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Abstract. The paper offers a parallel between two approaches to con-
ceptual clustering, namely formal concept analysis (augmented with the
introduction of new operators) and bipartite graph analysis. It is shown
that a formal concept (as defined in formal concept analysis) corresponds
to the idea of a maximal bi-clique, while a “conceptual world” (defined
through a Galois connection associated of the new operators) is a dis-
connected sub-graph in a bipartite graph. The parallel between formal
concept analysis and bipartite graph analysis is further exploited by con-
sidering “approximation” methods on both sides. It leads to suggests new
ideas for providing simplified views of datasets.
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1 Introduction

Human mind in order to make sense of a complex set of data usually tries to
conceptualize it by some means or other. Roughly speaking, it generally amounts
to putting labels on subsets of data that are judged to be similar enough. Formal
concept analysis [12, 11] offers a theoretical setting for defining the notion of a
formal concept as a pair made of (i) the set of objects that constitutes the
extension of the concept and of (ii) the set of properties shared by these objects
and that characterize these objects as a whaole. This set of proporties defines
the intention of the concept. Thus, particular subsets of objects are biunivoquely
associated with conjunctions of properties that identify them. This provides a
formal basis for data mining algorithms [19]. Formal concept analysis exploits a
relation that links objects with properties. Such a relation can be viewed as well
as a bi-graph (or bipartite graph) i.e. a graph having two kinds of vertices, and
whose links are only between vertices of different kinds.

The recent discovery that real-world complex networks from many different
domains (linguistics, biology, sociology, computer science, ...) share some non-
trivial characteristics has a considerable raised an interest [25, 1, 17, 13]. These
networks are sparse, highly clustered, and the average length of shortest paths
is rather small with regard to the graph size [25], hence their name of “small
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worlds”. Moreover, most of parameters, and in particular their vertices degree,
follow a power-law distribution [2, 17]. One of the most active fields of this new
network science concerns the problem of graph clustering [21, 10]. This problem
is often called “community detection” in the literature due to its application
to social networks. Intuitively a cluster (or community) corresponds to a group
of vertices with a high density of internal links and only a few links with ex-
ternal vertices. Nevertheless there is no universally accepted formal definition
[10] and making a parallel with formal concept analysis may lead to some rele-
vant way to define graph clusters. Many real-world large networks are bipartite
and it has been shown that such networks also share properties similar to the
above-mentioned ones [15]. While clustering is usually done on projected graphs,
some authors address the problem of community detection directly on bipartite
networks [3, 16]. Besides, techniques inspired from formal concept analysis have
been also used for detecting human communities in social bipartite networks [23].

The purpose of this paper is to start to systematically investigate the parallel
between formal concept analysis and graph-based detection of communities. In
fact, we consider here not only standard formal concept analysis but also an
enlarged setting that includes new operators [8, 9]. This is the graph counterpart
of this enlarged setting that is discussed here. Moreover, extensions of this setting
which allows various forms of approximations of the original setting are then
paralleled and compared with methods used in bi-graph clustering. The paper
is organized as follows, the basic elements of formal concept analysis are first
restated and the other operators are introduced. This leads to the definition
of two Galois connections, namely the classical one inducing formal concepts,
and another one identifying conceptual worlds. Then after a short background
on graphs, it is shown that a formal concept corresponds to a maximal bi-
clique in a bi-graph, while conceptual worlds, obtained by the second Galois
connection, correspond to disconnected sub-parts in the graph. Then different
ways of introducing graduality, uncertainty, or approximation in formal concept
analysis [7, 6] are summarized, before briefly discussing their counterpart in the
bi-graph setting.

2 Extended formal concept analysis

Let R be a binary relation between a set O of objects and a set P of Boolean
properties. We note R = (O,P, R) the tuple formed by these objects and prop-
erties sets and the binary relation. It is called a formal context. The notation
(x, y) ∈ R means that object x has property y. Let R(x) = {y ∈ P|(x, y) ∈ R}
be the set of properties of object x. Similarly, R−1(y) = {x ∈ O|(x, y) ∈ R} is
the set of objects having property y.

Formal concept analysis defines two set operators here denoted (.)∆, (.)−1∆,
called intent and extent operators respectively, s.t. ∀Y ⊆ P and ∀X ⊆ O :

X∆ = {y ∈ P|∀x ∈ X, (x, y) ∈ R} (1)

Y −1∆ = {x ∈ P|∀y ∈ Y, (x, y) ∈ R} (2)

X∆ is the set of properties possessed by all objects in X. Y −1∆ is the set of
objects having all properties in Y .
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These two operators induce a Galois connection between 2O and 2P : A pair
such that X∆ = Y and Y −1∆ = X is called a formal concept, X is its extent
and Y its intent. In other words, a formal concept is a pair (X,Y ) such that
X is the set of objects having all properties in Y and Y is the set of properties
shared by all objects in X.

A recent parallel between formal concept analysis and possibility theory [8]
has led to emphasize the interest of three other remarkable set operators (.)Π ,
(.)N and (.)∇. These three operators and the already defined intent operator can
be written as follows, ∀X ⊂ O :

XΠ = {y ∈ P|R−1(y) ∩X 6= ∅} (3)

XN = {y ∈ P|R−1(y) ⊆ X} (4)

X∆ = {y ∈ P|R−1(y) ⊇ X} (5)

X∇ = {y ∈ P|R−1(y) ∪X 6= O} (6)

Note that (5) is equivalent to the definition of operator (.)∆ in (1). Op-
erators (.)−1Π , (.)−1N , (.)−1∆ and (.)−1∇ are defined similarly on a set Y of
properties by substituting R−1 to R and by inverting O and P.

These new operators lead to consider the following Galois connections:

– the pairs (X,Y ) such that XΠ = Y and Y −1Π = X;
– the pairs (X,Y ) such that XN = Y and Y −1N = X;
– the pairs (X,Y ) such that X∇ = Y and Y −1∇ = X.

In fact only one new type of Galois connection appears, indeed (.)N and (.)Π as
well as (.)∇ and (.)∆ lead to the same remarkable pairs. But pairs (X,Y ) such
that XΠ = Y and Y −1Π = X do not define formal concepts, but rather what
may be called conceptual worlds (or sub-contexts). Indeed, it has been recently
shown [6] that pairs (X,Y ) of sets exchanged through the new connection op-
erators, are minimal subsets such that (X × Y ) ∪ (X × Y ) ⊇ R, just as formal
concepts correspond to maximal pairs (X,Y ) such that X×Y ⊆ R. For example
in Figure 1, pairs ({1, 2, 3, 4}, {g, h, i}) and ({5, 6, 7, 8}, {a, b, c, d, e, f}) are two
conceptual worlds, whereas pairs ({1, 2, 3, 4}, {g, h}), ({5, 6}, {a, b, c, d, f}) and
({5, 6, 7, 8}, {a, c, d}) are -among others- formal concepts.

1 2 3 4 5 6 7 8

a × × × ×
b × ×
c × × × ×
d × × × ×
e ×
f × × ×
g × × × ×
h × × × ×
i ×

Fig. 1. A formal context R and the corresponding bi-graph.

3 Graph reading of formal concept analysis

Let us start by restating some graph theory definitions. A graph is a pair of sets
G = (V,E), where V is a set of vertices and E a set of edges. In the paper only
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undirected graphs will be considered, it means that edges are unordered pairs of
vertices. A graph is bipartite if the vertex set V can be split into two sets A and
B such that there is no edge between vertices of the same set (in other words
for every edge {u, v} either u ∈ A and v ∈ B or u ∈ B and v ∈ A). We note
G = (A,B,E) such a graph where A and B constitute two classes of vertices.

A vertex v is a neighbour of a vertex u if {v, u} ∈ E, we say that u and
v are adjacent. Γ (u) is the set of neighbours of a given vertex u, it is called
neighbourhood of u. An ordinary graph is complete if every couple of vertices
from V ×V are adjacent. A bi-graph is complete if every couple of vertices from
A×B are adjacent.

An induced subgraph on the graph G by a set of vertices S is a graph composed
of a vertex set S ⊆ V , and an edge set E(S) that contains all vertices of E that
bind vertices of S (∀u, v ∈ S, {u, v} ∈ E ⇔ {u, v} ∈ E(S)). A set of vertices S
that induces a complete subgraph is called a clique. If no vertex could be added
to this induced subgraph without loosing the clique property then the clique is
maximal. It is straightforward that every subgraph of a bi-graph is still bipartite,
every vertex keeping the same class. A set of vertices S that induces a complete
subgraph (in a bipartite sense) on a bi-graph G is called a bi-clique and if no
vertex could be added without loosing this bi-clique property then the bi-clique
is maximal.

A path from a vertex u to a vertex v is a sequence of vertices starting with u
and ending with v and such that from each of its vertices there exists an edge to
the next vertex in the sequence. The length of a path is the length of this vertices
sequence minus one (it is to say the number of edges that run along the path).
Two vertices are connected if there is a path between them. We note Sk the set
of vertices connected to at least one vertex of S with a path of length inferior
or equal to k. By definition S0 = S. One can observe that ∀k, Sk ⊆ Sk+1. S∗

is the set of vertices connected to at least one vertex of S with a path of any
length, we have S∗ =

⋃
k≥0 S

k. Two vertices are disconnected if there is no path
between them. Two subsets A,B of vertices are disconnected if every vertex of
A is disconnected from any vertex of B. A subset of vertices S is connected if
there is a path between every pair of vertices of S, An induced subgraph that
is connected is called a connected component. If no vertex could be added to
this induced subgraph without loosing the property of connectedness then the
connected component is maximal. Note that often “connected component” is
used for speaking of a “maximal connected component”.

3.1 From formal context to bi-graph

For every formal context R = (O,P, R), we can build an undirected bi-graph
G = (Vo, Vp, E) s.t. there is a direct correspondence between: the set of ob-
jects O and a set Vo of “o-vertices”, the set of properties P and a set Vp of
“p-vertices”, and between the binary relation R and a set of edges E. In other
words, there is one o-vertex for each object, one p-vertex for each property, and
one edge between an o-vertex and a p-vertex if and only if the corresponding
object possesses the corresponding property (according to R).
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The four operators (.)Π , (.)N , (.)∆ and (.)∇ can be redefined for a set of
vertices in this graph framework by replacing, in equations (3) to (6), O by Vo,
P by Vp and R−1(y) by Γ (y). Operators (.)Π and (.)∆ can also be rewritten in
the following way :

XΠ = ∪x∈XΓ (x) (7) X∆ = ∩x∈XΓ (x) (8)

These notations are interesting since only the neighbourhood of vertices of
X is involved. It permits to immediately understand operators (.)Π and (.)∆

in terms of neighbourhood in the bi-graph : XΠ is the union of neighbours of
vertices of X whereas X∆ is the intersection of these neighbours. Note that with
this writing and interpretation there is no difference between (.)Π and (.)−1Π

neither between (.)∆ and (.)−1∆.
Graph interpretations of (.)N and (.)∇ are less straightforward, nevertheless

XN can be understood as the union of neighbours of vertices of X that have
no neighbours outside of X. In other words it is the set of vertices exclusively
connected with vertices of X (but not necessarily all). Whereas X∇ is −if we
ignore vertices of X− the set of p-vertices not connected to all o-vertices.

3.2 Galois connections as two views of graph clusters

Galois connections induced by (.)∆ and (.)Π can also be understood in the graph
setting framework. On the bi-graph G = (Vo, Vp, E), with X ⊆ Vo and Y ⊆ Vp:
Proposition 1 X = Y −1∆ and Y = X∆, iff X ∪ Y is a maximal bi-clique.

Proof. Let (X,Y ) be a pair such that X = Y −1∆ and Y = X∆. For all x ∈ X
and y ∈ Y , as Y = ∩x∈XΓ (x) we have y ∈ Γ (x) thus {x, y} ∈ E. It means that
the subgraph induced by X ∪ Y is complete. Moreover there is no vertex that
are adjacent to all vertices of X (resp. Y ) which are not in X∆ (resp. Y −1∆),
therefore X ∪ Y is a maximal bi-clique.

If X∪Y is a maximal bi-clique, every vertex of X (resp. Y ) is adjacent to any
vertex of Y (resp. X) and there exists no vertex that is adjacent to all vertices
of X (resp. Y ) which are not in Y (resp. X), therefore it’s straightforward that
Y = X∆ (resp. X = Y −1∆).

Proposition 2 For a pair (X,Y ) the two following propositions are equivalent:

1. X = Y −1Π and Y = XΠ .
2. (X ∪ Y )∗ = (X ∪ Y ) and ∀v ∈ (X ∪ Y ), Γ (v) 6= ∅.

Proof. 1 ⇒ 2. By definition (X ∪ Y ) ⊆ (X ∪ Y )∗. We show by recurrence that
(X ∪ Y )∗ ⊆ (X ∪ Y ). (X ∪ Y )0 ⊆ (X ∪ Y ) is given by definition. We then
assume that it exists k such that (X ∪ Y )k ⊆ (X ∪ Y ). We can notice that
(X ∪ Y )k+1 ⊆ ((X ∪ Y )k)1, by considering that a k + 1 long path is a path
of length k followed of a one edge setp. So (X ∪ Y )k+1 ⊆ (X ∪ Y )1. But as
X = Y −1Π and Y = XΠ all vertices connected to X ∪ Y with a path of length
1 are in X ∪ Y . So (X ∪ Y )k+1 ⊆ (X ∪ Y ). This implies by recurrence that
∀k ≥ 0, (X ∪ Y )k ⊆ (X ∪ Y ). Thus (X ∪ Y )∗ =

⋃
k≥0(X ∪ Y )k ⊆ (X ∪ Y ). We

still have to show that any vertex v of X ∪ Y has at least one neighbour, which
is straightforward if we consider that either v ∈ XΠ or v ∈ Y −1Π .
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2⇒ 1. We show that X = Y −1Π , the proof is exactly the same for Y = XΠ .
Y −1Π is the set of vertices adjacent to one vertex of Y , so Y −1Π ⊂ Y ∗ and
then Y −1Π ⊂ (X ∪ Y )∗. That means that Y −1Π ⊂ (X ∪ Y ), but as the graph is
bipartite: Y −1Π ⊂ X. Let x be a vertex of X, x has at least one neighbour v, v
is in X∗ and therefore in (X ∪ Y )∗, so v ∈ X ∪ Y , but the graph is bipartite, so
v ∈ Y . It’s then straightforward that X ⊂ Y −1Π and therefore X = Y −1Π .

A set S such that S∗ = S is not exactly a maximal connected component
but it is a set of vertices disconnected from the rest of the graph. So if there is
no strict subset S′ of S satisfying S′∗ = S′ it means that there is no subset of S
disconnected from other vertices of S. In other words S is connected and then
S is a maximal connected component. Therefore, the following property:

Proposition 3 For a pair (X,Y ) the two following propositions are equivalent:

1. X = Y −1Π and Y = XΠ and there is no strict subset X ′ ⊂ X and Y ′ ⊂ Y
such that X ′ = Y ′−1Π , Y ′ = X ′Π .

2. X ∪ Y is a maximal connected component (which counts at least 2 vertices).

According to Prop. 1-3, it’s worthnoting that the two Galois connections
correspond to extreme definitions of what a cluster (or a community) could be:
1. a group of vertices with no link missing inside.
2. a group of vertices with no link with outside.

One the one hand a maximal bi-clique is a maximal subset of vertices with a
maximal edge density. Vertices can not be moved closer, and in that sense one
can not build a stronger cluster. On the other hand, a set of vertices disconnected
from the rest of the graph can not be more clearly separated from other vertices.
It corresponds to another type of cluster. In fact, only the smallest of such
sets are really interesting, and they are nothing else than maximal connected
components. This two extreme definitions were already pointed out by [24] for
clusters in unipartite graphs.

4 From approximate connections to flexible clustering

Formal concepts correspond to maximal bi-cliques, while conceptual worlds cor-
respond to disconnected subparts. These two notions need to be defined in a
non-crisp manner in practice, for several reasons. First, the data may be incom-
plete, a link between an object and a property may be just missing although it
exists, or the data may be pervaded with uncertainty when it is unsure if the
considered object has or not the considered property. In graph terms, it means
that an edge may be missing, or be unsure. Second, one may think of forget-
ting some “details” in order to summarize the information more easily: thus one
may forget an unimportant property or an a-typical object. One may also for-
get that an edge is present only because it simplifies the view by disconnecting
weakly connected parts, or introducing some missing edges in order to reinforce
the connectedness inside a potential cluster in order to lay bare a simpler and
more general concept. There are some recent lines of research in formal concept
analysis that aim at making formal concept analysis more flexible. They are now
reviewed, and then the use of random walks in clustered small world graphs is
paralleled with these extensions of formal concept analysis.
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4.1 Graded extended formal concept analysis

There are at least three different ways for making formal concept analysis (ex-
tended with the new −possibility theory-based− operators) more flexible [7,
6]. The first way, which has been the most investigated until now, amounts to
consider that objects may have properties only to a degree. Such fuzzy formal
concept analysis [4] is based on the operator :

X∆(y) =
∧
x∈O

(X(x)→ R(x, y)) (9)

where now R is a fuzzy relation, and X and X∆ are fuzzy sets of objects and
properties respectively, and

∧
denotes the min conjunction operator and →

an implication operator. A suitable choice of connective (the residuated Gödel
implication: a→ b = 1 if a ≤ b, and a→ b = b if a > b) still enables us to see a
fuzzy formal concept in terms of its level cuts Xα, Yα such that (Xα×Yα) ⊆ Rα
where Xα × Yα are maximal, with Rα = {(x, y)|R(x, y) ≥ α}, Xα = {x ∈
O|X(x) ≥ α}, Yα = {y ∈ P|Y (y) ≥ α}.

Another way [7, 6] is related to the idea of uncertainty. The possibilistic
manner of representing uncertainty here is to associate with each link (x, y)
a pair of number (α, β) such as α, β ∈ [0, 1] and min(α, β) = 0 expressing
respectively to what extent it is certain that the link exist (α) and does not
exist (β). A link in a classical formal context corresponds to a pair (1, 0), the
absence of a link to the pair (0, 1) and the pair (0, 0) models complete ignorance
on the existence or not of a link. On this basis a link may be all the more easily
added (resp. deleted) as α (resp. β) is larger.

A third idea [7, 6] is to consider that in a formal concept some properties are
less important, or that some objects are more typical. Then weights are no longer
put on links or edges, but rather on the nodes. Thus forgetting a non compulsory
property (e.g. the ability to fly for a bird) may help building a larger concept
(e.g. birdness, although typical birds fly). Forgetting an object or a property also
suppresses links, which may also help obtaining disconnected subparts.

These three views may provide remedies for building larger formal concepts
and smaller conceptual worlds. Indeed a missing link (x0, y0) may cause that
a pair (X,Y ) is not a formal concept even if ∀x, y ∈ X × Y, (x, y) ∈ R except
for (x0, y0) 6∈ R (missing links (1, h) and (5, c) for example in Figure 2), while
a pair (X,Y ) is not a conceptual world just because it exists (x′0, y

′
0) ∈ R s.t.

(x′0, y
′
0) ∈ X × Y ∪ X × Y (for example the link (4, d) in Figure 2). In such

situations forgetting the “hole” (x0, y0) or the asperity (x′0, y
′
0) might be desirable

for simplifying the view of the general context/graph. But the suppression of
holes or asperities can not be done in a blind manner.

4.2 The random walk view

A large panel of approaches developed within community detection literature use
random walk for identifying communities. The underlying idea is that random
walkers tend to be trapped into communities. It may be, for instance, the basis
for assessing distances between vertices [13, 14]. These distances can then be
used with a hierarchical clustering algorithm to compute communities [20]. In
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1 2 3 4 5 6 7 8

a × × × ×
b × ×
c × × ×
d × × × × ×
e ×
f × × ×
g × × × ×
h × × ×
i ×

Fig. 2. R′: Relation R modified and the corresponding bi-graph.

another view, measuring “how well” random walkers stay into communities can
lead to a relevant quality measure of a given vertices partition [5, 22].

We aim in this section to point out the potential benefits that may be ex-
pected from the parallel between the “diffusion” operator at the basis of random
walk methods and graded extensions of the possibility theory reading of formal
concept analysis operators. Let us consider a random walk on a bi-graph, R is
now replaced by a probabilistic transition matrix for going from a vertex x to
a vertex y, or conversely. The probability is generally equally shared between
the edges directly connected to the starting vertex. Let Px→y be the probability
for going from a vertex x to a vertex y. Then when X(x) is the probability for
a random walker to be in the vertex x ∈ O; the probability XP (y) to reach a
vertex y of P at the next step is given by:

XP (y) =
∑
x∈O

X(x).Px→y (10)

Such a formula can formally be paralleled with the formula defining the
operator at the basis of the definition of a formal concept:

X∆(y) = min
x∈O

X(x)→ R(x, y) (11)

and with the formula of the operator inducing a conceptual world:

XΠ(y) = max
x∈O

X(x) ∗R(x, y) (12)

where R may now be graded, as well as X, XΠ and X∆ and where a usual
choice for ∗ is min, and a residuated implication for →.

Two general ways of relaxing the definition of a formal concept may be
found in the literature. The first line of works relies on the idea of allowing
the formal concept to be fuzzy (due to graded properties), or to be pervaded
with uncertainty as already discussed. Clearly this supposes that the information
about the graduality or the uncertainty is available. Another type of approach
that has been recently considered consists of looking for pseudo concept [18], it
is to say pairs (X,Y ) such that “almost” all properties are shared by “almost”
all objects. Roughly speaking, the idea is to find a minimal envelope of a set of
classical formal concepts that largely overlap.
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This could be also handled differently by using generalized operators already
hinted in [9]. Namely X∆ may be changed into a relaxed operator yielding the
set of properties chaired by most objects in X rather than all :

X∆
Q (y) = min

i
max(R(xσ(i), y), Q(

i− 1

n
)) (13)

where R(xσ(1), y) ≥ R(xσ(2), y) ≥ · · · ≥ R(xσ(n), y) and Q is an increasing
membership function in [0, 1] modelling some idea of “most”.

The parallel between random walks in bi-graph and extended formal concept
operators suggests several lines of research worth of interest:
− Random walk methods [13, 14] can attach numbers to pairs of vertices (e.g.

distance between the two probability distributions to reach any vertex in the
graph starting from each of these two vertices). Such number may be renor-
malised in order to have a “fuzzy” context R′. Note that however these numbers
should not be confused with grades representing satisfaction degrees of proper-
ties, or uncertainty levels. Indeed they rather accounts for the vicinity of the
considered pairs of vertices. Then one may look for fuzzy formal concepts and
fuzzy conceptual worlds defined from the fuzzy context R′. Note that this enables
us to distinguish between the two views of a cluster either as a set of vertices
with no strong links missing inside, or as a set of vertices with only weak links
with outside.
− Random walk approaches rely on the idea that good clusters are sets of ver-

tices almost stable in the sense that a random walker that is inside can difficultly
escape [5, 22]. In formal concept analysis, a formal concept is also a stable set for
the Galois connection operator (X∆∆ = X and Y −1∆−1∆ = Y ). More generally,
one may also consider approximate formal concepts s.t. X∆

Q = Y and Y −1∆Q = X,
and similarly approximated conceptual worlds. This raises the questions of pos-
sibly adapting graph community detection algorithms for finding approximate
formal concepts and approximate conceptual worlds, or to use fuzzy concept
lattice machinery for detecting communities.

5 Conclusion

Starting with a view of a formal context as a bi-graph, the paper has shown
that formal concepts correspond to the idea of maximal bi-cliques, whereas so-
called conceptual worlds, obtained thanks to the introduction of another Galois
connection, correspond to disconnected subsets of vertices. Noticeably enough,
these two constructs reflect two ideal views of the idea of graph cluster, namely a
set of vertices with no link missing inside and a group of vertices with no link with
outside. The last section of the paper has outlined different ways of using fuzzy
or approximate views of formal concept analysis, making also a parallel with
random walks methods. Clearly this is only a preliminary step which suggests
several topics worth of investigation.
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