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OBSERVATION OF THE INVERSE ENERGY CASCADE IN THE

MODIFIED KORTEWEG–DE VRIES EQUATION

DENYS DUTYKH AND ELENA TOBISCH∗

Abstract. In this Letter we demonstrate for the first time the formation of the inverse

energy cascade in the focusing modified Korteweg–de Vries (mKdV) equation. We study

numerically the properties of this cascade such as the dependence of the spectrum shape

on the initial excitation parameter (amplitude), perturbation magnitude and the size

of the spectral domain. Most importantly we found that the inverse cascade is always

accompanied by the direct one and they both form a very stable quasi-stationary structure

in the Fourier space in the spirit of the FPU-like reoccurrence phenomenon. The formation

of this structure is intrinsically related to the development of the nonlinear stage of the

Modulational Instability (MI). These results can be used in several fields such as the

internal gravity water waves, ion-acoustic waves in plasmas and others.
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tion; inverse cascade.
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Figure 1. Modulational instability in the NLS equation.

1. Introduction

Currently there exist three main models which describe the energy cascade in nonlinear
wave systems. Each model covers its own range of the nonlinearity parameter. Namely,
for strong nonlinearities the Kolmogorov cascade with the widely known exponent k−5/3

(k being the vortex scale) introduced for the hydrodynamic turbulence theory [10]. In the
opposite limit of weak nonlinearities, the kinetic weak turbulence spectra k−α (now k is the
wavenumber) were introduced, [14]; in this case the spectrum exponent α is not universal
anymore and the nonlinearity parameter ak ≲ 10−2, where a is the typical wave amplitude.
For the intermediate values of the nonlinearity ak = O(10−1) the Dynamic energy cascade
(D-cascade) model was proposed for the equations which feature the Modulational Insta-
bility (MI) property [7]. This construction was originally described and studied in details
for the NLS-type equations [8, 9].

In particular it was shown [7] that in the focusing (i.e. possessing the MI) NLS equation
only one cascading mode is forming due to the intrinsic narrow band spectrum approxi-
mation. This prediction was checked numerically and the development of the MI in the
NLS is shown on Figure 1. On this bottom panel one can see only one spike in the Fourier
spectrum along with the broadening wings.

On the other hand, the modified Korteweg–de Vries (mKdV) equation does not have
any restrictions on the wave spectrum. In this study we consider the following focusing
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Parameter Range

Amplitude a = 10−2 ÷ 2.4 × 10−1

Perturbation magnitude m = 5 × 10−2 ÷ 5 × 10−1

Base wavenumber k0 = 1.8 ÷ 60.0

Simulation time horizon T = 40 ÷ 2000

Fourier harmonics N = 1024 ÷ 131072

Table 1. Parameters range used in numerical simulations.

mKdV equation:

mKdV(u) ≐ ut + uxxx + 6u
2ux = 0 . (1.1)

The formation of the direct D-cascade in this equation has been recently observed and
investigated numerically in [2]. The direct cascade forms starting from any base wavenum-
ber k0 > 0. The main properties of the direct cascade will be briefly described in the next
Section. Concerning the inverse cascade, it was not observed yet to our knowledge. In this
Lettre we aim at presenting solid numerical evidences towards the existence of the inverse
D-cascade and studying some of its properties comparing to the direct one.

2. Direct cascade in the mKdV equation

For our numerical simulations we adopt the set-up used also earlier in [4, 5] for the study
of the modulation instability in the physical space, with the following initial condition posed
on a periodic domain [−ℓ, ℓ] ≐ [−π/k0, π/k0]:

u(x,0) ≡ u0(x) = a(1 + δ sin(K0x)) sin(k0x), (2.1)

where a is the base wave amplitude, δ is the perturbation magnitude and the wavenumbers
k0, K0 are chosen such that their ratio k0/K0 ∈ Z. It is important to realize that the
amplitude a is the measure of the nonlinearity in the mKdV equation, in the contrast to
the NLS equation where the nonlinearity is related to the wave steepness aK0 defined in
terms of the modulational wavenumber K0.

The main characteristics of the direct D-cascade observed in [2] are as follows:

● (a) the main structure of the cascade is already observable in Fourier spectra from
the first instances of the dynamical evolution;
● (b) the development of the Modulation Instability (MI) in the physical space occurs

at the time scale t ∼ ε−2 and corresponds to the spectral broadening of the cascading
modes; the frequencies and energies of the cascading modes are quasi-stationary;
● (c) the energy spectrum of the cascade has exponential form, Ek ∝ exp(−αk)

which does not depend on the base amplitude a for fixed values of other parameters;
● (d) the increase of the spectral domain yields the increase of the cascade length but

does not changes the exponent α;
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● (e) the increase of the perturbation magnitude m from 5% to 50% effects the time
scale on which the MI occurs in the physical space: higher perturbation accelerates
the process;
● (f ) the increase of the base wavenumber k0 to 2k0, 3k0, . . ., 30k0; changes the

exponent α and yields at some point (beginning with ≈ 35k0) the occurrence of the
inverse cascade;

The appearance of the direct D-cascade has been clearly observed (characteristic cas-
cades are shown in Figure 2), for the wide range of the initial parameters described in
Table 1. For the sake of illustration, on Figure 2 we show the formation of the direct D-
cascade for the initial condition (2.1) with the following parameters: k0 = 1.884, m = 5×10−2,
K0 = 0.00785 and a = 8 × 10−2 on the top panel (a) and a = 1.6 × 10−1 on the panel (b).
These values of parameters were also used in [5]. However, the numerical resolution was
significantly lower in their study and the authors did not report the evolution of the system
in the Fourier space. From our simulations it can be easily seen that an increase in the
base wave amplitude does not change the shape of the energy spectrum along with the
spacing between cascading modes. Moreover, the time instances t = 50 and 90, where these
snapshots were taken, indicate that the MI development goes faster with higher amplitudes.
The dashed black lines shown on bottom panels show the same exponential fit for both
panels.

In the next Section we present the results of our studies of the inverse cascade, using the
same parameters as above but with base wavenumbers k0 shifted toward short waves.

3. Double cascade in the mKdV equation

In order to solve numerically the mKdV equation on a periodic domain we used the
classical Fourier-type pseudo-spectral method along with the 2/3-rule for dealising of non-
linear products. The discretization in time was done with the embedded adaptive 5 th order
Cash–Karp Runge–Kutta scheme with the adaptive PI step size control. In most numerical
simulations presented below we will use N = 32768 Fourier harmonics, unless a special
remark is made.

On Figure 3 we show the simultaneous formation of the direct and inverse cascades
(which will be referred below as the double cascade) at different times. In order to achieve
this result the base wavenumber k0 was shifted approximatively into the middle of the
spectral domain (k0 = 35 × 1.884). One can see that starting from t ≈ 20 (see Figure 3(d))
the MI is already fully developed in the physical space, which corresponds to the appearance
of a quasi-stationary structure – double cascade in the Fourier space. For times t ⩾ 20 the
evolution of the system follows the FPU-like pattern, without any significant change in the
Fourier domain (see Figure 3(e, f )).

As in the case of the isolated direct cascade, the double cascade equally has the expo-
nential decay in the Fourier space. However, the two exponents are slightly different in a
way that the direct cascade decays generally faster than its inverse counterpart.
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Figure 2. Direct cascade in the mKdV equation. The energy spectrum

exponential fit shown on bottom panels is the same for both amplitudes and equal

to e
−1.45k.
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|û
(k
,
t)
|2

 

 

Fourier spectrum

Direct Cascade

Inverse Cascade

(c) t = 15

−400 −300 −200 −100 0 100 200 300 400

−0.2

−0.1

0

0.1

0.2

x

u
(x
,
t)

Numerical solution of the mKdV equation at t = 20.000

20 40 60 80 100 120

10
−30

10
−20

10
−10

10
0

k

|û
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Figure 3. Formation of the direct and inverse cascades in the mKdV equation.

3.1. Effect of the amplitude

We performed the same simulation as shown on Figure 3, but with twice the initial
wave amplitude a = 2 × 0.08. The results are demonstrated on Figure 4. One can see
that the main characteristics of the double cascade remain unaffected, i.e. the number
and position of cascading modes along with the exponential shape of the Fourier spectrum.
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This observation can be made even more precise as we plot the same fitted exponents on
bottom panels. One can see on Figure 4(c) a very good agreement between the observed
spikes with the observed above exponential decay rate.

In contrast to the previous case with a = 0.08, all the processes are accelerated. Most
importantly, the development of the MI in the physical space happens earlier with respect
to the former computations shown on Figure 3. Consequently, the process enters in the
FPU-like recurrence regime earlier showing that the cascade formation is intrinsically linked
to the MI development.

3.2. Effect of the perturbation

We studied also the effect of the perturbation magnitude m. We do not report the
numerical results here due to the limitations in the Lettre length. However, we report that
for m = 0.05 ÷ 0.5 (i.e. 5% to 50% of the base wave amplitude) the same processes
described above still take place. Basically, the higher values of the parameter m yield the
larger initial amount of the energy in the system which lead to the faster development of
the MI.

3.3. Effect of the spectral domain

The last series of numerical experiments reported in this Lettre aim at the studying the
effect of the spectral domain on the energy cascade shape. With this purpose in mind
we keep the same initial conditions as above, however we double the size of the spectral
domain (consequently, the number of Fourier modes becomes N = 65536 correspondingly).
These results are shown on Figure 5. Our initial intuition, based on the experience with an
isolated direct cascade, indicated that the increase of the spectral domain will lead to the
change of the spectrum exponents by preserving the global structure of the double cascade.

Surprisingly, our simulations show that the cascade observed on Figure 3 preserves its
shape and location in the Fourier space (0 ⩽ k < 120), while in the additional space (120 ⩽
k ⩽ 240) another (apparently slightly smaller) replica of the initial double cascade appears,
shifted farther in the Fourier domain.

Each replica is an equally stable structure in the Fourier space as the double cascade de-
scribed above (i.e. with evolution the number and location of cascading modes remain the
same along with the spectrum exponents). However, they are different from the isolated
double cascade observed for precisely the same initial conditions. The main difference con-
sists, for example, in the number of cascading modes which obviously affects the exponent
of the energy spectrum shape.

By comparing the development of the MI in the physical space on Figures 3(d,e) and
5(b,c) we can see that in the case of the smaller spectral domain the MI is more developed
comparing to the latter. This phenomenon can be explained by the presence of two recur-
rent coherent structures (instead of one) each of them having a stabilizing effect on the
MI.
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Figure 4. Development of the double cascade for the initial wave amplitude

a = 2 × 0.08.
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Figure 5. Formation of two copies of the double inverse and direct cascades in a

two times larger spectral domain. The exponents shown with dashed lines were

measured in the simulations from Figure 3. The observed discrepancy shows the

effect of the spectral domain on the energy spectrum shape.
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4. Summary

Integrability of a specific evolutionary nonlinear PDE is a mathematical issue related to
the spectrum of the corresponding Lax operator [1]. It gives a priori no information about
the possible scenarios of the energy transport over the scales (in direct, inverse or both
directions) as well as about the shape of the energy spectra. A good illustration is the
nonlinear Schrödinger (NLS) equation which is integrable but this fact does not prevent
numerous researchers from studying the corresponding energy spectra numerically, experi-
mentally and analytically even nowadays [11]. Let us recall that the complete integrability
of the NLS equation was proved by Zakharov & Shabat in 1972 [15], while the observation
of the inverse cascade in the NLS was done only 20 years later [3].

The energy transport in the mKdV, also known to be integrable by the inverse scattering
transform, is even less studied than the NLS, and the existence of the inverse energy cascade
in the mKdV is a novel phenomenon which we believe should be studied further on, both
numerically and experimentally. In this Lettre we presented some preliminary but very
promising results on the formation of the inverse energy cascade in the mKdV equation.
Briefly our findings can be summarized as:

● Contrary to the direct D-cascade which can be observed for any k0 > 0, the inverse
cascade starts to appear only for large values of k0.
● It is not possible to observe an isolated inverse D-cascade, since the direct cascade

forms for any choice of k0. As a result, our observations show the so-called double
cascade which is composed of at least one instance of the direct and inverse cascades.
● The exponents of the inverse and direct cascades are slightly different. In general,

the direct cascade tends to decay faster. Moreover, the values of the exponents
were shown not to depend on the initial wave amplitude, but only on the initial
wavenumber k0.
● The double cascade appears to be a very robust quasi-stationary structure in the

Fourier space. In other words, the system at this stage enters into the FPU-like
recurrent regime.
● The formation of the D-cascade is accompanied by the nonlinear development of

the MI.
● The increase of the spectral domain yields the formation of two (and possibly even

more) replica of the double cascade, each containing roughly one half of the initial
energy. Our conjecture is that the further increase in the spectral domain will lead
to the appearance of more and more replica of this double cascade structure. Or
in other words, we will see the appearance of more and more recurrent structures
sharing the total system energy. This process may be regarded as a mechanism of
the MI stabilization.

The problem of the MI stabilization was considered by several research groups [13]
and the main stabilization mechanism which was put forward has been related to some
sort of dissipation. In this study we propose another mechanism which can work in fully
conservative systems.
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The present investigation is restricted to the case of moderate nonlinearities (a ∼
O(10−1)), since in this case it is straightforward to find an unstable mode k0. When
we go to the field of the finite amplitude waves (a ∼ O(1)), the stability study becomes
a complicated mathematical problem [6]. The investigation of the D-cascade formation in
strongly nonlinear regimes, occuring for example in plasma physics [12], is among our next
priorities.
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