W3 is also an arc in W2. Again, W3 readily
satisfies properties (1)–(3).

Now, let us prove that each component of W3 is an arborescence, that is a directed acyclic
graph with each out-degree at most one. We only need to show that every vertex of W3 has
outdegree at most 1.

Assume that (x, y) and (x, z) are two arcs of W3. First, note that, in W2, there is no directed
path from y to z or from z to y, for otherwise the arc (x, y) or the arc (x, z) would not belong
to W2, respectively. Therefore, regardless whether y and z arose from contractions of directed
cycles in W1, there exist three vertices x′, y′ and z′ in W1 such that both (x′, y′) and (x′, z′) are
arcs but neither (y′, z′) nor (z′, y′) is an arc. This contradicts the definition of W1. Consequently,
every vertex of W3 has outdegree at most 1, as wanted.

Set τ(T ) := {♯((σi, wi) →֒ H) : H ∈ {(T,w), (σ1, w1), . . . , (σt, wt)} and 1 6 i 6 t}. We recall
that τ(T ) is known from the assumptions of Procedure 1. Step 2 is completed by the following
procedure.

Procedure 2.

input: A labeled directed forest W of arborescences and the set τ(T ).
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output: For each H ∈ {(T,w), (σ1, w1), . . . , (σt, wt)}, the number P3(H,W, τ(T )) of elements
(T1, . . . , Tt) of Λ0(H) such that

• for each vertex x of W , if (σi, wi), (σj , wj) ∈ ℓ(x) then Ti = Tj ; and
• for every arc (x, y) of W , if ((σi, wi), (σj , wj)) ∈ ℓ(x)× ℓ(y), then Ti ⊆ Tj .

The output of Procedure 2 can be recursively computed as follows. Let Wmax be the set of
vertices of W with outdegree 0. For each vertex x of W , let (σx, wx) be a representative of ℓ(x).

P3(H,W, τ(T )) =
∏

x∈Wmax

(♯((σx, wx) →֒ H)) · P3((σ
w, wx), W̃ (w), τ(T )),

where W̃ (w) is obtained from the component of W that contains x by removing x, and
♯((σx, wx) →֒ H) is known thanks to the set τ(T ).

By property (3) of the labels, the output P3(T,W3, τ(T )) is equal to
∣

∣∩(i,j)∈FΛ(i,j)

∣

∣. This
concludes the design of Procedure 1.
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