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Abstract

Defining accurate and compact trial wavefunctions leading to small statistical and fixed-node

errors in quantum Monte Carlo (QMC) calculations is still a challenging problem. Here, we pro-

pose to make use of selected configuration interaction (CI) expansions obtained by selecting the

most important determinants through a perturbative criterion. A major advantage with respect to

truncated CASSCF wavefunctions or CI expansions limited to a maximum number of excitations

(e.g, CISD) is that much smaller expansions can be considered (many unessential determinants

are avoided), an important practical point for efficient QMC calculations. The most important

determinants entering first during the selection process (hierarchical construction) the main fea-

tures of the nodal structure of the wavefunction can be expected to be obtained with a moderate

number of determinants. Thanks to this property, the delicate problem of optimizing in a Monte

Carlo framework the numerous linear/nonlinear parameters of the determinantal part of the trial

wavefunction could be avoided. As a first numerical example, the calculation of the ground-state

energy of the oxygen atom is presented. The best DMC value reported so far is obtained.

Keywords: Perturbatively Selected Configuration Interaction; quantum Monte Carlo; Fixed-Node Diffusion

Monte Carlo
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I. INTRODUCTION

Quantum Monte Carlo (QMC) methods are known to be powerful stochastic approaches

for obtaining accurate ground-state properties of quantum systems. For bosonic systems

the results obtained are essentially exact, up to some statistical error as in any Monte Carlo

approach (see, for example the reference simulations for the He4 quantum liquid[1]). In

contrast, for Fermi systems where the antisymmetry of the wavefunction is to be imposed,

the situation is different. As known, it has not been possible so far to devise a QMC al-

gorithm for fermions that would be both stable (controlled fluctuations of the wavefunction

sign) and exact (no systematic error in the limit of infinite simulation time). In practice,

this difficulty known as the “fermionic sign problem” is circumvented by using the so-called

“Fixed-Node”(FN) approach where the sign instability is removed at the expense of a small

systematic (fixed-node) error. In short, the FN approach consists in defining a juxtaposition

of bosonic-type simulations defined independently within each nodal pocket (domains of

constant sign) of an approximate Fermi (antisymmetric) trial wavefunction, ΨT . When the

nodes (or zeroes) of ψT coincide with the exact nodes, the algorithm is exact. If not -which

is the general case except for some elementary systems- a fixed-node error is introduced.[2]

Using standard trial wavefunctions, this error is in general small,[3] typically a few percent of

the correlation energy for total energies. However, this remarkable accuracy on total energies

can still be insufficient when calculating the energy differences at the heart of quantitative

chemistry:[4] Binding energies, energy variations along a reaction path, forces (viewed as

infinitesimal differences), electronic affinities, electronic transition energies, etc. Indeed, on

the total energy scale these differences are extremely small, at least of the same order of

magnitude, and most often smaller, than the already very small fixed-node error. The pre-

cision on energy differences is thus directly related to the quality of the nodal hypersurfaces

of the trial wavefunction and on the way the fixed-node error compensates or not when com-

puting differences of large total energies.[5],[6] For this reason, defining trial wavefunctions

with accurate nodes is still one of the important issues of quantum Monte Carlo (QMC)

approaches for chemistry.

Besides this important aspect, the trial wavefunction is also directly related to the ef-

ficiency of QMC simulations (defined here as a good convergence of the estimators as a

function of the simulation time and a low level of statistical fluctuations). The QMC meth-
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ods being highly CPU-intensive (“number crunching” approaches) this aspect is of particular

importance. In the important case of the energy, the crucial role of the trial wavefunction is

directly seen from the fact that the closest from the exact wavefunction the trial wavefunc-

tion is, the smallest the statistical error on the total energy is (zero-variance property, see

e.g.[3]).

In view of the importance of the trial wavefunction, much effort has been made to pro-

pose and optimize functional forms that lead to accurate nodes and low level of fluctuations.

In addition, the trial wavefunction must be compact enough to be rapidly evaluated at

each of the millions and more Monte Carlo steps. The standard expression employed in

QMC is the Jastrow-Slater form expressed as a short expansion over a set of Slater de-

terminants multiplied by a global Jastrow factor describing explicitly the electron-electron

and electron-electron-nucleus interactions and, in particular, imposing the electron-electron

CUSP conditions associated with the zero-interelectronic distance limit of the true wave-

function. A variety of alternative forms aiming at better describing the exact wavefunction

have been introduced. Without entering into the details, let us cite the geminal wavefunc-

tion of Sorella and coworkers,[7] the Pfaffian wavefunction of Mitáš and collaborators,[8],

the backflow trial wavefunction of Rios et al.[9], the generalized valence bond (GVB) of An-

derson and Goddard[10], the linear scaling GVB version of Fracchia et al.[11], the Jastrow-

valence-bond wavefunction of Braida et al.[12], or the multi-Jastrow trial wavefunction of

Bouabça et al.[13] Once a trial wavefunction has been chosen, its various parameters (Jas-

trow parameters, determinantal coefficients, molecular orbital coefficients, basis set expo-

nents, and so on) are in general optimized. The criterion employed can be either the min-

imization of the variational energy associated with the trial wavefunction, 〈ΨT |H|ΨT 〉, its

variance 〈ΨT |H2|ΨT 〉 − 〈ΨT |H|ΨT 〉2, or a combination of both. Note that optimizing hun-

dreds/thousands of linear and nonlinear parameters within a framework where the energy

and variance are subject to a statistical noise is not an easy task. A number of solutions have

been proposed, let us just mention here the recent approach of Umrigar and collaborators[14]

and references therein.

In this work we propose to exploit the multi-determinant expansions of the post-

HF approaches of quantum chemistry. So far, multi-determinant expansions in QMC

have been mainly limited to the use of CASSCF-like or CI-like wavefunctions trun-

cated at a moderate number of determinants or configurations (say, a maximum of a
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few thousands) selected by using some threshold in the expansion coefficients (see, e.g.

[15],[16],[17],[18],[19],[20],[11],[21]). To the best of our knowledge, the only DMC calculation

using a complete full CI wavefunction (expansion over all possible determinants in a given

set of molecular orbitals) has been made in Ref. [22] for the Li2 molecule. However, this

calculation involving about 16 000 determinants has been possible only because the number

of active electrons for such a molecule is very small. As well-known, due to the exponential

increase of the dimension of the FCI space, to consider much larger systems is not realistic.

Here, we propose to use trial wavefunctions based on truncated expansions containing the

most “important” determinants while remaining compact enough to be evaluated at each

Monte Carlo step (say, expansions involving at most a few hundreds of thousands of deter-

minants). In quantum chemistry there is a long history of developing approximate schemes

based on various approximations: Configuration Interaction expansion truncated to a certain

level of excitation (single: CIS, double: CISD, etc.), exponential ansatz: CCSD, CCSD(T)

etc., perturbative approaches: Møller-Plesset MP2, etc., CASSCF approaches, and so on.

However, such schemes still generate too many determinants to be tractable in QMC and,

furthermore, the choice of the criterion employed for truncation may be questionable. Here,

we shall follow a different route introduced in the last decades by a number of authors (see,

e.g., [23–31]). In a few words, the approach consists in building the multi-determinantal

expansion iteratively by selecting at each step one determinant (or a group of determinants)

according to a perturbative criterion. In short, a determinant Di (or a group of determi-

nants) is added to the current wavefunction if its (their) energetic contribution(s) is (are)

sufficiently large. In this work the formalism employed is close to the one adopted in the

CIPSI algorithm.[24, 30] Finally, let us note that some time ago Koch and Dalgaard[32]

proposed a method having some similar aspects (add one determinant at a time and try to

keep the multi-determinant expansion as compact as possible) but resting on a completely

different approach for building the expansion.

The contents of this paper is as follows. In Section II, the algorithm used for building the

selected configuration interaction expansion (CIPSI-like algorithm) is presented. In Section

III a few words about the Fixed-Node Diffusion Monte Carlo method employed here are

given. In Section IV the first application to the calculation of the 3P ground-state energy

of the oxygen atom is presented. The various aspects related to the implementation of the

CIPSI algorithm and the fixed-node calculations are described. Finally, the main ideas and
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results of this work are summarized in Sec. V

II. PERTURBATIVELY SELECTED CONFIGURATION INTERACTION

In multi-determinantal expansions the ground-state wavefunction |Ψ0〉 is written as a

linear combination of Slater determinants {|Di〉}, each determinant corresponding to a given

occupation by the Nα and Nβ electrons of N = Nα + Nβ orbitals among a set of M spin-

orbitals {φ1, ..., φM} (restricted case). When no symmetries are considered the maximum

number of such determinants is
(

M

Nα

)(

M

Nβ

)

, a number that grows factorially with M and N .

The best representation of the exact wavefunction in the determinantal basis is the Full

Configuration Interaction (FCI) wave function written as

|Ψ0〉 =
∑

i

ci|Di〉 (1)

where ci are the ground-state coefficients obtained by diagonalizing the matrix,

Hij = 〈Di|H|Dj〉, within the full orthonormalized set, 〈Di|Dj〉 = δij , of determi-

nants |Di〉.

In its simplest form, our multi-determinant wavefunction is iteratively built as follows:

• Step 0: Start from a given determinant (e.g. the Hartree-Fock determinant) or set of

determinants, thus defining an initial reference subspace: S0 = {|D0〉, ...}. Diagonalize H

within S0 and get the ground-state energy E
(0)
0 and eigenvector:

|Ψ(0)
0 〉 =

∑

i∈S0

c
(0)
i |Di〉 (2)

Here and in what follows, a superscript on various quantities is used to indicate the iteration

number.

Then, do iteratively (n = 0, ...):

• Step 1: Collect all different determinants |Dic〉 connected by H to |Ψ(n)
0 〉, namely

〈Ψ(n)
0 |H|Dic〉 6= 0 (3)
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• Step 2: Compute the second-order perturbative energetic change of the total energy

resulting from each connected determinant:

δe(|Dic〉) = − 〈Ψ(n)
0 |H|Dic〉

2

〈Dic|H|Dic〉 − E
(n)
0

(4)

• Step 3: Add the determinant |Di∗c
〉 associated with the largest |δe| to the reference

subspace:

Sn → Sn+1 = Sn ∪ {|Di∗c
〉}

• Step 4: Diagonalize H within Sn+1 to get:

|Ψ(n+1)
0 〉 =

∑

i∈Sn+1

c
(n+1)
i |Di〉 with E

(n+1)
0 (5)

• Go to step 1 or stop if the target size for the reference subspace has been reached.

Denoting Ndets the final number of determinants in |Ψ0(Ndets)〉 and E0(Ndets) the final

energy, a perturbative second-order estimate of the exact energy -the so-called CIPSI energy-

can be obtained as

E0(CIPSI) = E0(Ndets) −
∑

i∈M

〈Ψ0(Ndets)|H|Di〉2
〈Di|H|Di〉 − E0(Ndets)

(6)

where M denotes the set of all determinants not belonging to the reference space and

connected to the reference vector |Ψ0(Ndets)〉 by H (single and double excitations). In what

follows the wave function |Ψ0(Ndets)〉 that will be used for QMC calcaultations will be

referred to as the reference wave function.

At this point a number of remarks are in order:

i.) Although the selection scheme is presented here for computing the ground-state

eigenvector only, no special difficulties arise when generalizing the scheme to a finite number

of states (see, e.g.[30])
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ii.) The decomposition of the Hamiltonian H underlying the perturbative second-order

expression introduced in step 2 is given by

H = H0 + 〈Dic|H|Dic〉|Dic〉〈Dic|

where H0 is the restriction of H to the reference subspace. This decomposition known as the

Epstein-Nesbet partition[33, 34] is not unique, other possible choices are the Møller-Plesset

partition[35] or the barycentric one,[24] see discussion in [30].

iii.) Instead of calculating the energetic change perturbatively, expression (4), it can be

preferable to employ the non-perturbative expression resulting from the diagonalization of

H into the two-dimensional basis consisting of the vectors |Ψ(n)
0 〉 and |Dic〉. Simple algebra

shows that the energetic change is given by

δe(|Dic〉) =

[〈Dic|H|Dic〉 − E0(Ndets)]

[

1 −
√

1 +
4〈Ψ

(n)
0 |H|Dic〉

2

[〈Dic |H|Dic〉−E0(Ndets)]
2

]

2
(7)

In the limit of small transition matrix elements, 〈Ψ(n)
0 |H|Dic〉, both expressions (4) and (7)

coincide. In what follows the non-perturbative formula will be used.

iv.) In step 3 a unique determinant is added at each iteration. Adding a few of them

simultaneously is also possible, a feature particularly desirable when quasi-degenerate

low-lying determinants are showing up. In the applications to follow this possibility has

been systematically used by keeping at each iteration all determinants associated with an

energetic change whose absolute value is greater than a given threshold.

v.) The implementation of this algorithm can be performed using limited amount of

central memory. On the other hand, the CPU time required is essentially proportional

to NdetsN
2
occN

2
virt where Nocc is the number of occupied molecular orbitals and Nvirt the

number of virtual orbitals.
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III. THE FIXED-NODE DIFFUSION MONTE CARLO

In this work the Fixed-Node Diffusion Monte Carlo (FN-DMC) method -the standard

quantum Monte Carlo electronic-structure approach for molecules- is employed. For a de-

tailed presentation of its theoretical and practical aspects, the reader is referred to the

literature, e.g [36–38]. Here, we just recall that the central quantity of such approaches is

the trial wavefunction ΨT determining both the quality of the statistical convergence (good

trial wavefunctions = small statistical fluctuations) and the magnitude of the fixed-node bias

resulting from the approximate nodes of the trial wavefunction. The computational cost of

FN-DMC is almost entirely determined by the evaluation at each Monte Carlo step of the

value of ΨT and its first (drift vector) and second derivatives (Laplacian needed for the local

energy). In view of the very large number of MC steps usually required (typically at least

millions and often much more) to be able of computing such quantities very rapidly is essen-

tial. In contrast with most implementations of FN-DMC where compact forms for ΨT are

used (typically, at most a few hundreds of determinants) quite lengthy multi-determinantal

expansions are considered here (up to 200 000 determinants in the numerical application

presented below). As a consequence, some care is required when computing such expansions.

At first glance, the CPU cost is expected to be proportional to the number of determinants

Ndets involved in the expansion of the trial wavefunction. Actually, it is not true since in

the spin-free formalism used in QMC (Ref. [39] and also [36–38]) each Slater determinant

expressed in terms of spin-orbitals decomposes into a product of two determinants, each

of them corresponding to a given occupation of a set of purely spatial molecular orbitals.

The number of different determinants to be computed is thus of the order of
√
Ndets and

not Ndets. Another point having a significant impact on the computational cost is the

order with which determinants are calculated. Indeed, avoiding to re-compute successive

determinants differing from preceding ones only by a single or double molecular orbital sub-

stitution can be efficient. In practice, this is done by re-actualizing the determinants using a

Sherman-Morisson-type formula.[40] Now, to determine which ordering is the most effective

is a difficult problem of combinatorial complexity. Here, we employ a simple strategy based

on a preliminary preconditioning step. More involved strategies for treating bigger systems

and larger expansions will be presented elsewhere.
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IV. NUMERICAL RESULTS

In this section CIPSI and FN-DMC calculations of the 3P ground-state energy of the

oxygen atom are presented. Among the first-row atoms O is known to be the atom whose

nodes are the most difficult to describe (fixed-node error of about 6% of the correlation

energy when using Hartree-Fock nodes[41]).

A. CIPSI wavefunctions

Selected configuration interation wave functions are constructed using Hartree-Fock

canonical atomic orbitals obtained with various Dunning basis sets,[42] cc-pVXZ (denoted as

VXZ), aug-cc-pVXZ (denoted as AVXZ), and cc-pCVXZ basis sets (denoted as CVXZ) with

X=D,V,T,Q,5. All-electron calculations are performed and the full set of atomic orbitals

are active in the excitation process, except when freezing the 1s innermost atomic orbital

as indicated (FC for Frozen Core).

In figure 1 the convergence of the variational E0(Ndets) and CIPSI energies (variational +

PT2 correction) for the VDZ, VTZ, VQZ, and V5Z basis sets as a function of the number of

determinants kept in the selection process is shown. The exact non-relativistic ground-state

energy -75.0674 evaluated by Chakravorty et al. [43] is also indicated. As seen a striking fea-

ture is the extremely rapid convergence of total energies. To better visualize this convergence,

particularly at small number of determinants, the abscissa has been scaled logarithmically.

As it should be the variational energy associated with the reference wavefunction converges

to the asymptotic limit from above. In contrast, the CIPSI energy including second-order

correction is found to systematically converge from below. Remarkably, in all cases the

convergence is attained for a tiny fraction of the total number of determinants of the FCI

space. Quantitatively, it is interesting to determine, for each basis set, the minimum number

of determinants needed to reach one percent or less of the total correlation energy computed

within the basis considered. For the DZ basis set this level of accuracy is attained with

about 500 determinants for E0(Ndets) and about 80 determinants for the CIPSI energy. For

TZ, QZ, and 5Z, these numbers are (∼10 000, ∼ 40), (∼30 000, ∼ 90), and (∼50 000, ∼
300), respectively. It is seen that the CIPSI energy convergence depends weakly on the basis

set size, a remarkable result illustrating that the second-order correction is able to recover
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most of the missing part. In contrast, for the variational energy the minimum number of

determinants needed increases as a function of the basis set size. However, this increase is

moderate when compared with the exponential increase of the FCI space dimensionality.

Quantitatively, the target accuracy of less than 1% of the correlation energy is attained at

the variational level for a fraction of determinants given by f = Ndets

NFCI
∼ 7.0 10−4, ∼ 2.0 10−5,

∼ 3.3 10−7, and ∼ 9.1 10−9 for the DZ, TZ, QZ, and 5Z basis sets, respectively. However,

note that in the context of building compact trial wave functions for QMC the key quantity

is the total number of contributing determinants (associated with the computational cost)

and not the fraction. To better visualize how the energies converge, Figure 2 presents a

blow-up of figure 1 in the region of the large number of determinants for the two biggest

basis sets, QZ and 5Z. Very similar behaviors are obtained for the DZ and TZ smaller basis

sets. Once more the very rapid convergence of the full energy including the second-order

energy correction is clearly seen. Regarding the variational energy, the convergence is much

less impressive but still very satisfactory. It is reasonable to expect the convergence of both

variational and CIPSI energies to a common asymptotic value as it should be.

A key aspect of CIPSI is that the multi-determinantal expansion is built by selecting the

determinants according to their contribution to the wavefunction and total energy and not

according to some fixed maximum level of excitations (single, double, triple,..) as it is usual

in most post-Hartree-Fock schemes. In figure 3 this aspect is illustrated by showing the

evolution of the number of selected determinants corresponding to a given excitation level

as a function of the total number of determinants kept during the selection process up to the

first 50 000 determinants (TZ basis basis set). Starting from the unique HF determinant with

no excitation (determinant #1), the first determinants to enter are of double-excitation type

(from determinant #2 to determinant #19), the 20-th is a single excitation determinant, etc.

Table I reports when a determinant of a given excitation level class appears for the first time

(“occurence” time) together with the total number of determinants in each class of excitation

level at the end of the selection process. It is remarkable to see how far we are from a selection

process where the derminants would be chosen according to their level of excitation (lower

numbers of excitations first). In particular, high-level excitations enter quite soon into the

wavefunction: At N = 1188 and N = 8159 for 5-uple and 6-uple excitations, respectively

(here, no 7- and 8-uple excitations are observed). Single and double-excitation are found

to saturate while the other types of excitations are still increasing in number. After 50
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000 selected determinants, the most numerous determinants are of quadruple- and triple-

excitation types.

Table II collects the set of results obtained with various basis sets and truncation levels

(number of determinants kept in the reference wavefunction). The data are presented for

the VDZ, AVDZ, VTZ, AVTZ, VQZ, AVQZ, CVQZ, and V5Z basis sets. In the case of

the VDZ, VTZ, and VQZ basis set results obtained by freezing the 1s core orbital are also

given. When available (VDZ and VTZ basis sets) the Full CI (FCI) energy is indicated. We

also report the FCI-QMC results of Booth and Alavi[44] for the AVDZ, AVTZ, AVQZ, and

AV5Z basis sets. In each case the total number of determinants of the FCI space is given.

For each total energy the percentage of the exact correlation energy is given in brackets.

As already seen qualitatively on the figures 1 and 2 the convergence of the variational and

CIPSI energies to the FCI limit is very statisfactory for all basis sets. For the DZ basis

set, the FCI, variational, and CIPSI energies coincide with seven digits in the VDZ-FC and

VDZ cases and with about six digits for AVDZ. For the larger basis sets, the differences are

always smaller than the milliHartree (chemical accuracy). Finally, it is interesting to note

that using a basis set adapted to the core region (CVQZ) an energy value of -75.054 38 has

been obtained here, much lower than the best value of Booth and Alavi obtained with the

V5Z basis set, namely E0 = -75.037 49(6). This latter result illustrates the quantitative

importance of the core contribution to the total atomic energy. However, when computing

energy differences for molecular properties such a purely atomic contribution is expected to

cancel almost entirely.

B. QMC calculations using selected configuration interaction wavefunctions

In figures 4 and 5 the fixed-node DMC ground-state energies for the oxygen atom as a

function of the number of determinants kept for the VDZ, VTZ, and VQZ basis sets are

presented. Figure 4 shows the entire curve using a logarithmic scale for the abscissa, while the

region at small number of determinants is presented in figure 5 with a standard linear scale.

As seen, except in one case that shall be discussed below (VQZ at Ndets = 50), the fixed-

node energy is found to decrease regularly with the number of determinants. Such a result

shows that a simple and systematic control of the nodal quality of the trial wavefunction

through determinantal selection is possible. Although such a remarkable behavior is not
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easy to justify mathematically, it is coherent with the fact that the selection process realizes

a hierarchical build up of the main features of the wavefunction and, thus, of its nodal

structure. It is also coherent with the fact that the second-order perturbative correction

was able to recover most of the missing part of the FCI energy very rapidly as a function of

the number of determinants kept, thus confirming that the most important features enter

quickly the reference wavefunction upon selection.

In most QMC works a prelimary optimization step of the trial wavefunction is performed

before running DMC calculations. It is done because the introduction of the various N -body

terms aiming at better describing the physical properties of the trial wavefunction (Jastrow

factor, backflow transformation, geminal functions, etc.) has a strong impact on the ini-

tial determinantal part optimized in the absence of such terms. To decrease the fixed-node

error, it is thus necessary to re-optimize all parameters of the trial wavefunction including

those of the determinantal part (all molecular orbitals and determinantal coefficients). In

practice, it can be a particularly tedious task, although much effort has been produced to

make it as automatic as possible. The fact that the objective function to be minimized (to-

tal energy, energy variance, or a combination of both) is calculated with a statistical noise

and that most parameters are non-linear are the two main difficulties for the optimization.

Here, the situation is different since the optimization of the determinantal part is overcome

when using perturbatively selected interaction configuration expansions. Eventually, the

only optimizable parameters left are those not changing the nodes (typically the Jastrow

parameters). Here, we have chosen to compute the FN-DMC energies using the pure CIPSI

wave functions without Jastrow term, so that no optimization at all was necessary. Actu-

ally, the deterministic construction of a reference function through the diagonalization of

a truncated Hamiltonian matrix must be considered as an optimization step (minimization

of the total energy with respect to the coefficients of the multi-determinantal expansion).

However, in sharp contrast with what happens in QMC, such a step is simple and automatic

(no noise and linear parameters). This aspect will be particularly interesting when more

complex systems will be considered. Finally, a few words of caution are in order. As seen

above, in one case (VQZ basis set and small number of determinants, see Figs.4 and 5) the

fixed-node energy is found to go up instead of decreasing. This result may indicate that the

behavior of the fixed-node error is not so simple. However, it is also possible to interpret it

as a transient effect related to the small number of determinants and large basis set regime.
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In Table III the Fixed-Node DMC energies obtained using several basis sets and various

sizes of the reference wave function are presented. The correlation energy recovered in the

FN-DMC calculations varies from 90% to nearly 100% depending on the nodal structure of

the reference wave function. As was the case at the FCI level, to use a basis set adapted

to the core region (CVQZ) is quantitatively important when highly-accurate total FN-DMC

energies are searched for. This result illustrates the fact that the nodes in the nucleus region

play a significant role. Our best total energy is obtained with the CVQZ basis set and 200

000 determinants. The value obtained is -75.065 8 ± 0.0001 recovering 99.4 ± 0.1% of the

correlation energy. To the best of our knowledge it is the best FN-DMC value reported

so far for the oxygen atom. Note that it is slighter lower than the value of -75.065 4 ±
0.0001 obtained very recently by Seth et al.[20] with a fully optimized multideterminant-

Jastrow-backflow trial wave function. For comparison Table III reports also some of the

most accurate energies obtained for this atom by different methods. At the FCI level the

best result we know is that of Booth and Alavi.[44] At the FN-DMC level, it is that of Seth

et al. just mentioned. Finally, to the best of our knowledge the best energy reported up

now is the value obtained by Gdanitz using the r12-MR-ACPF method.[45]

V. SUMMARY

In this work we have proposed to use trial wave functions for QMC based on selected

configuration interaction (CI) expansions. The expansion is built iteratively by selecting

at each step the most important determinants through a perturbative criterion. In short,

a determinant Di (or a group of determinants) is added to the reference wavefunction if

its (their) energetic contribution(s) is (are) sufficiently large (CIPSI-like algorithm). In

practice, the expansion is stopped for the maximum number of determinants compatible

with a rapid evaluation of the trial wavefunction at each step of the QMC calculation (here,

a few hundreds of thousands of determinants for the oxygen atom). The main advantages

of such wave functions are as follows.

i.) In constrast with truncated CASSCF wavefunctions or CI expansions limited to a

maximum number of excitations (e.g, CISD), near FCI quality for the reference function can

be reached with a much smaller number of determinants (many determinants with negligible

weight in the exact wavefunction are avoided). For the case of the oxygen atom, the error
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with respect to the FCI limit for the DZ and TZ basis sets is systematically smaller than

one milliHartree with a number of determinants not exceeding 105. For the largest QZ and

5Z and a comparable number of determinants, the error does not exceed a few milliHartree.

ii.) Because the reference wave function is built hierarchically (most dominant determi-

nants first), it is reasonable to expect that its overall quality improves as the number of

determinants is increased and, in particular, its nodal structure. In this work, this point has

been verified for the oxygen atom but its validity for more complex systems remains to be

investigated.

iii.) Taking for granted the nodal quality of the multi-determinantal wavefunction when

the CI expansion is sufficiently large, the tedious and delicate task of re-optimizing in a

QMC framework the numerous linear and nonlinear parameters of the determinantal part

can be avoided. Such a possibility of constructing optimal nodes in a purely deterministic

and automatic way is a very appealing feature for future applications.

Finally, let us insist that the various aspects just discussed need to be investigated for

more realistic systems beyond the oxygen atom. A study of the potential energy curve of

the first-row diatomics molecules is presently underway.
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Excitation class First occurence Total number of determinants

None (HF) 1 1

Single 20 34

Double 2 2 205

Triple 194 16 870

Quadruple 413 29 618

Quintuple 1188 1 184

Sextuple 8159 88

Septuple 0 0

Octuple 0 0

Total 50 000

TABLE I: First occurence and total number of determinants of each class of excitation during the

selection process up to the first 50 000 determinants (VTZ basis set).
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Basis set Ndets E0(FCI) Ndets E0(Ndets) EPT2 E0(CIPSI)

DZ

VDZ FCb
∼ 5.6 104 -74.910 15 [39.1%] 50 000 -74.910 15[39.1%] 0.0 -74.910 15[39.1%]

VDZ ∼ 7.3 105 -74.911 75 [39.7%] 50 000 -74.911 75[39.7%] -3.5 10−9 -74.911 75[39.7%]

AVDZ ∼ 5.9 107 -74.927 72(2)a[45.9%] 50 000 -74.927 67[45.9%] -9.9 10−6 -74.927 68[45.9%]

TZ

VTZ FCb
∼ 9.6 106 -74.974 24 [63.9%] 50 000 -74.974 15[63.9%] -1.5 10−5 -74.974 17[63.9%]

VTZ ∼ 5.8 108 -74.985 28 [68.2%] 100 000 -74.985 19[68.1%] -9.0 10−5 -74.985 28[68.2%]

AVTZ ∼ 2.1 1010 -74.990 77(4)a[70.3%] 100 000 -74.990 13[70.1%] -2.9 10−4 -74.990 41[70.2%]

QZ

VQZ FCb
∼ 4.5 108 - 50 000 -74.993 15[71.2%] -4.3 10−4 –74.993 57[71.4%]

VQZ ∼ 9.1 1010 - 100 000 -75.022 69[82.7%] -3.2 10−4 –75.023 00[82.8%]

AVQZ ∼ 2.0 1012 -75.025 34(4)a[83.7%] 200 000 -75.022 69[82.7%] -2.1 10−3 –75.024 76[83.5%]

CVQZ ∼ 2.7 1012 - 250 000 -75.051 67[93.9%] -2.7 10−3 –75.054 38[95.0%]

5Z

V5Z ∼ 5.6 1012 - 200 000 -75.027 40[84.5%] -9.9 10−4 –75.028 39[84.9%]

AV5Z ∼ 8.5 1013 -75.037 49(6)a[88.4%]

TABLE II: Variational total energy, E0(Ndets), and CIPSI total energy, E0(CIPSI)= E0(Ndets)

+ EPT2, for the 3
P ground-state of the oxygen atom using various basis sets and numbers of

determinants in the reference wavefunction. For each energy the percentage of the exact correlation

energy recovered is given in brackets. FCI-QMC calculations of Booth and Alavi[44] are given for

comparison.
aValues from Ref.[44].
bFC refers to a (1s2) Frozen-Core.
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Basis set Ndets E0(FN-DMC) Correlation energy (%)

cc-pVDZ 1 (HF) -75.041 8(5) 90.1(2)

cc-pVDZ 5 000 -75.051 9(4) 94.0(2)

cc-pVTZ 1 (HF) -75.045 7(4) 91.6(2)

cc-pVTZ 2 000 -75.059 5(4) 96.9(2)

cc-pVQZ 20 000 -75.064 2(2) 98.8(1)

cc-pCVQZ 100 000 -75.065 8(1) 99.4(1)

Other works

FCIQMCa -75.037 49(6) 88.40(2)

FN-DMCb -75.065 4(1) 99.2(1)

r12-MR-ACPFc -75.066 960 99.83

Exact NRd -75.067 4 100.0

TABLE III: FN-DMC energies and percentages of the correlation energy recovered for the 3
P

ground-state of the oxygen atom using various basis sets and truncation levels for the reference

wavefunction. Comparison with accurate values available in the literature.
a Ref.[44]
b Ref.[20]
c Ref.[45]
d Ref.[43]
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FIGURE CAPTIONS

• Fig. 1 Convergence of the variational E0(Ndets) (denoted VXZ) and CIPSI energies

(variational + PT2 correction, denoted CIPS/VXZ) for the VDZ, VTZ, VQZ, and V5Z

basis sets as a function of the number of determinants kept in the selection process. FCI

values for the VDZ and VTZ basis sets are indicated together with the estimated exact

non-relativistic ground-state energy[43].

• Fig. 2 Blow-up of figure 1 in the region of large number of determinants for the two

biggest basis sets, VQZ and V5Z.

• Fig. 3 Number of determinants in each excitation class (single, double, triple, quadruple,

quintuple, sextuple excitations) with respect to the total number of determinants in the

reference wave function.

• Fig. 4 Fixed-node DMC ground-state energies for the oxygen atom as a function of the

number of determinants kept for the VDZ, VTZ, and VQZ basis sets. A logarithmic scale

for the abscissa is used.

• Fig. 5 Fixed-node DMC ground-state energies in the small number of determinants region.
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