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Abstract. The Vehicle Routing Problem with TimeWindows (VRPTW)
consists in determining the routing plan of vehicles with identical capac-
ity in order to supply the demands of a set of customers with predefined
time windows. This complex multi-constrained problem has been widely
studied due to its industrial, economic and environmental implications.
In this work, we are interested in defining the number of vehicles needed
to visit all the customers. This objective is very important to evalu-
ate the fixed costs for operating the fleet. In this paper, we provide an
analysis of several lower bounds based on incompatibility between cus-
tomers and vehicle capacity constraints. Then we develop an adaptation
of Energetic Reasoning algorithm for VRPTW with a limited fleet. The
proposed approach focuses on some time-intervals and exploits time con-
straints, incompatibility graph and bin packing models in order to obtain
new valid lower bounds for the fleet size. Experiments conducted on the
standard benchmarks show that our algorithms outperform the classi-
cal lower bound techniques and prove the optimality for 339 out of 468
instances.

Keywords: vehicle routing, time windows, lower bounds, energetic rea-
soning.

1 Introduction

In today’s business world, transportation costs become a major share of the total
logistic expenses of companies. That is why many companies try to improve their
transportation by using rational manners and effective tools. The objective of
these problems is to make a vehicle scheduling strategy in order to minimize
the number of routes and the corresponding total travel distance or cost. In the
literature such problems are referred to as routing problems.

The vehicle routing problem with time windows (VRPTW) [8] is among the
most studied variants of routing problems due its wide range of applications.
Common examples are newspaper delivery, beverage and food delivery, commer-
cial and industrial waste collection [11]. In VRPTW, a set of customers must
be served by a fleet of vehicles located in a single depot. A quantity of goods
should be delivered to each customer whose service takes an amount of time.
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Every customer is associated with a time window that represents the interval of
time when the customer is available to receive the vehicle service. This means
that if the vehicle arrives too soon, it should wait until the opening of the time
window to serve the customer while too late arrival is not allowed. Since deliver-
ies cannot be split, a customer is always served by a single vehicle. All vehicles
are identical and have a maximum capacity Q. The aim is to plan the minimal
number of routes starting and ending in a unique depot in order to serve all the
customers while respecting all the time windows and capacity constraints.

VRPTW was first introduced by [23]. Both exact and heuristic algorithms
have been proposed to solve VRPTW. Most of the exact methods focus on the
variant of the problem where the number of available vehicles is not fixed. A
review on the exact methods up to 2002 is reported in [5]. Kallehauge in [15]
gave a detailed analysis of existing formulations. More recently, Baldacci et al.
[3] reviewed mathematical formulations, relaxations and recent exact methods.
They reported the computational comparison between the methods proposed in
[13], [6] and [2] that are considered as the most effective exact methods in the
literature. These approaches have significantly improved the quality of the lower
bounds for instances with up to 100 customers. The key factor of their success
is the effective combination between the set partitioning formulation and the
column generation based algorithms.

Since, VRPTW is an NP-Hard problem [19], the computational times for
exact methods can be very high, even for instances with a moderate size. This
has been the motivation for some researches to develop approximate methods.
It is worth pointing out that the literature concerning VRPTW is split accord-
ing to the objective considered. While exact methods usually minimize the total
traveled distance, most heuristics consider a hierarchical objective which first
minimizes the number of vehicles used and then the total distance. Thus, a so-
lution that employs fewer vehicles is always better than a one using more, even
if the total traveled distance of the first solution is worse. The best performing
heuristics are the hybrid genetic algorithm of [14], the column generation heuris-
tic of [1] and the memetic algorithm of [18]. A new optimization framework was
later developed by [25] for the distance minimization objective only. This frame-
work is an iterative procedure between optimization and deterioration phases
and uses a genetic algorithm as an optimization methodology. A third stream of
research focuses on solving VRPTW as a multi-objective problem in which both
vehicles and cost are considered depending on the needs of the user [24] [22].

The goal of this paper is to use scheduling methods via Energetic Reason-
ing in order to develop new lower bounding procedures for VRPTW. This is
mainly based on constraint propagation concept. The objective is to reduce the
computational effort by removing some values from the variables of the problem
because a given subset of the constraints cannot be satisfied. The remained of
the paper is organized as follows. Section 2 briefly describes the problem. In Sec-
tions 3 and 4, the detailed description of the proposed lower bound methods is
given and in Section 5 the results of a computational study are reported. Finally,
Section 6 provides some concluding remarks.
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2 Problem formulation

In the following, we present a mixed integer formulation for VRPTW. The prob-
lem is modeled by an oriented graph G = (V +, E), where V + = {0, 1, 2, ..., n} is
the vertex set representing the set of customers V = {1, 2, ..., n} and the depot
0. E = {(i, j) : i 6= j, i, j ∈ V +} is the edge set. The capacities of all vehicles are
equal and are denoted by Q. A demand qi, a service time si and a time window
[ei, li] are associated to each vertex i ∈ V . If the vehicle v arrives earlier than
ei, it must wait before the service can start. Each edge (i, j) ∈ E is associated
with a travel cost δi,j which satisfies the triangle inequality. The vehicle must
start and finish its tour at the depot. Each customer must be served within a
predefined time window and assigned to exactly one vehicle. The total size of
deliveries for customers assigned to the same vehicle must not exceed the vehicle
capacity Q and the travel cost/time C(R) of each tour R must not exceed l0
which is the latest possible arrival time to the depot.

The model involves three types of variables: the binary routing variables
xij ∈ {0, 1} (i, j ∈ V +), the scheduling variables wi ≥ 0 (i ∈ V ) and the vehicle
load variables yi (i ∈ V ). The routing variables xij is one if a vehicle traverses
the arc (i, j) ∈ E. The scheduling variable wi denotes the time the vehicle arrives
at customer i ∈ V . yi denotes the vehicle load at departure from customer i.
The formulation is as follows:

min
∑

i∈V

x0i (1)

subject to:
∑

j∈V +

xij = 1 ∀i ∈ V (2)

∑

j∈V +

xij −
∑

j∈V +

xji = 0 ∀i ∈ V + (3)

wj ≥ wi + xij(max(δi,j + si, ej − li))− (1− xij)(li − ej) ∀i, j ∈ V (4)

ei ≤ wi ≤ li ∀i ∈ V (5)

yj ≥ yi + qj − (1− xij)(Q− qj) ∀i, j ∈ V (6)

qi ≤ yi ≤ Q ∀i ∈ V (7)

xij ∈ {0, 1} ∀i, j ∈ V + (8)

The objective (1) is to minimize the total number of vehicles used to serve the
customers. Constraints (2) and (3) define the routing network and the constraints
(4) and (5) guarantee the connectivity of each tour and ensure that the time
windows are respected. We assume that the time windows are ajusted such that
ei = max(ei, δ0,i) and li = min(li, l0− (δi,0+si)) ∀i ∈ V . Constraints (6) and (7)
ensure that the vehicle’s capacity is not exceeded. Also constraints (6) eliminate
subtours in a manner similar to (4). Finally, (8) are integral constraints.
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3 Classical lower bounding techniques

There were only few attempts to propose lower bounds for VRPTW when the
objective is to minimize the number of vehicles. To the best of our knowledge,
the most competitive results are currently offered by Kontoravdis and Bard
[17]. In this section, we briefly review the main features of their lower bounding
heuristics.

3.1 A lower bound based on incompatibilities between customers

The first lower bound is deduced from the incompatibility constraints. Let i and
j be two customers. If there is no feasible route containing i and j then they
define an incompatible pair denoted by i||j. Such a situation occurs if one of the
following conditions is verified:

1. Customers i and j cannot be in the same route due to their time window
constraints:
(ei + si + δi,j > lj) ∧ (ej + sj + δj,i > li)⇒ i||j.

2. The travel cost of any tour with i and j exceeds the cost limit l0:
(C(R1) > l0) ∧ (C(R2) > l0) where R1 = (0, i, j, 0) ∧R2 = (0, j, i, 0)⇒ i||j.

3. The sum of the demands is greater than the vehicle capacity:
qi + qj > Q⇒ i||j.

Using these conditions, we build the graph of incompatibilities between cus-
tomers defined as: GV

inc = (V,EV ) where EV = {(i, j) ∈ V × V : i||j}. Based
on this graph the minimum number of routes to be used, denoted LBClique, is
equal to the size of the maximum clique extracted from GV

inc.

3.2 A lower bound based on vehicle capacity constraints

The second bound is based on a relaxation of time window constraints. When
considering only the capacity constraints, VRPTW can be reduced to a Bin
Packing Problem (BPP). Each vehicle is considered as a bin with fixed size Q

and each customer demand as an item with size qi that should be put in a bin.
Any lower bound LBCapacity on the number of bins required to pack all the
items is considered as a valid lower bound for VRPTW.

3.3 A lower bound based on the amount of needed travel time

This lower bound consists of calculating the minimum number of bins LBBP of
capacity l0 to pack n +m items. The size θi of an item i, 1 ≤ i ≤ n, represents
the necessary amount of time that a vehicle needs to serve customer i and to
travel to its closest neighbor. This time is defined by:

θi ← min
j∈V +

{max(δi,j + si, ej − li)} (9)

The sizes of the other m items correspond to the m least travel times from the
depot to the first served customers where m = max(LBClique, LBCapacity).
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4 New lower bounds inspired from Energetic Reasoning

In this section, we first present a brief overview of Energetic Reasoning, then we
discuss its adaptation to VRPTW.

4.1 Energetic Reasoning

Energetic Reasoning (ER) is one of the most powerful propagation algorithms.
It has been originally developed by Erschler et al. [7] for Cumulative Schedul-
ing Problems (CuSP). The idea is to propose a smart way to simultaneously
consider time and resource constraints in a unique reasoning. In this context,
the energy is generally defined by multiplying the time duration by the resource
quantity of a given time interval. Considering the quantities of energy supplied
by the resources and consumed by the tasks within given intervals, the energetic
approach aims to develop satisfiability tests to ensure that a given schedule is
feasible. Since its inception, Energetic Reasoning has gained popularity and has
been used for solving more complex scheduling problems [21].

In order to keep the same notation used for vehicle routing problem, we
describe the CuSP as follows. We consider a set V of n activities to be scheduled
on a resource of quantity m. Each activity i has a release time ei, a latest start
time li and a processing time si. Moreover, the activity i requires a constant
amount bi of resource throughout its processing. We will deal here only with the
case where bi = 1, ∀i ∈ V . This is equivalent to the problem of scheduling n

activities on m identical parallel machines. For ease of presentation, we denote
this problems as PMSP.

Given a time interval [t1, t2], with t1 < t2, the part of an activity i that must
be processed between t1 and t2 is called work of i in the time interval [t1, t2]. To
compute this work, the activities are either left-shifted or right-shifted on their
time window, which means that, they can start either at their release date ei, or
at their latest start time li. Thus, the work of an activity i over [t1, t2] is equal
to the minimum between its left work and its right work. For convenience, the
left work, the right work and the work of an activity i over [t1, t2] are denoted
respectively Wleft(i, t1, t2), Wright(i, t1, t2) and W (i, t1, t2). They are formally
defined as follows:

Wleft(i, t1, t2) = min{ t2 − t1, si,max(0, ei + si − t1)} (10)

Wright(i, t1, t2) = min{ t2 − t1, si,max(0, t2 − li)} (11)

W (i, t1, t2) = min( Wleft(i, t1, t2),Wright(i, t1, t2)) (12)

Finally, we define the total work over [t1, t2] as the sum of the works of

all the activities W (t1, t2) =
∑i=n

i=1
W (i, t1, t2) and the available energy in the

considered interval as E(t1, t2) = m ∗ (t2 − t1). If the total work is greater than
the available energy then no feasible solution exists.

Proposition 1 satisfiability test

if ∃[t1, t2], W (t1, t2) > E(t1, t2) then the instance is infeasible.



6 Sohaib AFIFI, Rym Nesrine GUIBADJ and Aziz MOUKRIM

Note that one crucial point to apply efficiently Energetic Reasoning is to de-
termine the relevant time-intervals on which it may be useful to check feasibility
conditions. Baptiste et al. [4] have proved that the only relevant time intervals
[t1, t2] that need to be considered are those where t1 ∈ T1 and t2 ∈ T2 such as
t1 < t2, T1 = {ei, i ∈ V } ∪ {li, i ∈ V } ∪ {ei + si, i ∈ V } and T2 = {li + si, i ∈
V } ∪ {ei + si, i ∈ V } ∪ {li, i ∈ V }. Therefore, the satisfiability test algorithm
runs in O(n3). The detailed steps are summarized in Algorithm 1.

Algorithm 1: satisfiability test of Energetic Reasoning

Data: I : PMSP instance;
1 begin

2 initialization;
3 T1 = {ei, i ∈ V } ∪ {li, i ∈ V } ∪ {ei + si, i ∈ V };
4 T2 = {li + si, i ∈ V } ∪ {ei + si, i ∈ V } ∪ {li, i ∈ V };
5 foreach t1 ∈ T1 do

6 foreach t2 ∈ T2 such as t1 < t2 do

7 W ← 0;
8 foreach i ∈ V do

9 W ←W +W (i, t1, t2);

10 if W > m ∗ (t2 − t1) then
11 Infeasible instance ;

4.2 From VRPTW to PMSP

Our approach is to relax a VRPTW instance, where a limited number of vehicles
is given, in order to obtain a PMSP instance. Once the transformation is per-
formed, we apply the same satisfiability test on the relaxed m-VRPTW instance,
using Algorithm 1. Starting from a trivial valuem = max(LBClique, LBCapacity),
feasibility tests are carried out to detect an infeasibility (that is, the vehicle num-
ber cannot be less than or equal to m). If an infeasibility is detected, then m+1
is a valid lower bound. The process is iterated until no infeasibility is detected.

A trivial relaxation of an m-VRPTW instance can be done by ignoring travel
times, customer demands and vehicle capacities. We obtain a PMSP where the
vehicles are considered as m identical parallel machines, the number of activities
is equal to the number of customers n and each activity i has to be processed
for si units of time by only one machine. The processing of activity i cannot be
started before its release date ei, and each activity i has a delivery time li + si.

In vehicle routing problems, travel times are not negligible compared to the
service times. Ignoring the travel time would undervalue the energy consumed.
Therefore, few adjustments could be performed and Energetic Reasoning be-
comes inefficient. Better results are obtained by considering the time that a
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vehicle needs to travel in order to visit each customer. First, the travel time δi,j
between the customers i and j is updated to eliminate the waiting time at the
customer j.

δi,j ← max(δi,j , ej − (li + si)) ∀i ∈ V ∀ j ∈ V + (13)

Then, the number of potential successors of customer i is reduced. This is per-
formed by eliminating the transition δi,j if j cannot be served after i due to its
time window:

if(ei + si + δi,j > lj) then δi,j ←∞ ∀i ∈ V + ∀ j ∈ V + \ {i} (14)

Before giving the detail of our travel evaluation procedure, we note by I ′ the
instance derived from the m-VRPTW instance I. We associate I ′ with a graph
G′ = (V ′, E′) which is built by performing the following transformations:

1. We introduce m artificial departure vertices Vd and m artificial arrival ver-
tices Va. Then, we define the set V ′ = V ∪ Vd ∪ Va with V = {1, ..., n},
Vd = {n+ 1, ..., n+m} and Va = {n+m+ 1, ..., n+ 2 ·m}.

2. The set of arcs is defined by E′ = E ∪ {(i, j) : i 6= j, i ∈ V ∪ Vd, j ∈ V ∪ Va}.
3. The distance matrix ∆ = (δi,j) is extended to ∆′ = (δ′i,j) which is associated

to E′ such as:

δ′i,j =















δi,j (i, j ∈ V ),
δ0,j (i ∈ Vd, j ∈ V ),
δi,0 (i ∈ V, j ∈ Va),
∞ (i ∈ V ′, j ∈ Vd) or (i ∈ Va, j ∈ V ′)

(15)

The set of vertices V ′ in G′ denotes the n + 2 · m activities assigned to
I ′. The artificial departure activities corresponding to Vd have a time window
equal to [0, 0] and durations equal to the m smallest travel time from the depot
to customers {δmin

0,1 , ..., δmin
0,m }. This supposes that the vehicles must leave the

depot immediately in order to visit the m first customers. The artificial arrival
activities corresponding to Va have the largest possible time window [0, l0] and
no processing time. For the remaining activities, the range of the possible start
dates is equal to the customer’s time window [ei, li] and the processing time is
equal to the sum of the service time si and the minimal travel time that the
vehicle will necessary perform to reach the next customer.

[e′i, l
′

i] =











[0, 0] i ∈ Vd,

[0, l0] i ∈ Va,

[ei, li] i ∈ V

(16)

s′i =











δmin
0,i−n i ∈ Vd,

0 i ∈ Va,

si +minj∈V ′{δ′i,j} i ∈ V

(17)
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Each row i , i ∈ V ′ of the extended matrix ∆′ is updated by subtracting the
smallest element from the remaining ones (18). This means that the minimal
travel time after serving customer i is subtracted from the total distance of any
solution since every solution must include only one customer from this row. This
process is called reducing the rows. It was introduced by [20] in order to solve
the well known Traveling Salesman Problem.

δ′i,j =

{

δ′i,j −minj∈V ′{δ′i,j} ∀i ∈ V j ∈ V ′,

max(0, δ′i,j − δmin
0,i−n) ∀i ∈ Vdj ∈ V ′

(18)

Next, we apply the same argument to the resulting matrix, by considering
the minimal travel time to arrive from any customer j to customer i (19). This
time is added at the beginning of activity i. For this reason, the bounds of the
corresponding time window are shifted (20) (21). After these reducing operations,
the matrix∆′ contains at least one zero in each row and each column. The Figure
1 illustrates the relaxation of an m-VRPTW instance with 4 customers and 2
vehicles.

s′i ← s′i +minj∈V ′{δ′j,i} ∀i ∈ V ′ (19)

e′i ← max(0, e′i −minj∈V ′{δ′j,i}) ∀i ∈ V ′ (20)

l′i ← max(0, l′i −minj∈V ′{δ′j,i}) ∀i ∈ V ′ (21)

According to the evaluation procedure of travel times, we distinguish two
possible lower bounds LBEReval1

and LBEReval2
. The former is obtained if the

travel times to the successors are considered before the remaining travel times
from the predecessors whereas the latter is obtained by reversing the order of
the considered travels. LBER denotes the maximum between LBEReval1

and
LBEReval2

.

4.3 Bin-packing lower bounds and Energetic Reasoning

We extend Energetic Reasoning, using the Bin-Packing Problem with Conflicts
(BPPC), to get tighter lower bounds for VRPTW. In each time-interval [t1, t2],
we compute the mandatory parts of activities and then we deduce an associated
bin-packing instance. The decision version of BPPC that we use can be formu-
lated as follows: given a set of items with different weights and a graph where
the vertices represent the items and the edges represent the conflicts between
the pairs of items; is there a packing of these items in less than m bins with a
capacity T ?

We now state the link between a necessary condition for the existence of
m-VRPTW solution and the existence of BPPC solution. Let I ′(V ′, Ginc,m)
denote a relaxed instance of m-VRPTW where V ′ is the set of activities, m
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the number of available vehicles and Ginc the graph of incompatibilities be-
tween activities. Let [t1, t2] be a time-interval, we assume that the corresponding
mandatory parts of activities have been computed: W (i, t1, t2), ∀i ∈ V ′. Then,
BPPC(I ′, Ginc, t1, t2) denotes the packing instance which is associated to the
scheduling instance I ′ in the time-interval [t1, t2]. BPPC(I ′, Ginc, t1, t2) is made
of n′ items of sizeWi = W (i, t1, t2), ∀i ∈ {1, ..., n} andm bins. The size of the bin
is equal to the length of the time-interval T = t2−t1. Then, deciding whether all
mandatory parts of the activities can be scheduled within [t1, t2] in I ′ is equiv-
alent to determine for BPPC(I ′, Ginc, t1, t2) if all items can be packed into the
available bins.

Property 1. If there exists a time-interval [t1, t2], such that BPPC(I ′, Ginc, t1,
t2) has no solution, then there is no solution to the initial problem I ′(V , Ginc,
m).

As stated in Section 4.2, Energetic Reasoning uses two procedures to deter-
mine the processing time of activities. The new obtained lower bound LBERBPPC

represents the maximum between LBERBPPC eval1 and LBERBPPC eval2. In the
same way and by ignoring the conflict constraints, we can obtain a quicker lower
bound LBERBPP .

The example in Figure 2 illustrates the contribution of bin packing lower
bounds in the improvement of Energetic Reasoning results. We consider a VRPTW
instance with 8 customers defined by their time windows and service times. We
suppose that the vehicle capacity is large enough to satisfy all customers de-
mands and that customer 8 cannot be served with any other customer. The
results obtained by LBCapacity and LBClique are equal to 1 and 2 respectively.
When analyzing the interval [t1, t2], the Energetic Reasoning LBER gives 3. This
result is improved by applying Bin Packing lower bound and taking into account
the conflicts between customers (LBERBPP = 4 and LBERBPPC = 5).

5 Numerical results

We tested our algorithms on the well known instances of Solomon [23], Gehring
and Homberger [9]. The benchmark comprises 6 sets (R1, C1, RC1, R2, C2,
RC2). Each data set contains 25, 50, 100, 200, 400, 600, 800 and 1000 customers
who have specific euclidean coordinates. Customers’ locations are determined
using a random uniform distribution for the problem sets R1 and R2, but are
restricted to be within clusters for the sets C1 and C2. Sets RC1 and RC2 have
a combination of clustered and randomly placed customers. Sets R1, C1 and
RC1 have a short scheduling horizon with tight time windows, while R2, C2
and RC2 are based on wide time windows. Our algorithms are coded in C++
and all experiments were conducted on an Intel(R) Core(TM) 2 Duo 2.93GHz.

Finding a clique with the greatest cardinality involves the use of an exact
method with exponential worst case performance. Nevertheless, our experiments
on the standard benchmarks show that the maximum clique can be identified
in a fraction of a second using the exact method described in [16]. For the Bin
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Packing Problem, we use the heuristic algorithm developed by [12] to get good
lower bounds in a reasonable computational times. When conflicts are considered
in solving Bin Packing, we apply the approach proposed in [10]. For performance
purpose, we launch this algorithm only on intervals with big conflict density
(80%) and with a time out of 3 hours.

Table 1 and Table 2 compare the performance of our Energetic Reasoning
bounds: LBER, LBERBPP and LBERBPPC to the elementary bounds of lit-
terature: LBClique, LBCapacity and LBBP . The column BestUB represents the
overall best-published upper bounds. The maximum of the lower bounds is re-
ported in column BestLB. In AvgGAP , we present the average gap between
BestUB and BestLB.

In general, the proposed techniques prove the optimality of 339 instances
among the 468 instances tested and give near optimal solution for the rest. The
average performance of LBCapacity is consistently better than LBClique, but
LBClique outperforms LBCapcaity in 5 instances in C1, 25 instances in R1, 4
instances in RC1 and 1 instance in RC2 by a margin of 128. This is due to the
structure of the data sets which does not favor time and capacity incompatible
pairs. On the other hand, the three new lower bounds: LBER, LBERBPP and
LBERBPPC produced consistent results across all data sets. Compared to the
classical lower bound techniques: LBClique, LBCapacity and LBBP , they give
better bounds for 23 instances.

When Energetic Reasoning is combined to BPP (LBERBPP ) and BPPC
(LBERBPPC), the results outperform the bounds produced by LBER in 3 in-
stances. This is due to the fact that the incompatibilities are considered at each
examined time interval. These results confirm that the association of ER and
BPPC is very efficient for VRPTW. To conclude, the overall performance of
the new lower bounding procedures has been encouraging. The use of Energetic
Reasoning improves many lower bounds and gives good results for both capacity
constrained problems and time constrained problems.

6 Conclusion

In this paper, we introduced several combinatorial optimization methods which
can be used to get lower bounds for the Vehicle Routing Problem with Time
Windows (VRPTW). Investigating the concept of Energetic Reasoning, we were
able to propose new lower bounding techniques based on the transformation of
m-VRPTW instance to PMSP. The numerical results confirm the contribution
brought by the new proposed techniques. With a very fast computing time, we
were able to prove the optimality of several solutions and provide a reasonable
approximation of the optimal number of vehicles required to visit all the cus-
tomers. This suggests that our lower bounds techniques can quickly produce a
good estimation of the fleet size. A challenging area for future research is to
develop an exact method using the proposed lower bound procedures.
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Fig. 1. An example of m-VRPTW instance relaxed to PMSP instance.
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Fig. 2. Illustration of Energetic Reasoning lower bounds.
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Data Set n

Classical New
BestLB BestUB AvgGAP

Clique Capacity BP ER ERBPP ERBPPC

LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU

C1 25 1.89 0 3 0 2 0 3 0 3 0 3 0 3 3 0

C2 25 1 0 1 0 1 0 1.13 0 1.13 0 1.13 0 1.13 1.13 0

R1 25 3.58 0 2 0 3.25 0 3.92 0 3.92 0.01 4 0.26 4 4.75 0.75

R2 25 1 0 1 0 1 0 1.09 0 1.09 0 1.09 0.04 1.09 1.27 0.18

RC1 25 2.75 0 3 0 2.25 0 3.13 0 3.13 0 3.13 0.03 3.13 3.25 0.13

RC2 25 1 0 1 0 1 0 1 0 1 0.01 1 0.08 1 1.5 0.5

C1 50 3 0 5 0 4 0 5 0 5 0 5 0 5 5 0

C2 50 1 0 2 0 2 0 2 0 2 0 2 0 2 2 0

R1 50 5.25 0 4 0 5.17 0 6.33 0.02 6.33 0.09 6.42 76.41 6.42 7.42 1

R2 50 1 0 1 0 1.18 0 1.27 0.01 1.27 0.06 1.27 0.23 1.27 2 0.73

RC1 50 4.25 0 5 0 4.13 0 5.25 0.01 5.25 0.05 5.38 89.88 5.38 6.5 1.13

RC2 50 1.13 0 1 0 1 0 1.13 0.01 1.13 0.05 1.13 0.28 1.13 2 0.88

C1 100 4.89 0 10 0 8 0 10 0 10 0 10 0 10 10 0

C2 100 1.38 0 3 0 3 0 3 0 3 0 3 0 3 3 0

R1 100 7.92 0 8 0 8.33 0 10.42 0.11 10.42 0.45 10.42 364 10.42 11.92 1.5

R2 100 1.18 0 2 0 2 0 2.09 0.07 2.09 0.31 2.09 27.2 2.09 2.73 0.64

RC1 100 6.38 0 9 0 7.63 0 9.63 0.1 9.63 0.45 9.63 99.52 9.63 11.5 1.88

RC2 100 1.13 0 2 0 2 0 2.13 0.11 2.13 0.44 2.13 33.16 2.13 3.25 1.13

Table 1. Average lower bound results and CPU times for Solomon instances
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Data Set n

Classical New
BestLB BestUB AvgGAP

Clique Capacity BP ER ERBPP ERBPPC

LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU

C1 200 8.8 0 18 0 15 0 18.3 0.41 18.3 1.82 18.3 429.41 18.3 18.9 0.6

C2 200 2.1 0 6 0 6 0 6 0 6 0 6 0 6 6 0

R1 200 10.4 0 18 0 7.3 0 18.2 0 18.2 0 18.2 0 18.2 18.2 0

R2 200 1.6 0 4 0 2 0 4 0 4 0 4 0 4 4 0

RC1 200 6.8 0 18 0 6.5 0 18 0 18 0 18 0 18 18 0

RC2 200 1.9 0 4 0 2 0 4 0.15 4 0.75 4 140.56 4 4.3 0.3

C1 400 16.9 0.01 36 0.01 26.5 0.01 36.5 2.8 36.5 12.47 36.5 2880.12 36.5 37.6 1.1

C2 400 2.5 0.01 11 0.01 11 0.01 11.2 2.6 11.2 12.31 11.2 2880.09 11.2 11.6 0.4

R1 400 17.9 0.01 36 0.01 11.7 0.01 36.4 0 36.4 0 36.4 0 36.4 36.4 0

R2 400 2.4 0.01 8 0.01 2.7 0.01 8 0 8 0 8 0 8 8 0

RC1 400 12.8 0.01 36 0.01 10.8 0.01 36 0 36 0 36 0 36 36 0

RC2 400 3.1 0.01 8 0.01 2.8 0.01 8 1.11 8 5.55 8 1440.04 8 8.4 0.4

C1 600 24.2 0.03 56 0.02 40.4 0.02 56.4 5.35 56.4 31.25 56.4 2160.32 56.4 57.2 0.8

C2 600 4.3 0.02 17 0.01 15.9 0.02 17.1 5.92 17.1 28.72 17.1 2160.31 17.1 17.4 0.3

R1 600 28.1 0.03 54 0.01 13.9 0.02 54.5 0 54.5 0 54.5 0 54.5 54.5 0

R2 600 4.3 0.02 11 0.01 3.4 0.01 11 0 11 0 11 0 11 11 0

RC1 600 19.7 0.04 55 0.02 12.2 0.02 55 0 55 0 55 0 55 55 0

RC2 600 4.7 0.02 11 0.01 2.9 0.02 11 3.63 11 18.38 11 1440.16 11 11.4 0.4

C1 800 34.4 0.08 72 0.05 49.3 0.05 72.8 18.36 72.8 97.45 72.8 4322.5 72.8 75 2.2

C2 800 5.7 0.05 22 0.04 21 0.04 22.2 48.55 22.2 228.25 22.2 9722.18 22.2 23.3 1.1

R1 800 35.3 0.06 72 0.05 15.8 0.05 72.8 0 72.8 0 72.8 0 72.8 72.8 0

R2 800 5.3 0.05 15 0.04 3.5 0.04 15 0 15 0 15 0 15 15 0

RC1 800 27.5 0.41 72 0.05 14.9 0.04 72 0 72 0 72 0 72 72 0

RC2 800 6.6 0.05 15 0.04 3.5 0.04 15 8.96 15 45.7 15 2160.52 15 15.4 0.4

C1 1000 44.6 0.34 90 0.09 58 0.09 91 35.22 91 185.64 91 4324.8 91 93.9 2.9

C2 1000 7.9 0.11 28 0.09 25.1 0.07 28.1 67.81 28.1 284.21 28.1 6484.59 28.1 28.8 0.7

R1 1000 44.5 0.13 91 0.09 19.5 0.08 91.9 0 91.9 0 91.9 0 91.9 91.9 0

R2 1000 6.5 0.09 19 0.08 4 0.07 19 0 19 0 19 0 19 19 0

RC1 1000 31.5 0.79 90 0.08 17.7 0.08 90 0 90 0 90 0 90 90 0

RC2 1000 7.8 0.1 18 0.08 4.1 0.07 18 8.21 18 40.32 18 1080.57 18 18.2 0.2

Table 2. Average lower bound results and CPU times for Gehring and Homberger instances
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