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Abstract. Terrain networks (or complex networks) is a type of relational infor-
mation that is encountered in many fields. In order to properly answer questions
pertaining to the comparison or to the merging of such networks, a method that
takes into account the underlying structure of graphs is proposed. The effective-
ness of the method is illustrated using real linguistic data networks and artificial
networks, in particular.

1 Introduction

Complex networks [1, 19] are graphs with non-trivial topological features. In the fol-
lowing we prefer to call them “terrain networks” to emphasize the fact that they rep-
resent practical data, supposed to have some underlying structure. Moreover, it is a
counterpart of the French “graphe de terrain”. Such networks can be observed in many
areas ranging from computer sciences to biology, linguistics, and social sciences. Ex-
amples of such graphs are synonymy networks between words, social relation networks
between people, or protein interaction networks. One of their main features is to be
globally sparse and locally dense. In other words, while their number of edges is rela-
tively small, they exhibit a rather high transitivity (or clustering) coefficient (defined by
the ratio of the number of 3-cliques over the number of paths of length 2). Moreover
their diameter, i.e. the average minimal path length between pairs of vertices, is very
small [19] and the degree distribution follows approximately a power law [1].

Since terrain networks are more and more common pieces of information, general
information processing issues, such as comparison or fusion of two networks, make
sense for them and become increasingly important. In this paper, we consider the par-
ticular case of special interest where the two graphs have the same vertices. This means
that the two graphs represent data pertaining to the same items, objects, or agents. Gen-
erally speaking, the comparison of graphs may be envisaged in different ways. One may
compare two graphs either at the edges and vertices level [8, 11, 16, 18, 20], or in terms
of global structural property measures [10, 12]. None of these two classes of methods
appear to be fully satisfactory for comparing terrain networks sharing the same vertices.
Indeed, the former do not take into account the latent similarity information since they
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work in a too local way, while the latter only deals with global properties without any
reference to the fact that the graphs share common vertices.

Terrain networks depart from other graphs often encountered in AI. Indeed, graph
representations are associated with taxonomies or ontologies, or with Bayesian nets.
They encode various forms of generic knowledge, possibly pervaded with uncertainty,
which can be applied to factual pieces information describing the particular situations to
reason about. This contrasts with terrain networks which gather what may be called data
information. They are made of collections of pieces of factual information, but we are
no longer primarily interested in just answering requests pertaining to particular indi-
viduals. The emphasis is rather on the way the pieces of information are related together
and are organized in cluster-like structures. Thus, for instance, the proximity between
two graphs is not only a matter of identity of edges, but should also take into account
the neighborhood structures of vertices. For example, a non-edge may “virtually” exist
as an edge if there are short paths linking its vertices.

In this paper, we propose a general procedure that labels each pair of vertices in
a graph, i.e., each edge, as well each non-edge, in terms of two categories: the edge
(or the non-edge) is “confirmed”, or is “not-confirmed” (in Section 2). Thus, the exis-
tence, or the non-existence of an edge between two vertices is confirmed, or not accord-
ing to their neighborhood situation that in some sense support or not this existence, or
non-existence. Then, we show the interest of such labeled graphs for comparing (in Sec-
tion 3) or merging (in Section 4) terrain network information. Related work is discussed
in Section 5.

2 What a data information graph may mean

In this section, data information graphs, issued from terrain networks, are considered as
knowledge representation entities, which can be manipulated in order to lay bare some
hidden part of the information. In such graphs, the information conveyed is not just
made of a collection of links existing between certain pairs of vertices, but should also
take into account the graph topology in the neighborhood of pairs of vertices. Before
presenting a labeling procedure whose purpose is to confirm (or not) each edge and
each non-edge in a graph in order to bring back the graph topology information, we
first restate general knowledge representation concerns by examining in what respect a
graph may be correct or complete.

2.1 Correctness and completeness of a graph

If the information given by a graph is correct and complete, any edge expresses the
certainty of the existence of a relation between the two associated vertices, and the
absence of edge between two vertices asserts that there is no relation between them.
However, if a graph is only correct, each edge is there for sure, but the absence of an
edge may be as much the result of missing information as acknowledging the certainty
of the absence of link. Conversely, if a graph is only complete, no edge are missing, but
some may be questionable. Then the absence of an edge reflects the certainty that there
is no relation.
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Also note that in case some prior knowledge exists about the graph, it may be used
for revising it. Thus knowing, for instance, that the graph should represent a transitive
relation, two situations would be of interest. If the graph is correct but incomplete, then
it can be replaced by its transitive closure. If the graph is incorrect but complete, we
may try to remove a minimal number of edges to make the relation transitive (but in
general the solution is not unique!). However, in the following we do not assume the
availability of such strong prior knowledge.

When comparing or merging two graphs, assuming that the information conveyed
by each of them is correct, and/or complete is a crucial issue. Indeed in such operations,
knowing of which edge, or non-edge one may be certain is clearly important. When
a graph is correct and complete, any edge (resp. non-edge) is certain and has a status
denoted 1! (resp. 0!). When a graph is incorrect and incomplete, any edge (resp. non-
edge) is uncertain and has a status denoted 1? (resp. 0?). Table 1 sums up the four
possible cases. More generally, the status of edges or non-edges in a graph may differ
from one pair of vertices to another. Indeed it may be interesting to have such a binary
“uncertainty” information for each edge and non-edge. Thus, for instance, a graph may
be complete and correct, except for some pairs of vertices.

Table 1. Four possible cases of graph correctness and completeness, and there counterpart in
terms of edges and non-edges certainty.

edge non-edge
correct and complete 1! 0!
incorrect but complete 1? 0!
correct but incomplete 1! 0?
incorrect and incomplete 1? 0?

In a similar spirit, in the next section, we propose a method for providing a similar
type of status to each edge, or non-edge in a graph, and thus laying bare information that
is not explicitly given with the graph. According to the neighborhood (possibly taken
in a broad sense) of each pair of vertices, the corresponding edge (resp. non-edge) will
be labeled 1? (resp. 0?) and regarded as “uncertain”, or will be labeled 1! (resp. 0!) and
regarded as “confirmed”. Mind however that this is not genuine uncertainty informa-
tion, but rather a way to bring back some “global information” to a local level. Indeed,
roughly speaking the idea is to label with 0? the non-edge that are inside clusters, and to
label with 1? the edges outside clusters, thus acknowledging the “imperfect transitivity”
that may exist in the graph (and which is at work in the clusters).

2.2 Labeling edges and non-edges for reflecting the graph topology

In a graph, two vertices may be regarded as being “close” according to the graph topol-
ogy between them, independently of the existence or not of a direct edge between them.
For example, in the Figure 1 the pair a is not an edge, but the two vertices are close in
the graph in the sense that there are 3 paths of length 2 between them. This contrasts
with the situation of the non-edge b. Conversely the pair d is an edge, but the two ver-
tices are relatively distant since there is no path between them other than this edge itself.
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Fig. 1. A toy example of non-edge labeled “0?” (a) or “0!” (b), and edges labeled “1?” (d)
or “1!” (c)

Lastly, the edge c is “strengthened” by the existence of 3 paths of length 2 between its
two vertices.

The above observation is important when comparing and fusing two graphs (the
problems considered in the next sections). Indeed, if a pair of vertices is an edge in one
graph but not in the other one, the situation is not the same if this edge is like d or like
c in Figure 1 (and similarly for the non-edge, if it is like a or like b). So, we propose to
label each pair of vertices according to their closeness to be judged from the topology
of the graph in the neighborhood of the two vertices, using the conventions summarized
in Table 2. Several ways of evaluating closeness may be considered.

Table 2. Labeling procedure of edges and non-edges, according to a closeness evaluation of pairs
of vertices

edge closeness label
0 0 0! not an edge, and not close in the graph.
0 1 0? not an edge, but close in the graph.
1 0 1? an edge, but not close in the graph.
1 1 1! an edge, and close in the graph.

Evaluating closeness We now describe two methods that one may think of for eval-
uating closeness of a pair of vertices on an undirected graph G = (V,E) (with V the
vertex set and E the edge set).

Triangle A very simple method could be to consider as “close” every pair of vertices
that are connected by a path of length 2. An edge will be confirmed (i.e. 1!) if it is sup-
ported by at least one path of length 2 ; or “unconfirmed” if there is no path of length 2
between the two corresponding vertices (i.e. 1?). Similarly a pair of non adjacent ver-
tices, will be labeled as unconfirmed (i.e. 0?) if they are connected by at least one path
of length 2, or as “confirmed” (i.e. 0!) if they are not connected by a path of length 2.
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Table 3. Number and proportion of each label for edges and non-edges on 3 different terrain
networks (V.rob, V.pwn, V.wikt) and one random network (robR, Erdös Rényi random graph
of the same size than V.rob, average on 20 realizations)

V.rob V.pwn V.wikt robR
tr

ia
ng

le 1! 20442 76.9% 37473 91.6% 2886 34.8% 187.0 0.7%
1? 6125 23.1% 3446 8.4% 5407 65.2% 26380.0 99.3%
0? 395555 1.5% 527336 0.8% 33685 0.1% 190910.8 0.7%
0! 26636924 98.5% 65884901 99.2% 26884813 99.9% 26841568.2 99.3%

5
-c

on
fl.

1! 22726 85.5% 36760 89.8% 2864 34.5% 4032.2 15.2%
1? 3841 14.5% 4159 10.2% 5429 65.5% 22534.8 84.8%
0? 2844964 10.5% 3744489 5.6% 250177 0.9% 4795066.4 17.7%
0! 24187515 89.5% 62667748 94.4% 26668321 99.1% 22237412.6 82.3%

1
0

-c
on

fl. 1! 23143 87.1% 36887 90.1% 2980 35.9% 4657.2 17.5%
1? 3424 12.9% 4032 9.9% 5313 64.1% 21909.8 82.5%
0? 5282868 19.5% 7350176 11.1% 513214 1.9% 8292114.4 30.7%
0! 21749611 80.5% 59062061 88.9% 26405284 98.1% 18740364.6 69.3%

2
0

-c
on

fl. 1! 22405 84.3% 36741 89.8% 3056 36.9% 39.8 0.1%
1? 4162 15.7% 4178 10.2% 5237 63.1% 26527.2 99.9%
0? 8055282 29.8% 12241791 18.4% 948772 3.5% 10567375.4 39.1%
0! 18977197 70.2% 54170446 81.6% 25969726 96.5% 16465103.6 60.9%

Confluence Short length random walks may provide a more accurate method for mea-
suring the closeness of two vertices in a graph [6, 7, 13]. Let G = (V,E) be an undi-
rected and reflexive1 graph. Let us imagine a walker wandering on G:

– At a time t ∈ N, the walker is on one vertex u ∈ V ;
– At time t + 1, the walker can reach any neighboring vertex of u, with a uniformly

distributed probability.

This process is called a simple random walk [3]. It can be defined by a Markov chain
on V with a |V | × |V | transition matrix [G]:

[G] = (gu,v)u,v∈V , with gu,v =


1

dG(u)
if (u, v) ∈ E,

0 else.

where dG(u) = |{v ∈ V/(u, v) ∈ E}| is the degree of vertex u in the graph G. Since
G is reflexive, each vertex has at least one neighbor (itself) thus [G] is well-defined.
Furthermore, by construction, [G] is a stochastic matrix: ∀u ∈ V,

∑
v∈V gu,v = 1. The

probability P tG(u v) of a walker starting on vertex u to reach a vertex v after t steps is:

P tG(u v) = ([G]t)u,v (1)

One can then prove [7], with the Perron-Frobenius theorem [17], that if G is con-
nected (i.e., there is always at least one path between any two vertices), reflexive and

1 i.e. each vertex is connected to itself. If such self-loops do not exist in the data, they may be
generally added without loss of information.
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undirected, then ∀u, v ∈ V :

lim
t→∞

P t
G(u v) = lim

t→∞
([G]t)u,v =

dG(v)∑
x∈V dG(x)

(2)

It means that when t tends to infinity, the probability of being on a vertex v at time
t does not depend on the starting vertex but only on the degree of v. In the following
we will refer to this limit as πG(v). If G is composed of several connected components
then for any pair (u, v) of vertices, we have two possible cases:

– u and v are in the same connected component G′ = (V ′, E′), with V ′ ⊆ V and
E′ ⊆ E, then equation 2 applies to this subgraph:

lim
t→∞

P t
G(u v) = lim

t→∞
([G]t)u,v =

dG(v)∑
x∈V ′ dG(x)

(3)

– u and v are in distinct components, then for all t, P tG(u  v) = 0, therefore
limt→∞ P tG(u v) = 0.

So the probability P tG(u  v) converges to a limit that only depends of vertex v
degree. However the way this probability converges to the limit heavily depends on the
topology of the graph between the two vertices. If u and v are connected by many short
paths the probability will converge to the limit by above, whereas if there is no short
path between the two vertices it will converge to the limit by below. Indeed when t is
small the more interconnections there are between u and v, the higher the probability
of reaching v from u. Therefore we define the t-confluence Γ (G, u, v, t) between two
vertices u, v on a graph G as follows:

Γ (G, u, v, t) =


P tG(u v)
πG(v)

if u and v are in the same
connected component,

0 else.

(4)

We propose to consider as “close” each pair of non adjacent vertices (u, v) having
a t-confluence greater than 1. In other words, we consider u and v as close if the proba-
bility of reaching v from u in a t step random walk is greater than the probability to be
on v after an infinite walk. (u, v) is then labeled 0?. Conversely non-adjacent vertices
(u, v) having a t-confluence smaller than 1 are labeled 0!.

In order to measure the closeness of an edge (u, v), the t-confluence is computed on
the graph G where the considered edge has been removed. This removal is important,
otherwise almost all edges would have a strong confluence, as the edge may be used by
the random walker to go from u to v in few steps. The idea is to measure the closeness of
the two vertices according to the graph structure and, this independently of the existence
of an edge between them. Therefore, an edge (u, v) is labeled 1! if it has a t-confluence
on the graph G′ = (V,E \ {(u, v)}) greater than 1. In other words, without going
through this edge, a random walker is more likely to be in v after t steps starting from
u, than to be on v after un infinite walk. Conversely an edge (u, v) is labeled 1? if the
t-confluence of (u, v) on the graph G′ = (V,E \ {(u, v)}) is smaller than 1.

There are other possible ways of evaluating the closeness. Any measure of similar-
ity between two vertices in a graph may be use, and in particular the ones developed to
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address the problem of link prediction [9]. However we are interested in binary evalua-
tion of similarity between to vertices, and there is rarely a natural threshold of gradual
similarity measure. Also any robust graph clustering method [15] may be used: two
vertices can be considered as close if and only if they are in a common cluster. How-
ever, note that the idea of short random walks proposed by [7] has been used in graph
clustering method [13].

Illustration On the toy example of Figure 1, with the t-confluence labeling procedure,
as one may expect, all edges are confirmed (1!), except edge d, and all non-edges are
confirmed (0!), except the pair a. It has been verified for t between 2 and 20. With
the triangle method, the results are the same except that many other non-edges are
labeled 0?. Indeed edge d creates many paths of length 2 between pairs of vertices that
are not adjacent. Note that, for the same pairs of vertices, these paths of length 2 do not
lead to a value of the t-confluence larger than 1.

Table 3 gives the number of pairs for each label on 3 different terrain networks3,4

(the graph characteristics are given in table 10) and on one random network. Labels
are computed according to the “triangle” method, abd with the 5, 10 and 20-confluence
methods. As can be seen, the orders of magnitude of the four different labeled categories
of pairs of edges are similar with the different methods. We note that most of the edges
are confirmed in the two first terrain networks. This is not the case on the 3rd one where
only about one third are confirmed. This is due to the fact that the synonyms network
extracted from Wiktionary is very incomplete [14], which is not the case for the two
previous networks that are based on linguistic resources that have been established for
a long time. In the case of random network, the reported results are the average of the
results obtained for 20 random networks of the same size, and we can notice that almost
none of the edges are confirmed.

Note that if a vertex is connected to a large part of all the vertices, the triangle
method would abusively consider as close all the pairs of neighbors of this vertex. This
would not be generally the case with the random walk method.

Note also that these labeling methods may be restricted if one know, for instance,
that the graph is fully correct. Indeed it will mean that every edge exists even if it is not
confirmed by the topology. Therefore the labeling procedure could then be only applied
to non-edges, and all edges are labeled 1!. Conversely, if one knows that the graph is
complete, and thus all non-edges are certain and labeled 0!, while edges are labeled
according to the graph topology.

3 Comparing graphs having the same vertex set

Comparing graphs is important in order to determine to what extent they contain the
same information. In the following, we assume that the two graphs have the same set
of vertices. In practice, this assumption mean that we compare two pieces of network
information pertaining to the same set of objects or agents. For example, if a first graph
represents friendship relation among a set of people, and a second one represents co-
working relation inside the same set of people, one may be interested to know to what
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extent these two relations are similar, or if one relation is included (or “almost” in-
cluded) in the other.

In the following subsection, we propose a naive method for comparing two graphs
by counting the number of matches “at the edge level”. We shall see the limitation
of this method. We then use the labeling method described in the previous section to
compare graphs in a more robust way.

3.1 Classical agreement measure between edges

A simple method for comparing two graphs (having the same set of vertices) is to
count on how many edges and no-edges they agree. Table 4 summarizes the 4 different
cases: ok+ is the number of edges present in both graphs, ok− the number of non-edges
present in both graphs, whereas ko1is the number of pairs that are linked by an edge in
the first graph, but not in the second one, and ko2the number of pairs that are linked by
an edge in the second graph, but not in the first one.

Table 4. Fusion of two graphs G1 = (V,E1) and G2 = (V,E2)

E1 E1

E2 ok
+ ko1

E2 ko2 ok
−

We use Cohen’s kappa coefficient [4] as a simple measure of agreement between
two graphs. It is a inter-judge agreement measure. Here we consider each graph as a
judge that annotates each pair of vertices either as “edge” or “non-edge”. It is defined
as follows:

Kappa(G1, G2) =
p0 − pe
1− pe

(5)

with:
p0 =

1

ω
.(ok+ + ok−) =

1

ω
.(|E1 ∩ E2|+ |E1 ∩ E2|) (6)

pe =
1

ω2
.(|E1|.|E2|+ |E1|.|E2|) (7)

It has the advantage to take into account the agreement on edges (ok+) and on non-
edges (ok−), without being influenced by the strong difference that exists in a terrain
network between the size of these two sets (graphs are usually sparse, and thus there
are many more non-edges than edges). Another alternative could be to measure the
agreement only on edges, by using Jaccard coefficient

Jaccard(G1, G2) =
|E1 ∩ E2|
|E1 ∪ E2|

=
ok+

ko1 + ko2 + ok+
(8)

between the two sets of edges. However we observe that these two measures behave in
similar ways in the experimentations.

The column “edges” in Table 7 gives the values of the kappa and Jaccard coeffi-
cients on two pairs of synonymy networks. One can already note that this value are
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(a) g = (V,E) (b) g1 = (V,E1) (c) g2 = (V,E \ E1)

Fig. 2. Artificial graphs with 3 clusters. g1 and g2 are subgraph of g and share the same 3 clusters
but they have no edge in common.

low, which seems to attest a low agreement between synonymy networks. We comment
these results more in detail in the section 3.3.

To demonstrate that the two above coefficients alone are insufficient for accounting
for a global topological similarity of the graphs beyond the exact comparison pair of
vertices by pair of vertices, we consider the following experiment. We build a graph g =
(V,E) with 3 groups of 30 vertices, where edges are built randomly with a probability
0.4 between two vertices of the same group, and 0.01 between vertices of two different
groups. We then build a new graph g1 = (V,E1) by randomly choosing half of the edges
of g, and a new graph g2 = (V,E2) such that E2 = E \E1. These 3 graphs are plotted
in Figure 2. The kappa measure between the two graphs g1 and g2 is negative (≈ −7.5
on 20 realizations) and the Jaccard measure equals 0. This would mean that these two
graphs are completely dissimilar, which is true in the sense that they have no edges
in common, however it is clearly wrong with respect to the topological “organization”
they share. Indeed two vertices that are in the same group in the first graph will also
be in the same group in the two other graphs. The above comparison methods have the
drawback of only comparing graphs as “bag of edges”, thus ignoring the topological
structure created by these edges. We propose in the next section to use the labeling
method presented in section 2.2 in order to propose a similar comparison method which
does not suffer of this drawback.

3.2 Using the graph topology information

The labeling procedure described in Section 2.2 brings back topology information on
each pair of vertices. We use this labeling procedure for comparing the two graphs,“pairs
of vertices by pairs of vertices”, without now missing the graph topology information.
More precisely, if a pair is an edge confirmed by the structure in a graph (label 1!), but is
a non-edge not confirmed by the structure in the other graph (label 0?) we consider that
the two graphs do not disagree on this pair. Indeed the two vertices are topologically
“close” in both graphs, even if they are adjacent in one, but not in the other. Similarly, if
a pair is an unconfirmed edge in one graph (label 1?) and a confirmed non-edge in the
other (label 0!), we consider that the two graphs agree on this pair as the two vertices are
not “close” in any of the two graphs. The table 5 summarized the 16 different possible
cases for a pair of vertices. We can now use the same kappa or Jaccard coefficients as in
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the previous section, but now by counting as agreeing pairs those labeled 0? in a graph
and 1! in the other, or 0! in one and 1? in the other.

Table 5. Comparison of two labeled graph

1! 1? 0? 0!

1! ok+ ok+ ok+ ko1
1? ok+ ok+ ko1 ok

−

0? ok+ ko2 ok
− ok−

0! ko2 ok
− ok− ok−

⇒
1 0

1 ok+ ko1
0 ko2 ok

−

When we compare the two random graphs described in the previous subsection (see
Figure 2) with this method that takes into account topology information, they appear
to have a kappa (and a Jaccard) coefficient much higher than initially. Table 6 gives
average comparison results for 20 random graphs using either the triangle or the 5-
confluence method. We can see that they have no edges in common (by construction)
but many of the edges present and confirmed (1!) in one graph are pairs of “close”
vertices in the other (0?). We can also note that, as expected, the confluence method
gives better results.

Table 6. Robust comparison of the graphs g1 and g2 of the Figure 2. Average value on 20 real-
izations.

(a) triangle, kappa = 0.651

1! 1? 0? 0!

1! 0.0 0.0 127.3 58.9
1? 0.0 0.0 58.1 35.2
0? 128.7 59.8 390.2 302.3
0! 55.2 35.5 313.5 2440.2

(b) 5-confluence, kappa =
0.881

1! 1? 0? 0!

1! 0.0 0.0 229.2 5.0
1? 0.0 0.0 31.9 13.3
0? 207.2 54.2 775.1 67.5
0! 3.1 14.4 58.1 2545.7

3.3 Comparison of synonymy networks

We illustrate the method proposed here on the comparison of pairs of synonymy net-
works. In such networks, one may expect that almost all edges are correct, even if few
ones are “questionable”, and that a large part of the non-edges are not related at all,
even if some pairs of words are very close (but not really synonymous). We consider
the networks V.rob and V.lar, two synonymy networks between French verbs2 and the
networks V.wikt and V.pwn, two synonymy networks between English verbs3. Table 7

2 V.rob and V.lar are two synonymy networks between French verbs. There where digitalized
from paper dictionaries (Robert and Larousse dictionaries) by an IBM/ATILF research unit
partnership http://www.atilf.fr/spip.php?article208

3 V.wikt and V.pwn two synonymy networks between English verbs. V.wikt has been ex-
tracted from the English wiktionary by [14] whereas V.pwn is built from Princeton Wordnet
[5] synsets. A synset is a set of interchangeable words that denotes a meaning or a particular
usage. The vertices of the network V.pwn are the lemmas of the verbs present in Wordnet, and
there is an edge (x, y) ∈ E if and only if x and y belong to at least one common synset
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gives the comparison results for the 2 French synonymy networks (V.rob, V.lar) and
the 2 English synonymy networks (V.wikt and V.pwn). Since these different networks
do not have exactly the same lexical coverage, the comparison is based on the com-
mon sets of vertices. As can be seen, there is only a weak agreement between pairs of
graphs, when they are compared by the classical agreement measure. This may not be
expected, especially for the French graphs since they are obtained from authoritative
general purpose dictionaries. Once the topology information is taken into account, we
observe a strong agreement between the French graphs (up to 95 %) in the sense that
almost all the edges of one graph are retrieved in the other as 0? labeled non-edges.
In other words, most of the initial disagreements pertain to pairs of vertices that are
close in both graphs (even if they are not adjacent in one). For the English graph, the
agreement remains relatively weak. This is due to the fact that the wiktionary is very
sparse, and not built at all in the same way as Wordnet. In Wordnet each edge reflects
a common belonging to a synset, while the wiktionary graph edges are built by non
expert contributors (without special care about synsets).

Table 8 provides similar comparisons on fictitious random graphs having the same
overlaps as the French and English pairs of graphs previously considered. The obtained
results strongly contrast with the previous ones, as expected. The random graphs still
finally reach another form of strong agreement (now on “non-edges”), but only because
the initial disagreement pertain to pairs that are not close in both graphs even if they are
adjacent in one graph.

Table 7. Synonymy network comparison. Column “edges” gives the measures without the label-
ing procedure. (0?, 1!) (resp. (0!, 1?)) indicates the number of pairs of vertices labeled 0? (resp.
0!) in one graph and 1! (resp. 1?) in the other.

edges triangle 5-confl. 10-confl. 20-confl.

V
.r
ob

vs
.V
.l
a
r Kappa 0.518 0.876 0.937 0.953 0.946

Jaccard 0.350 0.781 0.882 0.910 0.898
(0?, 1!) - 11769 16310 17401 16878
(0!, 1?) - 2860 1129 881 1050

V
.w
ik
t

vs
.V
.p
w
n Kappa 0.202 0.498 0.600 0.636 0.673

Jaccard 0.113 0.332 0.429 0.467 0.507
(0?, 1!) - 2511 3878 4485 5027
(0!, 1?) - 2246 1919 1667 1641

4 Fusing graphs

The same idea can also be used when merging two graphs. Let G1 = (V,E1) and
G1 = (V,E2) be two graphs. A first type of merging could be to add, to the intersection
of the two edge sets, the pairs of vertices that are labeled 1! in one graph and 0? in the
other, i.e.,

E′∩ = (E1 ∩ E2) ∪ {pairs labeled (1!, 0?)}
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Table 8. Graphs comparison results on Erdös Rényi random network having the same initial
overlaps as the real networks. Average on 20 realizations.

edges triangle 5-confl. 10-confl. 20-confl.

ro
bR

vs
.l
a
rR

kappa 0.518 0.850 0.803 0.763 0.719
Jaccard 0.351 0.739 0.671 0.617 0.562
(0?, 1!) - 801.4 1193.0 1097.8 0.2
(0!, 1?) - 16001.4 13734.2 12235.0 12209.9

w
ik
tR

vs
.p
w
n
R Kappa 0.203 0.716 0.592 0.541 0.595

Jaccard 0.113 0.558 0.420 0.371 0.424
(0?, 1!) - 13.1 68.5 165.1 106.5
(0!, 1?) - 11865.0 10734.4 9919.4 10678.6

Table 9. Example of fusion of two social networks built from the e-mails of one of the paper’s
author for two different years. Pedigrees of these graphs are in Table 10: mail10 and mail11.

1! 0? 0!
1! 65 16 32
0? 13 80 99
0! 38 110 1377

|E1 ∩ E2| = 65
|E′∩| = 94
|E′∪| = |E1 ∪ E2| = 164

Another type of merging (more tolerant) consists in removing the pairs of vertices la-
beled 1? in one graph and 0! in the other from the union of the edge sets of the two
graphs, i.e.,

E′∪ = (E1 ∪ E2) \ {pairs labeled (1?, 0!)}

These two fusion procedures are such that the resulting edge setsE′∩ andE′∪ satisfy
the following inclusions:

E1 ∩ E2 ⊂ E′∩ ⊂ E′∪ ⊂ E1 ∪ E2

This is illustrated with two graphs about e-mail relations between people. More
precisely, we build an ego-centric social network from someone mailbox: each e-mail
address u (which means more or less a person) is connected to another e-mail address
v, iff u is the author of -at least- one mail having v as recipient (“To” or “CC”). It may
be worth of interest to fuse such a graph built from all e-mails during a given year with
the same graph built from e-mails of the previous year: we can then see which parts
of the graph have been stable during these two years. The results corresponding to two
social networks built from the e-mails of one person are shown in Table 9. Note that
here the second fusing method E′∪, will give the same result as E1 ∪ E2 since there is
no edges labeled 1? as all the edges may be considered as “sure” since they rely on at
least one existing e-mail. As can be seen 29 edges (16 + 13) are restored on top of the
edge sets intersection. Thus, they should not be count among the real change that took
place between the two years.
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Table 10. Pedigrees of 6 different terrain networks, n and m are respectively the number of vertices and

edges, 〈k〉 is the average degree of vertices, nlcc and mlcc are the number of vertices and edges in the largest connected

component,C is the transitivity coefficient of the graph, Llcc is the average shortest path between any two nodes of the

largest connected component, λ is the coefficient of the best fitting power law of the degree distribution and r2 is the

correlation coefficient of the fit.

n m 〈k〉 nlcc mlcc C Llcc λ r2

V.rob 7357 26567 7.48 7056 26401 0.12 4.59 −2.01 0.93
V.lar 5377 22042 8.44 5193 21926 0.17 4.61 −1.94 0.88

V.wikt 7339 8353 2.84 4285 6093 0.11 8.98 −2.40 0.94
V.pWN 11529 40919 8.16 9674 39459 0.24 4.66 −2.10 0.92

mail10 385 603 3.14 383 602 0.10 3.71 −1.11 0.73
mail11 391 671 3.45 389 671 0.06 3.32 −0.93 0.55

5 Related work

In the literature, the idea of graph comparison may refer to various problems and ap-
proaches. A first group of works deals with approaches that evaluate to what extent two
graphs are isomorphic, or looks for approximate isomorphisms between two graphs.
Measuring how two graphs are similar is a common problem for querying graph data-
bases. Some methods [8, 18] use an edit distance between graphs. Other approaches
measure the size of the maximal common subgraph[16, 20]. A related problem is to
find a matching, or approximate matching between two graphs [11]. It consists in look-
ing for a correspondence between vertices of one graph and vertices of the other such
that the two graphs appears as similar as possible. The kappa and Jaccard measures (be-
tween not-labeled graphs) proposed in section 3.1 are comparable to such approaches
in the “very” particular case where graphs have exactly the same vertices, and where
each vertex cannot be put in correspondence with another one but itself. Besides, [2]
proposes a different way of measuring graph similarity. This method gives a similarity
score between any vertex of one graph and any vertex of a second graph. It applies be-
tween any pair of graphs, and does not consider any correspondence between vertices
of the two graphs. So it may be applied when the two graphs are on the same set of ver-
tices, however this knowledge is not taken into account by the method. A second group
of works proposes to compare graphs by global statistical features [10], or compare
graphs by measuring the number of occurrences of small particular sub-graphs [12].
To the best of our knowledge there was no work interested in comparing two graphs
having the same set of vertices and taking into account the graph structure, if we except
maybe [6].

6 Concluding remarks

This paper has presented a method that provides an augmented view of a undirected
graph which acknowledges its underlying structure. This augmented view turns to be
useful when comparing or fusing graphs, as illustrated in this paper, when we need to
go beyond a purely “edge” by “edge” pairing. An obvious line for further research is
the extension of the approach to weighted and/or directed graphs.



14 SUM12 submission version

References

1. R. Albert and A. Barabási. Statistical mechanics of complex networks. 2001.
2. V. D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. V. Dooren. A measure of

similarity between graph vertices: Applications to synonym extraction and web searching.
SIAM Rev., 46:647–666, April 2004.

3. B. Bollobas. Modern Graph Theory. Springer-Verlag, October 2002.
4. J. Cohen. A coefficient of agreement for nominal scales. Educ. Psychol. Meas., 20(1):37–46,

1960.
5. C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, 1998.
6. B. Gaillard, B. Gaume, and E. Navarro. Invariants and variability of synonymy networks:

Self mediated agreement by confluence. In TextGraphs-6, ACL, pages 15–23, 2011.
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