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The literature on oxidation kinetics of polyamides and model compounds has been reviewed in order to

try to extract suitable information for non-empirical kinetic modeling. Polyamide characteristics are

systematically compared to polyolefin ones, these latter being more extensively studied. From kinetic

analysis point of view, it is shown that oxidation attacks predominantly a amino methylenes of which C

eH bond is considerably weaker than the other methylenes. As a result, propagation by H abstraction is

considerably faster in polyamides than in polyethylene for instance. Termination by radical combination

is also very fast. Another cause of PA oxidizability is the instability of a amino hydroperoxides linked to

the inductive effect of nitrogen. This instability is responsible for many key features of oxidation kinetics

especially the absence of induction period.

The main stable oxidation products are imides resulting from disproportionation processes meanwhile

chain scissions resulting from rearrangements of a amino alkyls by b-scission are also significant process

although their yield appears lower than in polyolefins.

1. Introduction

Aliphatic polyamides are significant engineering polymers used
as well in textiles (Nylon 6, Nylon 66) as in metal coatings (poly-
amide 11), flexible pipes for automotive or offshore applications
(polyamides 11 and 12), etc.. Some of these applications are highly
demanding from the durability point of view but polyamides are
not intrinsically stable in the presence of oxygen, therefore an
appropriate stabilization is necessary. These characteristics explain
the relatively abundant literature published on polyamide oxida-
tion in the past half century which was compiled recently [1e6].

It seemed interesting to us to revisit the literature through the
prism of kinetic analysis trying to extract suitable information on
elementary rate constants from available data and to compare
systematically polyamides with polyolefins especially with poly-
ethylene which could be considered as ‘PAN’ i.e. the polyamide
with an infinite distance between amide groups.

The review will be divided into two parts: the first one is
devoted to kinetic analysis using classical mechanistic scheme as a
frame to the literature interpretation. The second part is devoted to
the nature of oxidation products in polyamides but also in model
compounds.

2. Kinetic analysis

2.1. Mechanistic scheme

In a first approach, the interpretation of experimental data in the
frame of a “close-loop scheme” will be tried [7,8]. In this scheme
radicaloxidationgenerates its owninitiator, i.e. hydroperoxidegroups
(POOH). The decomposition of the latter can be uni or bimolecular.

ð1uÞ POOH/2P� þ g1P]Oþ g2s k1u

ð1bÞ POOHþ POOH/P� þ POO� þ g1P]Oþ g2s k1b

ð2Þ P� þ O2/POO� k2

ð3Þ POO� þ PH/POOHþ P� k3

ð6Þ POO� þ POO�
/inactive productþ O2 k6

P]O and s define respectively a carbonyl compound and a chain
scission, and g1 and g2 the associated yields of formation.

This scheme involves several classical hypotheses:

- there is a single reactive site (PH) in the monomer unit.
- oxygen is in excess so that termination involving P� radicals is
negligible.
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- HO� and PO� radicals formed in POOH decomposition events
react fast to give P� radicals.

- there is initially a small quantity of POOH groups responsible
for the first initiation steps.

This set of hypotheses was first used by Tobolsky et al. [9]. In the
kinetic analysis, one considers generally that a steady state is
reached at a low conversion ratio, in other words that substrate
consumption is negligible. It will also be supposed here that
oxidation is not diffusion controlled in the samples under investi-
gation (thin films). The possible consequences of such a hypothesis
will be discussed at the end of this section.

2.2. Propagation and termination

Propagation and termination rate constants are relatively difficult
to obtain separately. In contrast, the ratio k3½PH�=k6

1=2 which rep-
resents the intrinsic oxidizability of the substrate can bemore or less
easily determined from oxidation kinetic curves. This determination
is especially easy when oxygen is in excess i.e. when termination
results almost exclusively from peroxyl bimolecular radicals combi-
nation (reaction (6), rate constant k6). In this case, it can be
demonstrated that when a steady state is reached at relatively low
conversion, the maximum oxygen consumption rate is given (in
unimolecular mode, see later) by:

rOXð ÞMAX ¼ �
d O2½ �

dt
¼ 2

k23
k6

PH½ �2 (1)

In the oxygen deficit regime, P� radicals participate to termi-
nation by two reactions:

ð4Þ P� þ P�/inactive product k4

ð5Þ P� þ POO�
/inactive product k5

Thebestway todetermine (rOx)MAXandk5 consists in studying the
effect of oxygenpressure PO2

on themaximumoxidation rate rOx. The
equilibrium oxygen concentration [O2] in polymer is given by:

½O2� ¼ SO2
� PO2

(2)

where SO2
is the oxygen solubility in PA amorphous phase and PO2

is
the partial O2 pressure.

In polyamides, SO2
¼ 1.5 � 10�8 mol l�1 Pa�1 [10] so that:

[O2] ¼ 3 � 10�4 mol l�1 under air at atmospheric pressure. SO2

changes with temperature are expected to be negligible in agree-
ment with some published data on PA6 [6] and PE [11].

At constant initiation rate, i.e. here in steady state, one can
demonstrate that [12]:

rOX ¼ ðrOXÞMAX,
b½O2�

1þ b½O2�
(3)

where : b ¼
k2k6

k3k5½PH�
(4)

The curve rOx ¼ f([O2]) is a hyperbole having a horizontal
asymptote at rOx ¼ (rOx)MAX. (rOx)MAX and b can be determined
graphically from a graph “1/rOx vs 1/[O2]”:

1

rOX
¼

1

ðrOXÞMAX
þ

1

b,ðrOXÞMAX,½O2�
(5)

Literature [13e15] reports the effect of oxygen pressure on
oxidation kinetics of PA. In the case of thermal oxidation, some
results at 155 and 200 �C [13] are plotted in Fig. 1.

The dependence is actually linear and the parameters values are
reported in Table 1.

A critical oxygen pressure ([O2]C) can be defined as follows:

- [O2]> [O2]C, oxidation is considered as in excess oxygen regime
i.e. that all P� are scavenged into POO� and termination kinetics
mainly occur by the POO� þ POO� coupling and oxidation rate
reaches a maximal value ðrO2

ÞMAX.
- [O2] < [O2]C, termination kinetics occur by the three reactions
of radical coupling and termination rate is given by Achimsky
[16]:

½O2�C ¼ 1:2=b�1 (6)

Using Patm ¼ 0.02 MPa, and SO2
¼ 1.5 � 10�8 mol l�1 Pa�1, it is

found: [O2]atm ¼ 3 � 10�4 mol l�1 so that: [O2]C > [O2]atm ([O2]atm
being the oxygen concentration which is dissolved into polyamide
amorphous phase in air under atmospheric pressure). Hence, PA is
far from the oxygen excess in air under atmospheric pressure i.e.
that termination process involves P� radicals.

(Eqs. (4) and (5)) can be rewritten to obtain a relation between
k6 and (rOx)MAX:

b ¼
k2
k5
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2k6
ðrOXÞMAX

s

(7)

so that : k6 ¼
1

2
,

�

k5
k2

b

�2

,ðrOXÞMAX (8)

where b2$rOx w 420 mol l�1 s�1 at 155 �C and 2200 mol l�1 at
200 �C. The ratio k5/k2 is unknown. One can notice that both
reactions (2) and (5) are radical combinations involving P� radical.
Typical free enthalpy values DGf are [12]:
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Fig. 1. Effect of oxygen pressure on oxidation rate of PA6 at 155 (A, >) and 200 �C

(-, ,). Close symbols correspond to 1=rO2
vs 1=½O2 � and open ones to rO2

vs PO2
.

Table 1

Kinetic parameters determined from Fig. 1, Eqs. (5) and (6).

T

(�C)

1/(rOx)MAX (rOx)MAX 1/(rOx)MAX$b b (l mol�1) b2$(rOx)MAX

(l mol�1 s�1)

[O2]C
(mol l�1)

155 52,295 1.91E-05 11.1 4711 424.4 1.1.E-03

200 5950.2 1.68E-04 1.6 3634 2219.1 1.4.E-03



for : ð2ÞP� þ O2/POO� DGfw� 64 kJ mol�1

for : ð5ÞP� þ POO�
/POOP DGfw� 235 kJ mol�1

Both reactions are exothermal but POO� radicals are clearly
more reactive than O2. In other words, k5 >> k2.

We know that : k3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

rOX
�

MAX
:k6

2
h

PH
i2

v

u

u

u

t

(9)

Substituting k6 by its value in (Eq. (9)):

k3 ¼
1

2
$

k5
k2
$

b$ rOXð ÞMAX

PH½ �
(10)

so that: k3 ¼ 3.7 � 10�3
$k5/k2 at 155 �C and 2.5 � 10�2

$k5/k2 at
200 �C. This equality will be discussed in the following of this
article.

There is another way for determining indirectly k3 from disso-
ciation energy values for the scission of CeH bonds in a-position of
the amino group (denoted by BDE in the following). In the second
approach, wewill use semi-empirical relationships linking BDE and
Arrhenius parameters for k3 i.e. the preexponential factor (denoted
by k30) and its activation energy E3. According to Korcek et al. [17]:

logk3ð30
�CÞ ¼ 16:4� 0:048� BDEðC� HÞ (11)

for secondary POO� radicals

E3 ¼ 0:55� ðBDEðC�HÞ � 261:5Þ (12)

When only one rate constant value k3(T) at Ts 30 �C is available,
BDE can be calculated or obtained using Eqs. (11) and (12) by
solving the following equation:

k3ð30
�CÞ ¼ k3ðTÞ,exp

�

�
550� ðBDE� 261:5Þ

R
�

�

1

303
�

1

T

��

(13)

Some literature data about k3(T) or E3 and subsequent estima-
tion of BDE using Eqs. (11) and (12) are given in Table 2.

BDE value is extracted and compared with the only value we
found for BDE in polyglycine. BDE and thus E3 values display rela-
tively little scatter. The most probable values are:

BDEw355� 360 kJ mol�1

E3w53� 3 kJ mol�1

E3 was found significantly lower than in PE (73 kJ mol�1) [20]
explaining why aliphatic PA is more reactive than PE. However,
three kinds of CeH bonds can be distinguished in PA (Fig. 2).

g Methylenes (in the core of polymethylenic sequences) are
expected to have a reactivity close to PE ones because inductive
effects in saturated chains cannot propagate beyond one carbon as
this is not through (e.g. shown in NMR). The feature of PA reactivity
is therefore due to a or b carbons. As it will be shown below (see
part 4 of ‘Oxidation products’ section), a carbons are the most
reactive. In a first approach, it will be considered that oxidation
occurs selectively on these carbons (their concentration is about
10.5 mol l�1 in PA6 and 5.5 mol l�1 in PA11). The relative ease of
propagation in polyamides is linked to the destabilizing role of
nitrogen atom on the neighboring methylene. The Arrhenius dia-
gram of k3 is given in Fig. 3.

a amino methylenes are almost as reactive as allylic methylenes
in polybutadiene and much more reactive than tertiary CeH so
that k3 is rather high compared for example with PP as noted by
George [21].

Using k3 values from Fig. 3 and Eq. (9), it is now possible to
assess k3 and then k6 from the experimental values of (rOx)MAX. The
resulting estimations are given in Table 3.

The termination reactions between POO� radicals appear very
fast that is presumably due to the existence of an efficient dispro-
portionation process (see section 1 of the ‘Oxidation products’).
Activation energy E6 would be also very low. Let us recognize that
the above results are to be considered with caution because they
result from a unique set of measurements. However, the relatively
low value found above can be tentatively checked from a series of
papers by Gijsman et al. [22e25] in which several values of the
oxygen absorption rate are reported. Those values lead to the
Arrhenius plot of k23=k6 (Fig. 4).

Table 2

Estimation of BDE (aCeH) from kinetic parameters values reported by Denisov and Afanas’ev [18] and measured for polyglycine by Rauk et al. [19].

Molecule T (K) k3 (l mol�1 s�1) E3 (kJ mol�1) Ref. BDE (CeH) (kJ mol�1)

N
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O
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Fig. 2. Kinds of methylene units in PA.



From Arrhenius plot of k23=k6 (Fig. 4), it can be deduced that:

EOX ¼ 2E3 � E6w90� 115 kJ mol�1

The upper limit is close to the value reported by Bernstein et al.
[26]. Comparables values (73 kJ mol�1 [27] and 110 kJ mol�1 [28])
were observed considering the maximal chemiluminescence
emission i.e. on the assumption that activation energy on (ICL)MAX

is: ES ¼ 2E3 � E6 [29]. However, all data converge towards the fact
that 2E3 � E6 w 90 kJ mol�1 so that E6 is relatively low. The exact
value of E6 and the coexistence of termination processes involving
alkyl and peroxy radicals remains however open and requires
studies under a wide range of oxygen pressures [12].

2.3. Hydroperoxides decomposition

The most striking feature of PA oxidation kinetics is the absence
of induction period even at low temperature (60 �C) for samples
having initially a low (eventually non measurable) hydroperoxides
content. In the frame of the chosen mechanistic scheme, this
behavior can be attributed to an especially low stability of PA hy-
droperoxides. If hydroperoxides decompose as soon as they are
formed, they cannot accumulate and they cannot eventually reach
the critical concentration necessary for bimolecular decomposition
reaction to begin. Then, the POOH decomposition remains unim-
olecular in the whole course of oxidation. It will be assumed in the
following that it is effectively the case for polyamides.

In the chosen mechanistic scheme, hydroperoxide concentra-
tion is expected to increase and to tend towards an asymptotic
value [POOH]N corresponding to the steady state where POOH
destruction by reaction (1u) is equilibrated by POOH formation by
reaction (3). In oxygen excess regime, for unimolecular initiation,
the steady state POOH concentration [POOH]S is theoretically
given by:

½POOH�
N

¼
k23

k1uk6
,½PH�2 (14)

In fact, the substrate consumption induces a decrease of
oxidation rate at high conversion and the matter that [POOH]
passes through amaximum [POOH]MAX and then decreasesmore or
less slowly [30]. In a first approximation, [POOH]MAX will be

assumed close to [POOH]N and, for exposures in air under atmo-
spheric pressure, the asymptote will be assumed close to the
infinite value under oxygen excess [POOH]N.

It seemed to us interesting to compare available data on
[POOH]MAX for polyolefins [30,31] and polyamide 6 [22] (Table 4).

The hydroperoxides concentrations at steady state appear
noticeably lower for polyamides than for polyolefins. It can be
linked to the especially low hydroperoxides stability in polyamides
i.e. k1u high values leading to low values for [POOH]N according to
Eq. (14). One can notice these k1u high values are consistent with a
unimolecular decomposition mechanism.

It is noteworthy that [POOH]MAX is an increasing function of
temperature for polyamides whereas it is a decreasing function of
temperature for PE and PP. If [POOH]MAX is close to [POOH]N as
hypothesized above, Eq. (14) leads to:

EPOOH ¼ 2E3 � E1u � E6 (15)

EPOOH expressing the thermal stability of POOH: for example, when
it is positive, it means that POOH becomes more stable at high
temperature. Since E3 w 53 kJ mol�1 for PA and 73 kJ mol�1 for PE,
one can see that:

E1u þ E6 < 106 kJ mol�1for PA where EPOOH > 0 (16)

E1u þ E6 > 146 kJ mol�1for PE where EPOOH < 0 (17)

As discussed in ‘Propagation and termination’, E6 is small
(0e10 kJ mol�1). This set of inequality also indicates that the acti-
vation energy of unimolecular hydroperoxide decomposition (E1u)
is considerably lower for polyamides (E1u < 106 kJ mol�1) than for
PE (E1u ¼ 140 kJ mol�1). As a confirmation E1u ¼ 65 kJ mol�1 was
reported by George [21].

Table 3

Estimated k3 and k6 values from the results in Fig. 1.

155 �C 200 �C E (kJ mol�1)

k3 (l mol�1 s�1) 102 421 53

k6 (l mol�1 s�1) 3.1.Eþ10 5.9.Eþ10 25

y = -11207x + 9.4778

R
2
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R
2
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Fig. 4. Compilation of k23=k6 ratio for several polyamides from oxygen absorption

measurements (two regression attempts were made the first one takes into account

the data obtained at 180 �C, the corresponding activation energy is 115 kJ mol�1,

meanwhile the second attempt neglects this data to improve the correlation. The

corresponding value of the activation energy is 93 kJ mol�1). Symbols correspond to

data extracted from Refs. [22e25].

Table 4

Maximum hydroperoxide concentrations for some polyolefins and for polyamide 6.

Substrate T (�C) [POOH]MAX (mmol l�1) Ref.

PE 160 228 [31]

PE 160 326 [31]

PP 120 800 [30]

PP 100 1000 [30]

PP 80 1200 [30]

PP 60 1500 [30]

PA6 140 20 [22]

PA6 120 7 [22]
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Fig. 3. Arrhenius diagram for k3 in PA (-) with values PE (,, BDE¼ 395 kJmol�1), PP (>,

BDE ¼ 385 kJ mol�1) and BR (6, BDE ¼ 345 kJ mol�1) determined from Korcek’s law.



Let us now consider the initiation rate constant k1u values for
unimolecular decomposition. We have two available sets of data:

- the first one for PA11 and PA12 hydroperoxides by Lemaire
et al. [32,33] at 60 �C.

- the second one on model amide hydroperoxides by Sagar [34]
at 131 and 77 �C.

In the case of PA11 and PA12, rate constants were not reported.
We tried to determine them from the experimental curves of
[POOH] decay at 60 �C (Fig. 5).

Two attempts were made:

- one with the unimolecular model:

½POOH� ¼ ½POOH�0,expð�k1u,tÞ (18)

- the other with the bimolecular model:

1=½POOH� � 1=½POOH�0 ¼ k1b,t (19)

Both models are almost undistinguishable owing the data
scatter. The results do not permit to demonstrate the unimolecular
character of POOH but bimolecular reaction does not fit other ob-
servations as written above. Thus, we supposed that initiation
occurred only by unimolecular POOH decomposition and the cor-
responding k1u values are listed in Table 5.

In the case of model compounds (Table 5), it is possible to assess
the activation energy E1u at ca 90 kJ mol�1 consistently with the
inequality (Eq. (17)). Activation energy E1u for polyamides can also be
assessed fromthe results of Table5.Weknowthat fora truefirst order
process, the preexponential factor k1u0 is sharply linked to the fre-
quency of the corresponding molecular vibration i.e. k1u0 w 1013 s�1.
Activation energywould be thus 115 kJmol�1 i.e. slightly higher than
the value previously found formodel compounds (90 kJmol�1) but of
the sameorderofmagnitude andanyhow, significantly lower than for
polyolefin ones. The low value of E6 (Fig. 4) is thus confirmed.

Since inductive effects cannot propagate beyond one carbon atom
in a saturated chain, it can be assumed thatmethylenes in the core of
polyethylene sequences in aliphatic polyamides do not differ signifi-
cantly from polyethylene sequences. It can be deduced that the high
instability of PA hydroperoxides is linked to their placement in a-
position of amide groups, more precisely to nitrogen atoms of which
thedestabilizing roleonadjacenthydroperoxide iswell known[6,33].

2.4. To summarize literature data on rate constants

Literature data are too scarce and too scattered to allow precise
assessments of elementary rate constants but their analysis leads to
relatively clear conclusions:

① Polyamides are more reactive towards oxygen than poly-
olefins. This is due to the high reactivity of the a amino
methylene. The oxidative attack displays a relatively high
selectivity on this group:

② As far as auto-oxidation is concerned, another factor con-
tributes strongly to the PA oxidizability: the hydroperoxide
instability which is responsible for:

- The absence of induction period,
- The fact that POOH decomposition occurs in unimolecular
mode,

- The relatively low maximum POOH concentration.
③ In air at atmospheric pressure, oxygen is not in excess, which

means that termination reactions occur partly by P� þ POO�

combination [12]. Its rate constant k5 is significantly higher
than the rate constant k2 of oxygen addition on alkyl radicals.

④ Termination P� þ POO� but also POO� þ POO� are very fast
compared to those of polyethylene. One can suspect that it is
due to the existence of an efficient disproportionationprocess.

2.5. Simulation of kinetic curves

Gijsman et al. [16] published kinetic curves of oxygen uptake and
carbonyl build-up at several temperatures ranging between 120 and
170 �Cunder1baroxygenpressure forPA6.Thecurvesare reproduced
in Figs. 6 and 7 together with a first kinetic modeling (see below).

Let us first note that oxygen consumption rate at 120 �C (Fig. 6)
would be in the order of 10�7 mol l�1 s�1. A simplified approach for
diffusion coupling [35] leads to:

TOL2 ¼
DO2

,½O2�

rOX
(20)

Using [O2] w 3.10�4 mol�1 (see above) and
DO2

w 5 � 10�11 m2 s�1 [6], one finds: TOL w 10�4 m. In other
words, oxidation would not be diffusion controlled in those sam-
ples. In the following of such a comprehensive study, we will keep
the hypothesis of a homogeneous oxidation.

These results are especially interesting because, for the chosen
oxygen pressure, PA oxidation is not too far from the oxygen excess
regime that allows suppressing reactions (4) and (5) in the mech-
anistic scheme. The kinetic scheme is thus composed of the
following equations:

d½P��

dt
¼ 2k1u½POOH� � k2½P

��½O2� þ k3½POO
��½PH� (21)

d½POO��

dt
¼ k2½P

��½O2� � k3½POO
��½PH� � 2k6½POO

��2 (22)

d½POOH�

dt
¼ �k1u½POOH� þ k3½POO

��½PH� (23)

d½PH�

dt
¼ �g1uk1u½POOH� � k3½POO

��½PH� (24)

where g1 is the yield in PH consumed per initiation event.
It was shown that the following initial condition can be used [36]:

At t ¼ 0; ½P�� ¼ ½POO�� ¼ 0

½POOH�0 ¼ 10�3mol l�1

½PH�0 ¼ 12 mol l�1for PA6
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Fig. 5. Kinetics of POOH thermolysis in PA11 (A, >) and PA12 (-) at 60 �C [32,33].
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The oxygen consumption rate is given, in non-diffusion
controlled conditions by:

d½O2�

dt
¼ �k2½P

��½O2� þ k6½POO
��2 (25)

For carbonyl groups, it is supposed that, in the whole oxidation
course, the kinetic regime is close to the steady state so that initi-
ation and termination rates are almost equal. In these conditions, it
is licit to consider that carbonyls are formed only in initiation step
but including in gCO the contribution of termination events:

d½P]O�

dt
¼ gCOk1u½POOH� (26)

k2 was fixed equal to 108 l mol�1 and k3 was taken from Fig. 3 and
the oxygen solubility SO2

¼ 1.5 � 10�8 mol l�1 Pa�1, we determined
the rate constants values giving the best fit of experimental data
using a try and error procedure. The resulting rate constants are
listed in Table 6. It is found: E1uw 82 kJ mol�1 and E6¼ 0 so that the
inequality (16) is fulfilled.

These results (Figs. 6 and 7) call for the following comments:

① Globally, the model composed of the above differential
equations simulates relatively well the curves of carbonyl
build-up but not oxygen uptake. This is not surprising if we
consider the number of parameters and the simplicity of the

curves, which could be described by functions having one or
two parameters.

② k6 appears relatively high. In fact, as written above, termi-
nation involving P� radicals certainly have an influence (and
especially if oxidation process is diffusion limited which was
not taken into account here). It was shown that k3 ¼ d$k5/k2 (d
being equal to 3.7� 10�3 at 155 and 2.5�10�2 respectively at
155 and 200 �C). Even if there is of course some uncertainty
on the d value, this conclusion militates in favor of k5 being at
least 100 or 1000 times higher than k2 as observed for
instance in PE. In other words, the model employed here
neglects the termination between P� and POO� that is
compensated by an anomalously high k6 value. A kinetic
model taking into account terminations involving P� radicals
in PA is under investigation in our laboratory.

③ The simulation has been obtained with a set of parameters
values confirming the trends deduced from the preceding
analysis of literature data i.e. the need for high values of
initiation and propagation rate constants but also of termi-
nation one. The combination of such features is not obvious.
The fact that the temperature effect is well simulated with
such a complex combination of physically valid activation
energies is also a positive effect in favor of this model.

④ There is however an apparent discrepancy in the early period
of exposure especially in oxygen uptake curves where
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Table 5

Literature data on the first order rate constant of POOH decomposition in several model compounds, PA11 and PA12, PE and PP.

Molecule 131 �C 77 �C 60 �C Ref.

c0 (mol l�1) ku (s�1) c0 (mol l�1) ku (s�1) c0 (mol l�1) ku (s�1)

CH
3

C

O

N

C
3
H

7

CH

OOH

CH
2

CH
3

0.725 4.78 � 10�4 [34]

CH
3

C

O

N CH

OOH

CH
3

H

0.491 8.28 � 10�4 [34]

CH
2

C

O

N CH

OOH

CH
2

H

CH
3

CH
3

0.525 8.22 � 10�4

0.2 6.90 � 10�4 0.548 4.35 � 10�6 [34]

0.185 6.38 � 10�4

0.065 5.50 � 10�4 0.222 1.35 � 10�5

PA11 0.015e0.020 1.35 � 10�5 [32,34]

PA12 0.044 2.1 � 10�5 [32,33]

PE 6.4 � 10�6 1.0 � 10�8 8.7 � 10�10 [20]

PP 5.9 � 10�6 1.2 � 10�8 1.1 � 10�9 [12]



experimental oxidation rates are higher than predicted ones.
Experimental curves display an inflexion point which is
impossible to simulatewith the above kinetic scheme. Among
the possible explanations of this behavior, one can mention
the hypothesis of radical generation by polymer thermolysis,
as shown for instance in the case of PA12 by chem-
iluminescence measurements [28]. These results can be
summarized as follows: the sample is maintained under ni-
trogen for a time t1 at a chosen temperature. Then oxygen is
admitted in the cell and a light burst of intensity IMAx is
immediately emitted by the sample. IMAx is an increasing
function of t1. There is apparently no other explanation of this
phenomenon than the existence of a process of radical gen-
eration by polymer thermolysis. It remains to check its rate is
low at the temperature under consideration so that it domi-
nates in the early stage of exposure but becomes rapidly
negligible relatively to hydroperoxides decomposition.

3. Oxidation products

3.1. Imides

Since it is widely recognized that a amino methylenes are the
most reactive groups in radical oxidation, most of the stable
products must result from reactions of the corresponding radicals
and hydroperoxides i.e.:

Imides (P]O) appear practically always as a major stable
product [3,37]. They result obviously from attacks of a amino
methylenes through disproportionation processes. Various mech-
anisms can be imagined:

ðIaÞ POOH/½PO� �OH�cage/P]Oþ H2O

ðIbÞ POOHþPOOH/H2Oþ½POO� �OP�cage/POOHþP]OþH2O

ðIcÞ POO� þ POOH/POOHþ P]Oþ HO�

ðIdÞ POO� þ POO�½PO� �OP�cage þ O2/P]Oþ POH

- Processes Ia and Ib would contribute to lower the efficiency of
initiation. If they were the predominant source of imides, it
would be difficult to explain the high efficiency of initiation by
POOH decomposition.

- Process Ic is an induced POOH decomposition. It replaces a
relatively selective POO� radical by a highly reactive (and non
selective) HO� radical. Here, it would be difficult to explain the
high selectivity of oxidative attack on polyamides.

- Process Id is probably the predominant termination mode in
oxygen excess but it carries also an inconvenient linked to the
formation of an apparently unstable alcohol (see below).

Many authors [34,38e40] have studied the decomposition of a
amino hydroperoxides. Their results are summarized in Table 7.

These results call for the following comments:

① a Amino hydroperoxides are effectively unstable since their
decomposition can be studied even at low temperatures.

② Imides are effectively the major oxidation products.
③ Their yield appears as a decreasing function of temperature.

In other words, there is a competitive process having a higher
activation energy.

④ The imide yield is considerably higher in heterocycles than in
aliphatic amides. The simplest interpretation is that there is a
conformation favored in aliphatic amides and forbidden in
heterocyclic ones, favoring the above mentioned competitive
processes.

⑤ a Amino alcohols are not observed in other words if they are
formed, they decompose fast into more stable products.

3.2. Aldehydes, acids

According to the data of Table 7, all the other stable products of
the a amino hydroperoxides would result from b scissions of the
corresponding alkoxy radicals. Two modes of b scission could be
imagined:

But, as it has been previously shown, some disproportionation
events responsible for the formation of imides can also give sec-
ondary a amino alcohols. These latter are unstable and could
decompose into primary amide and aldehyde:

In the presence of oxygen, aldehydes can be rapidly converted
into acids.

When, in case I2 (see Table 7), ethanol is formed, one can sup-
pose that it is a product of the oxidation of the primary alkyl radical
resulting from the b scission IIb. It can be reasonably supposed that
the competition b scission IIa leading to an aminyl radical is ther-
mochemically disfavored so that, if pairs of primary amide and
aldehyde are formed, they result from the decomposition of a

amino alcohols (reaction IIc).
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NH CH
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°

P° PO° POO° POOH

Table 6

Rate constants values for best fit of Figs. 6 and 7.

T (�C) k1u (s�1) k2
(l mol�1 s�1)

k3
(l mol�1 s�1)

k6
(l mol�1 s�1)

[POOH]inf
(mol l�1)

170 5*10�4 108 170 5*1011 0.017

160 3*10�4 108 121 5*1011 0.014

140 1*10�4 108 60 5*1011 0.010

120 3*10�5 108 27 5*1011 0.007
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Table 7

Literature data about oxidation products of amide model compounds.

Amide T (�C) Code Products Presumed process of formation Yield (%) gS/gCO Ref.

N

C
O

H

80 A
C N

C
O

HO

I 90e93 [38,39]

N C

OH

80 B
N C

C

OH

O
I 98 [39]

N C

CH
3

O

80 C
C

N C

CH
3

O

O

I 42e94 [38,39]

N
C

CH
3

O

20 D
C

N
C

CH
3

OO

I 87 [38]

N
C

CH
3

O

H
20 E1

C
O

H

C
N

C
CH

3

O

H

O

IIc 19

E2 I 69 0.22 [38]

N
C

CH
3

O

H

F1
C

OH

O

C
OH

O

C
N

C
CH

3

O

H

O

? 14

80 F2 IIc 13 0.42 [38]

F3 I 37

N
C

CH
3

O

20 G1

C
N

C
CH

3

OO

N

I 91 0.07 [39]

G2 III 7

N
C

CH
3

O

80 G1

C
N

C
CH

3

OO

N

I 87

G2 III 10 0.10 [39]

C
N

O

H

0 H C
N

C

O

H

O

I 73 [40]



The formation of unsaturated amides (I4) seems to occur only at
high temperature (131 �C) since these products are not observed,
for the same substrate at 75 and 0 �C. One can imagine a dehy-
dration of secondary alcohols:

C

O

R NH CH

OH

CH
2

R' C

O

R NH CH CH R'IIIa
∆

or a disproportionation involving a P� radical:

C

O

R NH CH CH
2

R' C

O

R NH CH CH R'IIIb
° R°

where R� can be another alkyl radical, an alkoxy radical or peroxy
radical.

3.3. Chain scissions

Chain scission is a very important process in practice because it is
themain cause of embrittlement of polymers undergoing aging [41].
Almost all the reactions competingwith imide formation, except IIIa
and IIIb are chain scissions.Assuming that Table7 gives anexhaustive
view of reaction products, one can estimate the yield of chain scis-
sions per POOH decomposition event. It varies from 0 to 0.6. These
results are however to be taken with cautions. For instance, in the
case of n propyl amide (I), the yield of chain scission seems to vary
non-monotonously with temperature, which seems surprising.

In the case of aliphatic polyamides, there is relatively few in-
formation. In the case of photooxidation, Margolin [42] observed
that there is about one chain scission per 6 oxygen molecules
reacted, a ratio 3 times lower than for PP [43]. Another interesting
comparison can be made: in polyolefins, embrittlement (due to

Table 7 (continued )

Amide T (�C) Code Products Presumed process of formation Yield (%) gS/gCO Ref.
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chain scission), occurs at very low conversion eventually before the
carbonyl groups can be detected by IRTF [44,45]. In polyamides in
contrast, embrittlement occurs when CO build up is reaching a
plateau [22,46,47]. For these polymers, as for polyolefin’s, chain
scission induces chemicrystallization [41]. The difference between
polyamides and polyolefins could thus be due to the lower yield of
chain scission (per carbonyl group) in polyamides. The only way to
reconcile this trend (if it is comforted in the future) with the
available analytical data is to suppose that imides are formed in
reactions Ia, Ib or Ic but not in Id because, in this case, owing to the
unstability of a amido alcohol resulting from the disproportion-
ation, there would be equality of imides and chain scission yields.
But reactions Ia, Ib and Ic are not devoid of inconvenient:

- reaction Ia is disfavored by the small size of hydroxyl radicals
which can easily escape from the cage.

- reactions Ib and Ic are disfavored by the low POOH concen-
trations (see above).

If reaction Id is not frequent, we have to imagine another very
efficient termination process, which is not obvious. For us, the key
question of chain scission mechanism remains open.

3.4. Other products

It is now clear that oxidation products of polyamides result
mainly from the attack of a amino methylenes but is this attack
totally selective?

No doubt, the other methylenes are reactive, otherwise PE would
be stable in the 120e170 �C temperature range,which is not the case.

Many authors have hypothesized that only a CH2 is attacked
[48e50]. However other authors have reached the opposite
conclusion [51,52]. Polyamides undergo discoloration during their
oxidation and the above mentioned products of a methylenes
oxidation are not chromophores. Li et al. [53] supposed that CO
groups reacting from the attack of the b methylenes could be the
cause of discoloration. According to Allen et al. [54], the phospho-
rescence of oxidized polyamides would be due to a,b unsaturated
ketones whereas for George [13], it would be due to unsaturated
amides resulting from the exclusive attack of a methylenes.
Levantovskaya [55] proposed an intramolecular reaction between a

amino peroxyl and b CH2 to explain the formation of formaldehyde
in thermal oxidation of polyamide.

A simple calculation (see Appendix 1) shows that for a fully
selective attack of a methylenes (they would be at least 100 times
more reactive than b methylene), the difference of bond dissocia-
tion energy (BDE) must be higher than 56 kJ mol�1 which is too
high. Finally, it seems that the attack of b methylenes cannot be
neglected. Its modeling needs to use a co-oxidation scheme which
is now possible [56].

Regarding discoloration, it must be noticed that if the presence
of unsaturated species (I4 in Table 7) is confirmed, it indicates the
existence of disproportionation processes involving P� radicals only
possible in oxygen deficit regime. If these species were responsible
for discoloration, they would disappear in oxygen excess which
remains to demonstrate.

4. Conclusion

From this survey of literature data relative to mechanisms and
kinetics of aliphatic amides oxidation, we reached the following
conclusions:

① The data are too partial and too scattered to permit precise
determination of elementary rate constants. However, it was

possible to make interesting estimations and comparisons
with polyolefins and especially polyethylene.

② There is a wide consensus on the fact that a amino methy-
lenes are considerably most reactive than all the other
methylenes. In a first approach, one can consider that
oxidation attacks only a amino methylenes.

③ This attack leads first to a amino hydroperoxides (a POOH),
which are strongly destabilized by the inductive effect of
neighboring (electronegative) nitrogen atom. This instability
carries important consequences: first, oxidation kinetics do
not display induction period, even at relatively low temper-
atures (<100 �C). Secondly, POOH decomposition occurs
mainly by unimolecular mode. Thirdly, POOH concentration
remains low (compared to polyolefins). Fourthly, the activa-
tion energy of POOH decomposition (i.e. of radical initiation
for chain oxidation) is relatively low (compared to
polyolefins).

④ Propagation by hydrogen abstraction is faster than for poly-
olefins, that explains the selectivity of the attack on the a

methylenes. Its activation energy E3 (w50 kJ mol�1) is lower
than the one in polyethylene (i.e. the methylenes others than
a methylene in polyamides for which E3 w 70 kJ mol�1).

⑤ Termination is also very fast probably thanks to very efficient
disproportionation processes.

⑥ The oxidation of a methylenes leads mainly to imide groups.
At least four elementary processes can be involved in imide
formation.

⑦ Most of the other oxidation products of a methylenes result
from rearrangements of a amino alkoxyls or a amino hy-
droxyls leading to chain scissions with terminal aldehydes or
alcohols. The yield of chain scission seems to be lower than
for polyolefins but the reason is not well understood.

⑧ It is difficult to imagine that methylenes other than a amino
ones are totally unreactive. Their attack seems to be respon-
sible for chromophore formation and the resulting polyamide
discoloration. Many hypotheses have been emitted for this
phenomenon but they need to be checked. Accounting for
methylenes other than amethylenes ones will need to build a
co-oxidation kinetic model.

Appendix A

For a polyamide j, the propagation steps would be then written:

3a POO� þ aPH/POOHþ aP� k3a

3b POO� þ bPH/POOHþ bP� k3b

The reaction rates are:

r3a ¼ k3a½POO
��½aPH�

r3b ¼ k3b½POO
��½bPH� ¼ ðj� 1Þ,k3b½POO

��½aPH�

In other words : r3b=r3a ¼ ðj� 1Þ,k3b=k3awhere for instance
j¼ 5 for PA6 and j ¼ 10 for PA11. The condition for a total selectivity
would be thus:

r3a[r3b

k3b
k3a

[j� 1

Let us consider that in practice, the rates must differ by at least
more than two decades:



k3b
k3a

[100,ðj� 1Þ or : ln

�

k3b
k3a

�

[ln100,ðj� 1Þ

According to Korcek et al. [17]:

ln

�

k3b
k3a

�

¼ 2:3� 0:048� DBDE

where DBDE is the difference of dissociation energies of aCH and
bCH bonds. Combining both above relationships, one obtains the
conditions:

DBDE > ln

�

100,
j� 1

0:11

�

i.e. DBDE > 56 kJ mol�1 for j � 6.
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