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The stability of a two-layer film flow of non-Newtonian fluids is studied with a linear temporal approach.
Shear-thinning fluids are considered, which follow the four-parameter inelastic Carreau model. A modified
Orr-Sommerfeld equation system is obtained, which is solved by using a spectral Tau collocation method based
on Chebyshev polynomials. The effects of density and viscosity stratification are considered, as well as the
influence of the shear-thinning properties of the fluid. It is found that, when the viscosity is stronger in the upper
layer, the base flow and the stability properties are almost not influenced by the change of the shear-thinning
properties in this upper layer. In the other situations, the shear-thinning properties have an influence on the
different instabilities, the long-wave surface instability and the short- and long-wave interface instabilities.
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I. INTRODUCTION

The hydrodynamics of layered film flows driven by gravity
down an inclined plane is of practical interest in many chem-
ical engineering applications, for example, in the processes
involving the simultaneous coating of multiple layers, such as
slide coating and curtain coating [1]. Geophysical phenomena
such as glaciers [2,3], mud and lava flows [4] or granular
flows [5] also imply this kind of configuration. Most of
the studies in the literature on this topic are based on a
Newtonian fluid model. The rheological behavior of many
fluids cannot, however, be properly described by a Newtonian
model, and more sophisticated rheological models involving
a nonlinear relationship between stress and strain would be
more appropriate. For example, most of the fluids used in
the plastic manufacturing industry or in coating processes
for paper or painting industries are basically shear thinning
(colloids, suspensions, and a variety of polymeric liquids).
This is also the case for glaciology [3], molten metals or lava,
low molecular weight biological fluids, blood, etc. Note that
many of those fluids have a shear-thinning behavior only for
a certain range of shear rates, and they may also show yield
stress behavior for low temperatures and/or high densities. In
most of these applications, multilayer flows are involved.

The case of superposed layers of Newtonian fluid films
flowing down an inclined plane has been extensively studied
over the past few years, and it has been shown that these flows
can easily become unstable due to waves traveling along the
interfaces. A long-wave approximation is commonly adopted
in the analytical approaches because the most dangerous
instability is assumed to have a wavelength much larger
than the layer thickness. This assumption was first used by
Benjamin [6] and Yih [7], who considered a single layer
of Newtonian fluid. They showed that the critical Reynolds
number for the onset of the instabilities depends only on the
inclination of the plate β and is proportional to cotβ. They also
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pointed out that inertia is required to trigger these free surface
instabilities.

A similar conclusion is reached for confined Poiseuille or
Couette multilayer flows [8,9] or for multilayer flows with
an upper layer of infinite depth [10]: inertia is required to
destabilize the liquid-liquid interface in these cases.

Kao [11–13], Loewenherz and Lawrence [2], and Chen [14]
have studied the linear stability of a two-layer film flow with
a free surface. With a zero Reynolds number approximation,
they have shown that a new kind of instability could develop
when the viscosity of the upper layer is greater than that
of the lower layer. This instability was called inertialess
instability. They also explained that, for multilayer flows,
there are specific instability modes for each interface and free
surface. Without inertia, the free surface mode is always stable,
so that the instability can only be triggered by an interface
mode. The stability curves showing the interfacial perturbation
growth rate as a function of the wave number indicate that
two modes with different wavelengths can become unstable:
a first mode with a short wavelength, which is influenced
by the layer thickness ratio, and a second mode with a
long wavelength. This long-wave mode was already observed
within the long-wave approach by Kao [11] and was associated
to a so-called antilubrication effect. Among these short-wave
and long-wave modes, the dominant mode, which will impose
the instability wavelength, will be the mode with the larger
growth rate. It was found that these growth rates depend on
the surface tensions and the viscosity and thickness ratios, so
that changes of dominant modes can occur. In the opposite
configuration, where the more viscous layer is adjacent to the
wall, no instability occurs, as far as inertia is not accounted
for. These works have shown that, though the free surface is
not responsible for the release of instabilities with respect to
confined flows results, its presence plays an essential part in
this process. The authors conclude that a strong interaction
between surface and interface modes should exist.

Hu et al. [15,16] extended these works on two-layer film
flow down an incline by focusing on the effect of the density
stratification and by using combined temporal, spatiotemporal,
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and spatial approaches. They considered both an inertialess
configuration [15] and a configuration with inertia [16]. The
decrease of the density ratio [(upper layer/lower layer)] always
make the surface mode and the short-wave interface mode
more stable. The short-wave interfacial instability can even
disappear whatever the Reynolds number is, when the less
viscous layer is in the region next to the wall. On the other
hand, the decrease of the density ratio favors the long-wave
interfacial instability. The transition between the long-wave
and short-wave interfacial instabilities was also encountered in
the spatiotemporal analysis. The authors have shown that these
instabilities are generally convective and that the transition
is associated with a jump in the local oscillatory frequency,
spatial amplification rate, and spatial wave number.

Jiang et al. [17] performed an energy budget on the two-
layer flow problem in order to explain these differences in
stability according to whether the flow is confined or not and
to the viscosity stratification. The authors have shown that
a key role is played by the work of the shear stress at the
undisturbed free surface, similarly to what was found in the
one-layer free surface problem.

Besides these works which were all concerned by New-
tonian fluids, some studies have considered non-Newtonian
behaviors. Weinstein [18] numerically studied the influence
of the Carreau constitutive equation on the spatial stability
of a multiple-layer film flow down an inclined plane. In
order to assess the effect of the shear-thinning behavior,
the author compared the non-Newtonian results with the
two limiting Newtonian cases based on the minimum and
maximum viscosities attained in the shear-thinning layer. He
observed that the shear-thinning results lie between these two
Newtonian cases except at very low frequencies. The author
finally proposed a mechanism based on energy considerations
that models the different cases.

Balmforth et al. [3] explored the interfacial instability in
the two-layer flow down an incline for power-law fluids. Due
to zero Reynolds number expansions, they built simplified
models to solve the linear stability problem and extended this
work with weakly nonlinear analyses to explore the dynamics
of the unstable waves. However, they met difficulties when
the upper layer is non-Newtonian because of the constitutive
law they chose: this power-law predicts an infinite viscosity
for zero shear rate, which necessarily occurs at the free
surface. Their difficulties to obtain consistent results in this
configuration point out the limit of the power-law model for
free surface flow investigations.

Moreover Usha et al. [19] have compared the stability
threshold obtained with a Carreau model and a power-law
model for a shear-thinning film on a rigid or porous substrate.
They have shown that the choice of the model induces
considerable changes on the stability, especially for weakly
shear-thinning fluids.

Finally, Rousset et al. [20] studied the temporal stability of
a Carreau fluid flow down an inclined plane. They performed
an asymptotic approach considering a weakly non-Newtonian
behavior in the limit of very long waves and compared it
with a more general numerical approach. It was found that
the critical Reynolds number is lower for shear-thinning fluids
than for Newtonian fluids, while the wave celerity is larger. A
particular attention was paid to the situations with small angles

of inclination. Indeed, in these cases, besides the long-wave
free surface mode, another instability identified by Floryan
et al. [21] as a shear mode can occur. It is characterized by
a wavelength on the order of the layer thickness and a wave
celerity lower than the free surface velocity. It was shown that
taking into account the shear dependence of the viscosity can
change the nature of the instability.

In this paper we present the linear stability analysis of a
two-layer non-Newtonian film flow driven by gravity down
an incline. We focus on shear-thinning fluids (i.e., with a
viscosity locally decreasing with the increase of the shear
rate) and use the four-parameter Carreau inelastic model [22].
Such fluids correspond, for example, to mud suspensions,
paints, or polymeric solutions. The model predicts a region
at moderate shear rate in which the fluid follows a power-law
behavior. However, unlike the power-law model, the Carreau
model predicts a viscosity that remains constant as the shear
rate approaches zero. This feature makes the Carreau law
particularly suitable for free surface flow issues.

II. FORMULATION

A. Base flow

We study a two-layer laminar fluid flow driven by gravity
down an inclined plane. The angle of inclination to the
horizontal is called β. The two liquid layers are considered
immiscible. Subscript k = 1,2 denotes the upper and lower
layer, respectively, as shown in Fig. 1, and the overbar denotes
dimensional quantities. These conventions are adopted for all
the fluid properties. Thus d̄k is the thickness of layer k, ρ̄k is its
density, and η̄k is its dynamical viscosity. The surface tension
at the free surface between the upper layer and the passive gas
above it is denoted as σ̄1, whereas σ̄2 stands for the surface
tension at the interface between the two layers. The flow rate
per unit width in each layer, Q̄k , is also specified, defining
the total flow rate per unit width, Q̄T = Q̄1 + Q̄2. We use a
Cartesian coordinate system in which the x̄ axis is aligned with
the inclined plane and points down the slope and the ȳ axis is
taken normal to the plane and oriented towards it. The origin is
taken at the undisturbed free surface. ζ̄1(x̄,t̄) is the free surface
location, and ζ̄2(x̄,t̄) is the interface location. The governing

FIG. 1. Definition sketch of the dimensionless two-layer system.
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continuity and Navier-Stokes equations are

∂ūk

∂x̄
+ ∂v̄k

∂ȳ
= 0 for k = 1,2, (1)

ρ̄k

(
∂ūk

∂t̄
+ ūk

∂ūk

∂x̄
+ v̄k

∂ūk

∂ȳ

)
= −∂p̄k

∂x̄
+

(
∂τ̄xx,k

∂x̄
+ ∂τ̄xy,k

∂ȳ

)

+ ρ̄kḡ sin β for k = 1,2,

(2)

ρ̄k

(
∂v̄k

∂t̄
+ ūk

∂v̄k

∂x̄
+ v̄k

∂v̄k

∂ȳ

)

= −∂p̄k

∂ȳ
+

(
∂τ̄xy,k

∂x̄
+ ∂τ̄yy,k

∂ȳ

)
+ ρ̄kḡ cos β for k = 1,2,

(3)

where ūk and v̄k are, respectively, the x̄ and ȳ velocity
components of layer k, p̄k is the pressure in layer k, ḡ is the
gravitational acceleration, and τ̄ij,k is the (i,j ) component of
the deviatoric stress tensor for layer k. The fluids are supposed
to be purely viscous, i.e., their viscosity, denoted as η̄k , depends
only on the local shear rate γ̄k = |∂ū/∂ȳ|. They are assumed
to follow the four-parameter Carreau model [22]:

η̄k − η̄∞,k

η̄0,k − η̄∞,k

= [1 + (δ̄kγ̄k)2]
nk−1

2 , (4)

where η̄0,k is the viscosity of layer k at low shear rate
(Newtonian viscosity limit) and η̄∞,k is the low viscosity
limit at high shear rate, δ̄k is a characteristic time, and nk

is a dimensionless parameter. The fluids exhibit a nearly
Newtonian behavior both at low and high shear rates, and
between these asymptotic trends, the viscosity follows a
power-law variation with an exponent (nk − 1).

This Carreau model can be seen as an improvement of the
more classic power law, which would not feature this finite
viscosity at low shear rate. In the frame of the Carreau model,
a fluid is Newtonian when nk = 1 and shear thinning (or pseu-
doplastic) when 0 < nk < 1 and η̄∞,k < η̄0,k . A Newtonian
behavior can also be obtained by setting δ̄k equal to zero, what-
ever the value of nk . Note that a shear thickening or so-called
dilatant behavior can also be obtained through this model, but
this possibility is out of the scope of the present paper.

The base flow denotes the undisturbed flow and is assumed
to be parallel and steady. The velocity in each layer is denoted
as Ūk . For given flow rates per unit width Q̄k , the film thick-
nesses cannot be explicitly calculated and therefore cannot
be taken as a length scale, as usually done for Newtonian
flows. We adopt the characteristic length scale proposed by
Weinstein [18], which is denoted as d̄s and defined by

d̄s =
(

η̄0,2Q̄T

ρ̄2ḡ sin β

)1/3

. (5)

The dimensionless lengths, velocities, pressure, and time are
then chosen as

(x,y) = (x̄/d̄s,ȳ/d̄s), (uk,vk) = (ūkd̄s/Q̄T ,v̄kd̄s/Q̄T ),
(6)

pk = p̄kd̄
2
s

ρ̄2Q̄
2
T

, t = t̄ Q̄T /d̄2
s .

The dimensionless flow configuration is shown in Fig. 1.

Dimensionless values have also to be defined for the fluids’
properties. We then define density and Newtonian viscosity
ratios:

Mk = ρ̄k

ρ̄2
, Ek = η̄0,k

η̄0,2
.

The dimensionless governing parameters are the Reynolds
number and the capillary numbers defined as

Re = ρ̄2Q̄T

η̄0,2
, Cak = σ̄kd̄s

η̄0,2Q̄T

.

Within the framework of the Carreau model (4), the only
nonzero dimensionless component of the stress tensor for the
base flow can be expressed as

τxy,k = ηk

dUk

dy
, (7)

where Uk = Ūkd̄s/Q̄T denotes the dimensionless velocities of
the basic flow and

ηk = Ek

{
Ik + (1 − Ik)

[
1 +

(
Lk

dUk

dy

)2](nk−1)/2}
, (8)

with Ik = η̄∞,k/η̄0,k and Lk = δ̄kQ̄T /d̄2
s . In the case of a steady

parallel flow, Eqs. (2) and (3) become
dτxy,k

dy
= −Mk, (9)

dPk

dy
= Mk

cot β

Re
, (10)

where Pk is the dimensionless basic hydrostatic pressure in
layer k. The no-slip condition at the solid boundary is

U2 = 0 at y = d1 + d2, (11)

where dk = d̄k/d̄s for k = 1,2 are the dimensionless thick-
nesses, and the zero shear condition at the free surface is given
by

τxy,1 = 0 at y = 0. (12)

Additional conditions are specified at the interface between
the layers, corresponding to velocity and shear continuity:

U1 = U2 at y = d1, (13)

τxy,1 = τxy,2 at y = d1. (14)

The integration of the governing Eqs. (9) and (10) gives

τxy,k = −Mk y + Ck with

C1 = 0 and C2 = d1(1 − M1), (15)

Pk = y Mk cot β/Re. (16)

By combining Eqs. (7), (8), and (15), we obtain the following
differential equations (for k = 1,2):

Ek

{
Ik + (1 − Ik)

[
1 +

(
Lk

dUk

dy

)2](nk−1)/2}
dUk

dy

= −Mk y + Ck, (17)

which have to be solved for y ∈ [0,d1] when k = 1 and for
y ∈ [d1,d1 + d2] when k = 2, with the boundary conditions
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(11)–(14). A further relation is given by the assumption that
the dimensionless total flow rate, QT , is equal to unity:

QT = Q1 + Q2 =
∫ d1

0
U1 dy +

∫ d1+d2

d1

U2 dy = 1. (18)

Equations (11), (13), (17), and (18) define a nonlinear system
which has to be solved to determine the velocity fields U1(y)
and U2(y), the shear rates dU1/dy and dU2/dy, and the
layer thicknesses d1 and d2. This system cannot be solved
analytically in the general case, so that a numerical solution
has to be found. A finite difference scheme was used to convert
the system of differential equations into a set of algebraic equa-
tions. Finally, because of the nonlinearities, an iterative method
had to be implemented in order to get the thickness values d1

and d2 and then deduce the shear rates and basic flow fields.

B. Stability analysis

To derive the stability problem associated with the basic
flow, we use the small perturbation technique. Pressure and ve-
locity components of the disturbed flow can be decomposed as

uk = Uk (y) + u′
k (x,y,t) ,

vk = v′
k (x,y,t) ,

pk = Pk (y) + p′
k (x,y,t) ,

(19)

where a prime is used to denote the small perturbations, and the
fluctuation of the interface above the kth layer can be written as

ζk = ζk (x,t) . (20)

Neglecting the second-order terms in the perturbation
quantities (primed quantities or interface fluctuations), the
linearized governing equations for the disturbances are

∂u′
k

∂x
+ ∂v′

k

∂y
= 0, (21)

MkRe

(
∂u′

k

∂t
+ Uk

∂u′
k

∂x
+ v′

k

∂Uk

∂y

)

= −Re
∂p′

k

∂x
+ ∂τ ′

xx,k

∂x
+ ∂τ ′

xy,k

∂y
, (22)

MkRe

(
∂v′

k

∂t
+ Uk

∂v′
k

∂x

)

= −Re
∂p′

k

∂y
+ ∂τ ′

xy,k

∂x
+ ∂τ ′

yy,k

∂y
, (23)

where

τ ′
xx,k = 2ηk

∂u′
k

∂x
, τ ′

yy,k = 2ηk

∂v′
k

∂y
, τ ′

xy,k = θk

(
∂u′

k

∂y
+ ∂v′

k

∂x

)
,

and

θk = Ek

{
Ik + (1 − Ik)

[
1 + nk

(
Lk

dUk

dy

)2]

×
[

1 +
(

Lk

dUk

dy

)2](nk−3)/2}
. (24)

Concerning the boundary conditions, they have to be expressed
at the perturbed boundaries. However, the linearization and the
use of Taylor series expansions allow us to derive conditions

which can be applied at the unperturbed boundary locations.
At the fixed solid boundary, the no-slip condition is

u′
2 = 0

v′
2 = 0 at y = d1 + d2. (25)

The kinematic conditions at the free surface and interface are,
respectively,

∂ζk

∂t
+ Uk

∂ζk

∂x
− v′

k = 0 at

{
y = 0 for k = 1,

y = d1 for k = 2.
(26)

At the free surface, the shear stress must vanish, and the
normal stress has to balance the surface tension effect. These
two conditions are given respectively by

τ ′
xy,1 − M1ζ1 = 0 at y = 0, (27)

p′
1Re + ζ1M1 cot β − 2η1

∂v′
1

∂y
− Ca1

∂2ζ1

∂x2
= 0 at y = 0.

(28)

At the interface, both the shear stress and the normal stress
induced by each layer have to balance:

τ ′
xy,2 − τ ′

xy,1 − (M2 − M1) ζ2 = 0 at y = d1, (29)

(p′
2 − p′

1)Re + ζ2(M2 − M1) cot β

+ 2

(
η1

∂v′
1

∂y
− η2

∂v′
2

∂y

)
− Ca2

∂2ζ2

∂x2
= 0 at y = d1, (30)

and the continuity of the velocity components must be ensured:

v′
1 = v′

2 at y = d1, (31)

u′
2 − u′

1 =
(

∂U1

∂y
− ∂U2

∂y

)
ζ2 at y = d1. (32)

We now assume that there are two-dimensional normal mode
solutions of the form

[u′
k,v

′
k,p

′
k](x,y,t) = [ûk,v̂k,p̂k] (y) ei(αx−ωt)

and ζk(x,t) = ζ̂k ei(αx−ωt), (33)

where α is the real longitudinal wave number and ω is the com-
plex frequency. The real part of ω, ωR , is the angular frequency
of the disturbance and the imaginary part, ωI , is the temporal
growth rate. The flow is respectively stable, unstable, or neu-
trally stable according to whether ωI is negative, positive, or
zero. Here c = ω/α is the complex velocity of the disturbance,
and its real part, cR , is the phase speed. By substituting these
expressions into the linearized perturbation equations (21)–
(23) and the corresponding boundary conditions (25)–(32), and
then eliminating p′

k , u′
k and ζ ′

k , we can obtain the linear stability
equations for the two-layer flow. They correspond to a system
of generalized Orr-Sommerfeld equations for purely viscous
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fluids, with additional terms introduced by the Carreau model:

(D2 + α2)[D2θk + 2 Dθk D + θk(D2 + α2)]v̂k − 4α2D(ηk Dv̂k) = iαRe Mk[(Uk − c)(D2 − α2) − D2Uk]v̂k for k = 1,2,

(34)

where D denotes the derivative with respect to y. The boundary conditions (25)–(32) become

Dv̂2 = 0
v̂2 = 0 at y = d1 + d2, (35)

[
1 + E1

M1
(U1 − c) (D2 + α2)

]
v̂1 = 0

at y = 0,

iαRe M1 (c − U1) Dv̂1 − 3α2E1 Dv̂1 + E1 D3v̂1 + iαE1

(
cot β + Ca1

α2

M1

)
(D2 + α2)v̂1 = 0 (36)

(note that at the free surface, y = 0, we have θ1 = E1)

[(1 − M1) + θ2(U2 − c)(D2 + α2)]v̂2 = θ1(U2 − c)(D2 + α2)v̂1

v̂1 = v̂2

(1 − M1)(Dv̂2 − Dv̂1) = (DU1 − DU2)[θ2(D2 + α2)v̂2 − θ1(D2 + α2)v̂1] (37)
at y = d1.

iαRe[(c − U2)D + DU2]v̂2 − iαRe M1[(c − U1)D + DU1]v̂1 − 4α2(η2 Dv̂2 − η1 Dv̂1)

+(D2 + α2)

[
D (θ2 v̂2 − θ1 v̂1) + iα

(
cot β + Ca2

α2

1 − M1

)
(θ2 v̂2 − θ1 v̂1)

]
= 0

Equations (34)–(37) correspond to a generalized eigenvalue
problem. The numerical procedure used to solve this problem
is presented in Sec. III.

III. NUMERICAL PROCEDURE

A spectral collocation method based on Chebyshev poly-
nomials is used for the discretization of the Orr-Sommerfeld
generalized eigenvalue problem (34)–(37). The system (34)–
(37) is solved on the Gauss-Lobatto collocation points [yj =
cos(jπ/N ) for j = 0,N ] in each layer. The resulting system
of algebraic equations can be written in the abbreviated form

[A] v̂ = c [B] v̂, (38)

where v̂ is the vector containing the algebraic values of the
disturbance vertical velocities at each collocation point. The
dimension of the square matrices [A] and [B] is twice the
number of modes N + 1. The eigenvalues obtained when
solving (38) are the complex angular frequencies ω, and the
imaginary part of ω is the growth rate ωI .

From the spectra obtained by solving (38), we will obtain
growth rate curves giving the variation of the maximum
growth rates as a function of the wave number. We will also
compute neutral curves (values of Re for which an eigenmode
has a zero growth rate whereas all the other eigenmodes have
a negative growth rate) depending on the wave number α,
from which critical Reynolds number Rec can be obtained by
minimization along α. Note that when different eigenmodes
are close to critical in a certain domain of the governing
parameters, we will often define a neutral curve and a critical
Reynolds number for each of these modes, but it is clear
that the true neutral curve and Rec value will be given by the
minimum of these different curves and values.

The numerical procedure has been validated by comparing
our results with those obtained by Hu et al. [16] for Newtonian

fluids. The agreement concerning the values of the Reynolds
number above which instabilities are triggered (neutral curves)
is very good.

IV. RESULTS

We study the stability of a two-layer film flow driven by
gravity down an incline when the fluid in the layers have
either Newtonian or shear-thinning properties. We will assume
that the density of the lower layer is greater than that of
the upper layer, i.e., M1 < 1. Without this assumption, the
upper layer would become denser than the lower layer, and
specific instabilities such as the Rayleigh-Taylor instability
could develop. These instabilities will then be out of the scope
of this paper. We will particularly analyze how the density
and viscosity ratios and the shear-thinning properties of the
fluids influence the temporal growth rates of the different free
surface and interfacial instabilities.

Four different rheological configurations, denoted with two
letters representing the rheology of each layer (N for Newto-
nian and S for shear thinning), will be considered (see Fig. 2).

FIG. 2. Sketch of the four rheological configurations studied.
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These configurations are N-N, S-N, N-S, and S-S configu-
rations. The S-N configuration, for example, corresponds to a
shear-thinning fluid in the upper layer and a Newtonian fluid in
the lower layer. The set of rheological parameters (Lk; nk; Ik)
is chosen equal to (0; 1; 0) for the Newtonian fluid and
(0.8; 0.2; 10−3) for the shear-thinning fluid. The inclination
of the plane is fixed to β = 0.2 (β ≈ 11.46◦), the same value
as in the studies of Chen [14], Loewenherz and Lawrence [2],
and Hu et al. [15,16], the flow rate is fixed to Q1 = 0.65, and
the surface tension effects are neglected (Ca1 = Ca2 = 0).

A. Base flow

When both fluids are Newtonian (N-N configuration), the
viscosity is uniform in each layer, so that the system (11),
(13), (17), and (18) can be solved analytically. In each layer,
the shear rate dU/dy is linear with y with a constant negative
slope (remember that y is directed from the free surface to the
bottom), and for a given density ratio M1, this slope is inversely
proportional to the viscosity. This leads, for each layer, to
a parabolic base velocity profile, with a curvature inversely
proportional to the viscosity. If E1 is the viscosity ratio [(upper
layer/lower layer)], due to the shear stress continuity at the
interface, there is also a change by a factor 1/E1 for the
absolute shear rate (i.e., equivalently the velocity profile slope)
when moving up across the interface.

When the fluid is changed from Newtonian to shear
thinning in one of the layers, the viscosity in this layer is
expected to decrease, particularly in the zones of high shear
rates. Following the observations made in the Newtonian
analytic case, this change of viscosity must lead to an increase
of the absolute shear rate and of the absolute flow profile
curvature. And in the case of a single layer [20], it was found
that this change, at constant flow rate, was responsible for a
decrease in the layer thickness (connected with an increase
of the average velocity) and an increase in the maximum
velocity at the free surface. The base flow profiles for the
configurations where one of the layers, at least, have a
shear-thinning behavior, has to be computed numerically.

1. Influence of the rheology in a two-layer film for E1 = 0.4

We first consider the case where the viscosity is smaller in
the upper layer (E1 = 0.4). The profiles of the viscosity η, the

shear rate dU/dy, and the velocity U are plotted as a function
of the depth y for the N-N, S-N, and N-S configurations in
Fig. 3.

The parameter E1 = 0.4 indicates that, in the Newto-
nian two-layer configuration (N-N configuration), there is a
decrease of the viscosity by this ratio when changing from
the lower to the upper layer and a corresponding increase (by
1/E1 = 2.5) of the absolute shear rate and of the velocity
profile slope at the interface.

In the layers where the fluid is changed from Newtonian
to shear thinning, the expected changes in the flow profiles
(decrease in viscosity and increase of the absolute shear rate
and of the absolute flow profile curvature) are well observed,
whereas in the unchanged Newtonian layers, the flow charac-
teristics (viscosity, shear rate, flow profile curvature) are very
similar to those obtained in the N-N configuration.

The changes in the shear-thinning layer globally affect the
two-layer configuration, with a decrease of the global thickness
of the layers and an increase of the velocity at the free-surface.
These modifications, however, depend on the position of the
shear-thinning layer. If this layer corresponds to the upper layer
(S-N case), we have a clear increase of the free surface velocity
associated with a small decrease of the global thickness. On
the contrary, if this layer corresponds to the lower layer (N-S),
the increase of the free surface velocity is moderate while the
decrease of the global thickness is significant.

For a better understanding of these results, we can first
note that in the S-N case, the flow profile and the thickness
of the lower layer are almost unchanged compared with the
N-N case. The increase of the curvature in the lower part of
the upper layer leads to a steeper increase of the velocity in
this zone and to an increased free surface velocity. The flow
conservation then implies a decrease of the layer thickness,
but, due to the high velocities close to the free surface, this
decrease can remain moderate. On the other hand, in the N-S
case, it is the flow profile in the lower layer which is strongly
affected, and this leads to a strong decrease of the lower layer
thickness and, as a consequence, of the global thickness.

2. Influence of the viscosity ratio E1

The viscosity ratio E1 is known to play a key role in
the stability of superimposed Newtonian fluid films [13]. To

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

Viscosity η

y

N−N
S−N
N−S

−3 −2 −1 0
Shear rate dU/dy

0 0.5 1
VelocityU(y)

)c()b()a(

FIG. 3. Base flow viscosity η (a), shear rate dU/dy (b) and base velocity profile U (c) as a function of the depth y for a two-layer flow with
E1 = 0.4, M1 = 0.99 and for three different rheological configurations (N-N, S-N, N-S). The other fixed parameters are β = 0.2, Q1 = 0.65,
and Ca1 = Ca2 = 0.
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FIG. 4. Base flow viscosity η (a), shear rate dU/dy (b), and base velocity profile U (c) as a function of the depth y for a two-layer flow with
E1 = 2.5, M1 = 0.99 and for three different rheological configurations (N-N, S-N, N-S). The other fixed parameters are β = 0.2, Q1 = 0.65,
and Ca1 = Ca2 = 0.

study the influence of this key parameter on the flow profiles
in our configurations, we now consider the case E1 = 2.5
corresponding to a value of the viscosity ratio, which is the
inverse of the value used in the previous section. The base
flow profiles for this case are shown in Fig. 4 and have to
be compared with the results for E1 = 0.4 in Fig. 3. The
change in the viscosity ratio will affect the shear rate ratio
between the two sides of the interface, or equivalently the
ratio of the velocity profile slopes. In the N-N configuration,
these ratios decrease as 1/E1, and their value is 0.4 for
E1 = 2.5. For example, this will give a larger slope in the
upper layer for E1 < 1 (as E1 = 0.4, Fig. 3) and a smaller
slope for E1 > 1 (as E1 = 2.5, Fig. 4). In the other config-
urations, the velocity profile slope ratio at the interface will
depend on the local viscosity ratio, which could be different
from E1.

As shown in Fig. 4, for large values of E1 as E1 = 2.5,
there is a low shear rate in the upper layer, which results from
the stronger viscosity in this zone and the presence of the
free surface (zero shear rate at y = 0). As a consequence, the
velocity becomes more uniform over the thickness of the upper
layer and this thickness increases. Another consequence is that
the change from Newtonian to shear thinning in the upper
layer fluid has almost no effect on the base flow. The base
flow profiles in the N-N and S-N configurations are thus very
similar. In contrast, when the change from Newtonian to shear
thinning occurs in the lower layer fluid (N-S configuration),
the base flow profiles are modified. These modifications
(decrease of the global thickness of the layers and increase
of the velocity at the free surface), however, are quite similar
to those obtained for smaller values of E1 as E1 = 0.4
(Fig. 3).

Note finally that when the less viscous fluid becomes shear
thinning, i.e., in the S-N configuration for E1 < 1 and in
the N-S configuration for E1 > 1, there is a trend towards
the increase of the interface gap between the local values of
the shear rates (and hence also of the viscosities). The deviation
of the velocity profile through the interface is thus increased,
which leads to the thinning of the layer concerned by the
change of rheology.

3. Influence of the density ratio M1

The influence of the density ratio M1 is illustrated in Fig. 5
by the plots of the base flow profiles in the S-S configuration
for E1 = 2.5 and two different values of the density ratio,
M1 = 0.85 and 0.99.

As shown in Fig. 5, when M1 is increased, the free
surface velocity, the interface velocity and the shear rate
absolute value in both layers increase. Flow conservation then
implies that the two layers get thinner. Similar effects are
observed for any value of the viscosity ratio E1 and for all the
different rheological configurations. These effects are slightly
accentuated when the fluid in the layers has shear-thinning
properties.

B. Linear stability

The effect of the density ratio M1, the viscosity ratio E1, and
the rheological configuration on the stability of the two-layer
flow down an inclined plane is investigated in this section.

Figure 6 shows the surface and interface instability growth
rates ωI as a function of the wave number α in the N-
N configuration, for two values of the viscosity ratio E1

[E1 = 0.4 in Fig. 6(a) and E1 = 2.5 in Fig. 6(b)], different
density ratios M1, and a low Reynolds number (Re = 1).
As shown in previous studies as in Hu et al. [16], at small
values of Re as Re = 1, the surface mode is stable whatever
the value of the viscosity ratio E1. It is what we observe in
Fig. 6 for E1 = 0.4 and 2.5. Stronger values of Re would
be necessary to trigger the surface instabilities. Concerning
the interface mode, it is found to be stable for E1 = 0.4 in
the parameter range studied [Fig. 6(a); the lower layer is the
more viscous in this case], whereas Fig. 6(b) for E1 = 2.5
highlights the two unstable wavelengths that can grow for
E1 > 1. The long-wave instability growth rate is positive and
not much influenced by the density ratio M1. In contrast, the
short-wave interface mode is stable for small values of M1;
its growth rate gradually increases when M1 is increased,
until this mode becomes unstable and eventually supplants
the long-wave mode. These results emphasize the existence
of limit values of the density ratio, a limit value below which
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FIG. 5. Base flow viscosity (a), shear rate (b), and base velocity profiles (c) as a function of depth y in the S-S configuration for E1 = 2.5
and for two different density ratios M1. The other fixed parameters are β = 0.2, Q1 = 0.65, and Ca1 = Ca2 = 0.

the short-wave interface instability disappears, and another
limit value above which the interface instability would switch
from a long-wave to a short-wave interface mode, as already
observed by Hu et al. [15,16]. Note that the results concerning
the interface mode are in good qualitative agreement with the
inertialess results of the literature [2,9,15]. The results have
also been checked to be in very good quantitative agreement
with the results of Hu et al. [16], which take into account
inertia.

For the same governing parameters, we now consider
the other rheological configurations involving shear-thinning
fluids. Figures 7, 8, and 9 show the instability growth rates
as a function of the wave number in the S-N, N-S, and
S-S configurations, respectively. The curves obtained in these
configurations exhibit the same overall variation with α as
those obtained in the N-N configuration. Changes, however,
can be observed, which can modify the stability properties.
For E1 = 2.5, as we have seen in the previous section that
the base flow profiles are not influenced by the rheology of
the fluid in the upper layer, changes are obtained only in the
N-S and S-S configurations [Figs. 8(b) and 9(b)], which also
give identical results. These changes, however, remain small

and mainly affect the interface instability in the small wave
number range, 0 < α < 2, with a decrease of the growth rate.
This induces a slight decrease of the positive growth rate peak
at long wavelength, and a stabilization effect in the α range
in between the long- and short-wave peaks. The main changes
are rather observed for E1 = 0.4. Compared to the case of
two Newtonian layers, when the shear-thinning properties
are introduced in the upper layer fluid [S-N configuration,
Fig. 7(a)], the small and moderate wave numbers (α � 4)
for the interface mode are destabilized, whereas the larger
values of α are stabilized. In contrast, when the lower layer
rheology is changed [N-S configuration, Fig. 8(a)], there is
mainly a stabilization at small wave numbers (α � 2) for the
interface mode and a slight destabilization for larger values of
α. Finally, for the S-S configuration and the interface mode
[Fig. 9(a)], there is mainly a destabilization for moderate wave
numbers (2 � α � 4). Concerning the surface instability, a
slight destabilization is found in the three configurations, but
this destabilization is mainly visible in the S-S configuration,
with growth rates which become positive.

These results indicate that the density ratio M1 as well
as the rheological configuration has a significant influence
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FIG. 6. N-N configuration and E1 = 0.4 (a) or E1 = 2.5 (b): Surface and interface mode growth rate ωI as a function of the wave number
α for Re = 1 and for different density ratios M1. The other fixed parameters are β = 0.2, Q1 = 0.65, and Ca1 = Ca2 = 0.
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FIG. 7. S-N configuration and E1 = 0.4 (a) or E1 = 2.5 (b): Surface and interface mode growth rate ωI as a function of the wave number
α for Re = 1 and for different density ratios M1. The other fixed parameters are β = 0.2, Q1 = 0.65, and Ca1 = Ca2 = 0.

on the stability of stratified film flows. This influence can
be further investigated using stability charts showing the
neutral curves as a function of the wave number. Such charts
are presented in Figs. 10 and 11 for surface and interface
modes in the different rheological configurations. Figure 10
corresponds to the case E1 = 0.4, whereas Fig. 11 corresponds
to the case E1 = 2.5. Since the stability results obtained in
these two cases are fundamentally different, they will be
presented separately in the following. Note finally that we
will denote differently the critical Reynolds numbers of each
mode (minima of the neutral curves). We will use Resurf for
the surface mode, Rel for the long-wave interface mode,
and Res for the short-wave interface mode. Rec will be
used only to denote a critical Reynolds number in a general
way.

1. Stability charts for E1 = 0.4

In the case considered in this section, E1 = 0.4, the lower
layer is the more viscous. We first comment the results
corresponding to the surface modes [Figs. 10(a), 10(c), 10(e),
and 10(g)]. In all rheological configurations, these modes
are stable at low Reynolds number and their destabilization

occurs beyond a critical value Resurf of Re, at small wave
number (long-wave instability). The increase of the density
ratio M1 is always destabilizing, corresponding to an increase
of the unstable zone delimited by the neutral curve, and to a
slight decrease of Resurf. A similar destabilizing effect is also
found, at constant M1, when the rheology is changed, i.e.,
when at least one of the layer is changed from Newtonian to
shear thinning. Such influence of the density ratio M1 on the
surface modes was already observed in the N-N configuration
[13,15,16].

Concerning the interface modes, both long- and short-wave
instabilities are found, and their neutral curves are connected.
In the N-N configuration and for M1 = 1, Chen [14] has shown
that the neutral curve delimits a stable region near the origin in
the Re − α plane and then approaches Re = 0 when α → ∞,
indicating that the flow is linearly stable for Re = 0. Hu et al.
[16] later showed that the decrease of M1 globally decreases
the size of the unstable region (except near α = 0), which
indicates that for M1 � 1 the flow remains linearly stable for
Re = 0. Our results show that this behavior is valid for all
the rheological configurations [Figs. 10(b), 10(d), 10(f), and
10(h)], so that, in all these cases, inertia is necessary to trigger
the interface instabilities.
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FIG. 8. N-S configuration and E1 = 0.4 (a) or E1 = 2.5 (b): Surface and interface mode growth rate ωI as a function of the wave number
α for Re = 1 and for different density ratios M1. The other fixed parameters are β = 0.2, Q1 = 0.65, and Ca1 = Ca2 = 0.

043004-9



MILLET, BOTTON, BEN HADID, HENRY, AND ROUSSET PHYSICAL REVIEW E 88, 043004 (2013)

0 1 2 3 4 5 6
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

α

G
ro

w
th

 ra
te

 ω
I

Surface mode
Interface mode

(a)

0.99

0.95
0.9

0.85 0.8
0.8 0.99

0 1 2 3 4 5 6
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

α

G
ro

w
th

 ra
te

 ω
I

Surface mode
Interface mode

(b)

0.8 to 0.99

0.8

0.85

0.9

0.95

0.99

FIG. 9. S-S configuration and E1 = 0.4 (a) or E1 = 2.5 (b): Surface and interface mode growth rate ωI as a function of the wave number
α for Re = 1 and for different density ratios M1. The other fixed parameters are β = 0.2, Q1 = 0.65, and Ca1 = Ca2 = 0.

Figures 10(b), 10(d), 10(f), and 10(h) also give indications
on the global changes induced by the change of the rheology in
the layers. When the rheology is changed to shear thinning in
the lower layer [Fig. 10(f)], we see a destabilization for small
wave numbers (α < 2 or 3) and a stabilization for larger wave
numbers. In contrast, when the rheology is changed to shear
thinning in the upper layer [Fig. 10(d)], we see a substantial
destabilization in the whole wave number range, except for the
very small wave numbers (α → 0) which are little affected.
As a consequence, in the S-S configuration [Fig. 10(h)], the
destabilization is still accentuated in the whole wave number
range, except the large values of α for which the destabilization
is a little less strong than in the S-N configuration. Note that the
value of the instability threshold at zero wave number, Re0, is
around 20 for both N-N and S-N configurations, whereas it is
around 10 for both N-S and S-S configurations. This indicates
that the rheology of the lower layer controls the stability of
the system in this very low wave number range. In contrast,
the stability at large wave numbers is rather controlled by the
rheology of the upper layer.

We now analyze more precisely the influence of M1 on
the short- and long-wave interface instability for the different
rheological configurations:

(1) In the N-N configuration [Fig. 10(b)], the neutral curves
intersect at a point [denoted as (αcross, Recross)] that appears
to be independent of the density ratio M1. As a result, for
α < αcross, the influence of M1 on the neutral curves is opposite
to the general influence found everywhere else, giving in
particular for α = 0 the stabilizing effect for increasing M1

mentionned by Kao [13] in his long wavelength study. To
further analyze the results, it is convenient to use the critical
values Rel and Res previously defined and corresponding
to the minima of the neutral curves: Rel for the long-wave
instability (in the small wave number range) and Res for the
short-wave instability (in the large wave number range). The
analysis of Fig. 10(b) shows that for values of M1 close to
1, the short-wave interface mode is clearly dominant (Res <

Rel) and the long-wave interface mode, triggered above Rel ,
concerns wave numbers which are not very small but rather
around 1. When M1 decreases, Rel increases (stabilization) and
the corresponding wave number decreases, until M1 ≈ 0.9,

below which this long-wave instability appears for α ≈ 0
and Rel decreases (destabilization). The short-wave instability
(associated with decreasing α when M1 is decreased) remains
dominant, however, until M1 ≈ 0.83. Below this value, the
long-wave instability (with α ≈ 0) is expected to be dominant.

(2) A similar behavior, with a long-wave instability at
Rel switching from small α to α = 0, is obtained in the
N-S configuration [Fig. 10(f)]. However, due to the changes
induced by the change of rheology in the lower layer
(destabilization for small wave numbers, stabilization for
larger wave numbers), the switching occurs for M1 ≈ 0.95,
and the change between short- and long-wave interface mode
occurs for 0.9 < M1 < 0.95.

(3) In the S-N configuration [Fig. 10(d)], the long-wave
instability occurs at clearly nonzero values of α (0.6 < α < 1),
which increase with the decrease of M1 whereas Rel increases.
The strong destabilization at large wave number in this case
allows the short-wave instability to remain the dominant mode
in the studied range of M1 (0.8 � M1 � 0.99).

(4) Finally, the S-S configuration [Fig. 10(h)] is comparable
to the previous S-N configuration. The destabilization is,
however, stronger at small wave number and weaker at
large wave number, so that a transition from the short to
the long-wave instability is now observed, which occurs for
0.85 < M1 < 0.9.

From these observations for the interface instability, we thus
see that the limit values of the density ratio M1, below which
the change of instability from short to long waves takes place,
are stronger (closer to 1) when the lower layer fluid becomes
shear thinning (N-S and S-S configurations). Note also that the
S-N configuration is the first configuration to be destabilized at
short wavelength (beyond Res) when Re is increased, whereas
the S-S configuration is the first to be destabilized at long
wavelength (beyond Rel).

We can finally compare the characteristic critical Reynolds
number for the surface modes and the interface modes. For
values of M1 close to 1, the surface mode and the short-wave
interface mode become unstable at values of Re, Resurf, and
Res , respectively, which are very close. Depending on the
rheological configuration, either one or the other instability
will appear first. In contrast, for smaller values of M1, the
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FIG. 10. Stability maps showing neutral curves delimiting stable (S) and unstable (U) areas for different density ratios M1 =
0.8,0.85,0.9,0.95,0.99 and E1 = 0.4 in the different rheological configurations. The other fixed parameters are β = 0.2, Q1 = 0.65, and
Ca1 = Ca2 = 0.

surface mode will be the first to be unstable, and, depending
on the rheological configuration, the long-wave interface

mode, triggered at Rel , can even appear before the short-wave
interface mode.
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FIG. 11. Stability maps showing neutral curves delimiting stable (S) and unstable (U) areas for different density ratios M1 =
0.8,0.85,0.9,0.95,0.99 and E1 = 2.5 in the N-N and N-S rheological configurations. For this value of E1, we verified that the change of
the rheology in the upper layer fluid has almost no influence on these stability maps. The other fixed parameters are β = 0.2, Q1 = 0.65, and
Ca1 = Ca2 = 0.

2. Stability charts for E1 = 2.5

In this case we keep the same viscosity ratio between the
more viscous and less viscous layers as in the previous section,
but the upper layer is now the more viscous (E1 = 1/0.4 =
2.5). The stability maps of the surface and interface modes for
this case are presented in Fig. 11. As mentioned in previous
sections, for this value of E1, the base flow profiles and the
instability growth rates are not influenced by the rheology of
the fluid in the upper layer. We verified that it is also the case
for the stability maps; i.e., the stability maps for the N-N and
S-N configurations are almost identical as well as those for the
N-S and S-S configurations. It is why only the N-N and N-S
configurations (corresponding to a change of rheology in the
lower layer) are plotted in Fig. 11 and will be discussed in the
following.

The surface modes [Figs. 11(a) and 11(c)] are not very
sensitive to the viscosity stratification effect, so that the neutral
curves for E1 = 2.5 are similar to those obtained for E1 =
0.4 [critical value Resurf beyond which the surface instability
is triggered at long wavelength, destabilizing (though small)
influence of the increase of the density ratio M1]. The change
in rheology from Newtonian to shear thinning for the lower
layer also induces a decrease of the value of Resurf, indicating
a destabilizing influence.

Concerning the interface modes [Figs. 11(b) and 11(d)],
they are unstable in the Re − α plane in two zones, one zone
in the lower left corner below a critical Reynolds number

value Rel,s (the index s denoting a stabilizing limit) (long-wave
interface mode) and the other zone in the upper right part of
the plane (short-wave interface mode), with an intermediate
stable zone centered around α = 1. As already shown by Hu
et al. [16], there is a clear influence of the density ratio M1.
For M1 close to 1, the two unstable zones exist at Re = 0, and
the so-called inertialess instabilities are modified by increasing
Re (stabilization at long wavelength until the disappearance at
Rel,s , destabilization at short wavelength). With the decrease
of the density ratio M1, the long-wave instability is favored as
it occurs in a larger range of Re (increase of Rel,s). In fact,
the neutral curves for this instability still intersect at a point
(αcross, Recross) = (0.3,27) which is independent of the density
ratio M1. As a consequence, for decreasing M1, the unstable
wave number range and the favored wave number decrease
for Re < Recross whereas they increase for Re > Recross [see
Fig. 6(b)]. In contrast, the unstable region at short wavelength
becomes smaller and the instability is eventually triggered
only above a critical Reynolds number Res , which increases
as M1 is decreased. In some cases, as shown by Hu et al. [16],
the unstable region at short wavelength may even disappear
at a moderate Reynolds number, below a critical value of the
density ratio M1.

According to Figs. 11(b) and 11(d), when the lower layer
is changed from Newtonian to shear thinning, the long-wave
interface mode is stabilized [shrinking of the unstable zone,
decrease of the value of Rel,s , change of (αcross, Recross) to (0.3,
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8)] and the short-wave interface mode is destabilized (decrease
of the values of Res). We can highlight the consequences of
these changes. For example, if we compare Fig. 11(b) with
Fig. 11(d) for Re = 30, we see that the long wavelengths
are always unstable in the N-N configuration, whereas they
are stabilized for values of the density ratio M1 � 0.8 in the
N-S configuration. In contrast, at this value of Re and for
M1 = 0.8, the short-wave interface mode is stable in the N-N
configuration and unstable in the N-S configuration. In any
case, the surface instability is also triggered at this value of Re.

3. Discussion

General conclusions can be drawn from the previous
analyses. Whatever the viscosity stratification, the surface
mode is triggered at large wavelength above a nonzero critical
value Resurf and is slightly stabilized by the decrease of the
density ratio M1. Similar trends are found for the short-wave
interface mode: this instability is triggered above a critical
value Res (which could be zero in some cases) and it is
stabilized by the decrease of M1. In contrast, the viscosity
stratification strongly influences the long-wave interface mode,
which is unstable below a critical value Rel,s = Re0 for
E1 = 2.5 (inertialess instability) and above a critical value
Rel (which could be Re0 in some cases) for E1 = 0.4. A
consequence is that, at long wavelength, the interface mode
dominates the surface mode for E1 = 2.5 (i.e., when the upper
layer is more viscous) whereas for E1 = 0.4 (i.e., when the
lower layer is more viscous), as Resurf < Rel , the surface mode
is dominant.

Concerning the influence of the rheology, the stability of the
short-wave interface mode is rather governed by the rheology
of the less viscous layer (upper layer for E1 = 0.4 and lower
layer for E1 = 2.5), with a destabilizing effect when this layer
is changed from Newtonian to shear thinning. In contrast,
the stability of the long-wave modes is rather influenced
by the rheology of the lower layer, but this influence, depending
on the instability concerned and on the value of E1, can be
stabilizing or destabilizing.

V. CONCLUSION

This paper presents a linear stability study of a two-layer
film flow down an incline. Three types of instabilities are
identified in this configuration: a long-wave surface instability,
a long-wave interface instability, and a short-wave interface
instability. The fluid in each layer can be considered as
Newtonian or shear thinning with a Carreau law behavior.
Four configurations are thus possible: N-N, S-N, N-S, and S-S,
where, for example, S-N denotes a shear-thinning fluid layer
over a Newtonian fluid layer. In each of these configurations,
different viscosity and density stratifications can be chosen.
In the study, two viscosity ratios [zero-shear viscosity of
(upper layer)/(lower layer)] have been considered, E1 = 0.4
and E1 = 2.5, corresponding to cases where the upper layer
is, respectively, less and more viscous than the lower layer;
and different density ratios M1, ranging from 0.8 to 1 and
corresponding to a denser lower layer, have been chosen. In
contrast, as a first step, the influence of the surface tension
(at the upper surface and at the interface) has been neglected.

Note finally that the calculations have been done for a fixed
inclination β = 0.2 and a fixed flow rate Q1 = 0.65.

In the general case (layers with shear-thinning properties),
the two-layer base flow has to be numerically calculated.
The flow rate is imposed and the thicknesses of the layers
are computed at the same time as the velocity profiles. The
base flow is found to be very sensitive to the viscosity ratio,
which induces changes in the velocity profiles slopes and in
the thicknesses of the layers. The change of the rheology also
affects the base flow. It induces general changes in the velocity
profiles, but also important changes in the global thickness of
the layers when the lower layer becomes shear thinning. In
contrast, the base flow is almost unaffected by a change of
the rheology in the upper layer, when this upper layer is the
more viscous.

The viscosity stratification greatly influences the stability
of the two-layer film flow. When the lower layer is the less
viscous (as for E1 = 2.5), the interface instability is the more
dangerous, since it can grow without inertia. The long-wave
interface instability is generally dominant as it has positive
growth rates whatever is the value of the density ratio M1,
but for values of M1 close to 1, the short-wave interface
instability can have larger growth rates and become dominant.
This well-known inertialess effect no longer exists when the
viscosity of the two layers is reversed (as for E1 = 4). In this
case, the base flow is indeed very different, with different
thicknesses of the two layers and different velocity profiles:
this affects the velocity perturbation within the layers, giving
a lower shear rate at the interface. With such a decrease of
the interface shear-stress, the inertialess interface instability
is no longer triggered, and the instabilities appear beyond
some critical values of the Reynolds number. In this case, the
long-wave surface instability is generally the dominant mode,
but the short-wave interface instability can become dominant
for values of M1 close to 1.

The fluid rheology also has an influence on the stability of
the two-layer film flow. This influence is particularly important
when the change of rheology concerns the layer with the
smallest viscosity.

Indeed, when the near-wall layer is the less viscous, the
rheology of this layer completely determines the flow stability,
while the rheology of the upper layer has almost no influence
on this stability. For a given zero-shear viscosity, increasing
the shear-thinning behavior of the near-wall layer leads to a
decrease in the growth rates for the long-wave interface mode,
whereas it leads to an increase in the growth rates for the
two other modes, namely, the long-wave surface mode and the
short-wave interface mode. The long-wave interface instability
remains always unstable (zero critical Reynolds number) and is
still generally the most dangerous instability. The transition to
a short-wave interface instability, however, occurs for slightly
smaller values of the density ratio M1.

When the upper layer is the less viscous, the change of
rheology in this upper layer has an influence on the stability of
the flow, but it is not the only influence in this case. This change
of rheology will principally affect the surface instability and
the interface instability in the short wavelength range, with a
destabilizing effect on the neutral curves, whereas a change of
rheology in the lower layer will destabilize the surface instabil-
ity and the interface instability in the long wavelength range.
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We have summarized these behaviors by saying that the
rheology of the less viscous layer rather governs the stability
of the short-wave interface mode, while the rheology of the
lower layer rather governs the stability of the long-wave
modes.

We can finally note that in place of the Carreau model,
a large number of non-Newtonian models could have been
studied here (e.g., Eyring, Prandtl, Williamson, De Kee,
Powell-Eyring, Sutterby, Yeleswarapu, etc. [22]). All of these
models would have lead to the same tendencies as those

described in this paper. We have, however, chosen to focus
on the Carreau model because it captures very precisely the
features of a large amount of fluids. Thus, our paper can
be used by an experimenter to predict the flow stability not
only qualitatively but also quantitatively. We have shown
in particular that the flow stability is dramatically affected
by the rheology of the lower layer. The use of the Carreau
model will enable the experimenter to fit very precisely the
viscosity distribution over the lower layer and to predict the
flow behavior very accurately.
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