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Abstract. Convex polyhedra provide a relational abstraction of numer-
ical properties for static analysis of programs by abstract interpretation.
We describe a lightweight certification of polyhedral abstract domains
using the Coq proof assistant. Our approach consists in delegating most
computations to an untrusted backend and in checking its outputs with
a certified frontend. The backend is free to implement relaxations of do-
main operators in order to trade some precision for more efficiency, but
must produce hints about the soundness of its results. Experiments with
a full-precision backend show that the certification overhead is small and
that the certified abstract domain has comparable performance to non-
certifying state-of-the-art implementations.

Keywords: abstract interpretation, abstract domain of polyhedra,
program verification in Coq

1 Introduction

Astrée [1] is a major success of semantics-based static analysis of programs: it
is capable proving the absence of runtime undefined behaviours in large scale real
world C programs from avionics. Abstract interpretation [2], on which Astrée

is based, formalizes the state analysis of programs and guarantees that the ana-
lyzer soundly over-approximates the behaviours of the program under analysis.
However, Astrée is itself a complex piece of software. Despite the care put in
its development, it may contain bugs. One possible solution consists in proving
that the analyzer implementation is sound and having this proof mechanically
checked by a proof assistant. Trusting the result of the analyzer is thereby re-
duced to trusting the proof checker and answering the question: Is what has been
proved what we want to prove?

The CompCert C compiler [3] is a successful project built with the Coq

proof assistant. The Verasco project aims at building an abstract interpreter
in a similar manner, reusing the CompCert infrastructure, mainly the fron-
tend and the formalized semantics of the C programming language. Once the
semantics of the program under analysis are defined, the correctness proof is
composed of two components: the abstract domain must be shown to soundly
over-approximate manipulations of sets of reachable states, and the link between

⋆ This work was partially supported by ANR project VERASCO (INS 2011).
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the semantics of the program and abstract domain operators must be proved cor-
rect.

Our work addresses the problem of proving correct in Coq an implementa-
tion of the abstract domain of polyhedra [4], which capture linear relationships
between program variables. The abstract domain we built is similar both in
features and performance to the core of the polyhedra library in the PPL [5]
and Apron [6]. We adopted the same two tier architecture as Besson et al. [7]:
an untrusted Ocaml backend performs most of the computations and outputs
proof hints for the results it produces, which are used by a frontend developed
in Coq to build trustworthy results.

Previous work [8] discusses the efficient generation of proof hints, which we
call certificates, and provides an experimental evaluation of the overall abstract
domain. The main contribution of the work described here is the design of the
link between the Coq frontend and the untrusted backend. It avoids the conver-
sion and transfer of polyhedra. This makes the coupling between the frontend
and the backend very loose. As a result, building other certificate-producing
backends is easy and has no impact on the Coq frontend code. Complete free-
dom is given on the choice of data structures: a backend could use constraint
or double representation for polyhedra. Furthermore, since the backend does
not give formal precision guarantees, a backend could implement relaxations of
domain operators [9,10], trading precision for efficiency.

We also present a lightweight method to ensure the soundness of Ocaml code
extracted from the Coq frontend, even when the backend has an internal state,
or when the functional purity of the backend is not trusted. Last, we describe
the architecture of the frontend as a collection of functors which extends a bare
metal abstract domain interface. This approach makes the proof modular: it is
simpler and more robust to change.

2 A certified interface of polyhedral abstract domains

Let us introduce an small imperative programming language, named PL. The
syntax of PL programs is described on figure 1. Letter t stands for an affine term
and c is a condition over numerical variables with the following syntax:

c ::= t1 ⊲⊳ t2 | ¬c | c1 ∧ c2 | c1 ∨ c2
with ⊲⊳∈ {=, 6=,≤,≥, <,>}. All numbers are rationals.

For the purpose of introducing a logical interface of abstract domains, we
are going to build a postcondition computation and explain how to prove its

s x := t s1; s2 if(c){s1}else{s2} while(c){s :pi}

〈p〉s p[x := t] 〈〈p〉s1〉s2
〈p ⊓ c〉s1
⊔ 〈p ⊓ ¬c〉s2

{

pi ⊓ ¬c if p ⊑ pi ∧ 〈pi ⊓ c〉s ⊑ pi

⊤ ⊓ ¬c otherwise

Fig. 1. Syntax and postcondition computation of PL
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correctness using a proof assistant such as Coq. For simplicity, PL programs are
annotated with candidate invariants pi where they are hard to infer: at the loop
headers. The postcondition computation, described on figure 1, checks whether
the candidate invariants are inductive. Given a precondition p, the postcondi-
tion 〈p〉s of a statement s is computed using recursion on the syntax of s. If a
candidate invariant cannot be shown to be inductive, it is replaced by ⊤, which
is always safe. This happens when the candidate invariant does not include the
postcondition of the loop body and may have two causes. Either the candidate
invariant is not inductive, or the abtract domain used for checking inductiveness
is not precise enough.

The postcondition computation relies on the operators of the abstract do-
main. Let us introduce them on the example of the abstract domain of polyhedra.
A polyhedron p encodes a formula

∧

i ai.x ≤ bi, where ai is a row vector of ra-
tional constants, bi is a rational constant and x is a column vector of numerical
variables of the program. Its semantics, or concretization, is the predicate JpK
defined as λm.

∧

i

∑

j aij .m(xj)≤ bi, where m is a total map from variables to
rationals representing a memory state. We omit the definitions of the semantics
of t and c, as they are standard.

– Polyhedron ⊤ corresponds to the predicate True.
– Polyhedron ⊥ corresponds to the predicate False.
– Polyhedron p ⊓ c over-approximates the conjunction of JpK and JcK (hence,

the forward predicate transformer for guard).
– Polyhedron p1⊔p2 over-approximates the disjunction of Jp1Kand Jp2K(hence,

the forward predicate transformer for join).
– Given a term t and a variable x, polyhedron p[x := t] over-approximates the

result of applying the forward predicate transformer for x := t on JpK.
– Boolean p1 ⊑ p2 over-approximates the inclusion of predicates: if it is true,

then Jp2K is a logical consequence of Jp1K.

Although we have omitted them here, the Coq code of the invariant checker
needs to formalize the semantics of PL and prove that the reachable states of
a PL program are soundly captured by the postcondition computation defined
on figure 1. This relies on the abstract domain operations satisfying the Coq

formal specifications presented on figure 2.

These specifications are weak: they only enforce that the operators of the
abstract domain perform safe over-approximations. They give no information
on the precision of the results. Building an abstract domain satisfying these
specifications is our focus in this paper.

J⊤Km ¬ J⊥Km JpKm ∧ JcKm ⇒ Jp ⊓ cKm Jp1Km ∨ Jp2Km ⇒ Jp1 ⊔ p2Km

JpKm⇒ Jp[x := t]K(m[x := JtKm]) p1 ⊑ p2 ∧ Jp1Km ⇒ Jp2Km

Fig. 2. Correctness specifications of our main polyhedral operations
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Fig. 3. Constraint and generator representations of the 3-dimensional hypercube

3 Result certification of polyhedral abstract domains

While using Coq enhances the reliability of software, it sets a number of restric-
tions on the programs which can be reasoned about. First, the Coq programming
language is restricted to pure functions that must be shown to terminate. The
algorithms used by the abstract domain of polyhedra are complex to implement
and these Coq requirements would have made their implementation even harder.
The most representative example is the simplex algorithm.

Furthermore, Coq programs cannot use native machine arithmetic for com-
puting. Instead, numbers are represented as lists of bits. The algorithms operat-
ing on polyhedra being arithmetic intensive, this suggests carrying out as much
computation outside Coq as possible. Again, the simplex algorithm is the most
representative example.

The arguments required to prove the correctness of the operators of the
abstract domain of polyhedra make it convenient to offload much computation
to an untrusted oracle and keep only a small amount of code to be proved correct
in Coq. We back up this claim with some background on polyhedra.

3.1 Representing polyhedra for certification

A polyhedron can be represented in two ways: as a conjunction of constraints
(i.e. affine inequalities) or as a set of generators, as illustrated on figure 3.

When working with generator representation, proving correctness of the poly-
hedral operations specified on figure 2 requires proving completeness results. In-
deed, forgetting one vertex of the hypercube yields an under-approximation of
this hypercube. Correctness of static forward analysis is not preserved through
under-approximation, but through over-approximation.

Proving correctness of polyhedral operations in constraint representation is
easier, as forgetting one constraint of the result produces a safe over-approxima-
tion. What is left to prove is that each produced constraint includes the exact
result.

3.2 Expressing correctness as inclusions of polyhedra

The correctness of each operation reduces to inclusions of polyhedra. However,
this reduction requires to first break the complex operations given in figure 2
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JpKm⇒ ∀a, Jp\xK(m[x := a]) JpK(m[x1 := m(x2)])⇒ Jp[x1←x2]Km

Fig. 4. Correctness specifications of the projection and renaming operators

into simpler ones, which compose a low level interface of polyhedral abstract
domains.

This low level interface has the same inclusion test and join operators as
before. The guard is restricted to one affine constraint. There is no forward
predicate transformer for assignment, but projection and renaming operators
are provided, from which it can be built (see §6.3). The specifications for pro-
jection and renaming are given in figure 4. Polyhedron p\x results from the
projection of p on the space of variables where dimension x has been removed.
Renaming p[x1←x2] over-approximates the renaming of x1 as x2 in p. Variable
x2 is required to be fresh, but this precondition is not formalized in the Coq

specification as it is not needed for our correctness proofs. A violation of this
precondition may result in a precision bug, see §4.1.

Correctness of the operators of the low level interface can now be reduced
to inclusions of polyhedra, with the exception of renaming. However, under the
freshness precondition, renaming is a purely syntactic transformation. Three
operations remain: the guard of a polyhedron p with an affine constraint c, the
projection of a variable x from a polyhedron p and the join of two polyhedra p1
and p2. Each constraint c′ of their result must be shown to satisfy the inclusion
properties specified below.
guard.

∧

i ci ∧ c ⊑ c′, with p ,
∧

i ci
projection. p ⊑ c′ (and x should have a nil coefficient in c′)
join. p1 ⊑ c′ and p2 ⊑ c′

3.3 Checking inclusion of polyhedra

The correctness of the complex low level operations reduces to inclusions of
polyhedra. Farkas’s lemma further reduces polyhedra inclusion to a linear pro-
gramming problem on constraint representation of polyhedra. Below, we say that
“constraint a1.x ≤ b1 syntactically entails a2.x ≤ b2” if and only if a1 = a2 and
b1 ≤ b2.

Farkas’s lemma. A polyhedron p ,
∧

ci is included in a one-constraint poly-
hedron c′ if and only if there exists λi ≥ 0, such that

∑

i λi.ci syntactically
entails c′.

Given λ, a vector of λi, checking that p is included in c′ is straightforward:
build the linear combination c , λ.p and check that c syntactically entails c′.
This generalizes to a polyhedron p′ ,

∧

c′j by supplying a vector of coefficients λj

for each constraint c′j of p′. The vectors λj form a matrix Λ such that ps , Λ.p

and the constraints of ps entail those of p′ syntactically. The matrix Λ can be
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type poly

val freshId : poly -> positive

val top : poly

val isEmpty : poly -> (cert option)

val isIncl : poly * poly -> (cert option)

val guard : poly * affineConstraint -> (poly option) * cert

val join : poly * poly -> poly * cert

val project : poly * var -> poly * cert

val rename : var * var * poly -> poly

Fig. 5. Ocaml interface of the backend

used by a checker to validate the result of an operator: we call Λ an inclusion

certificate. Nothing is proved when the check fails, however.

3.4 Core architecture of the abstract domain

Farkas’s lemma makes result verification cheap. Moreover, it guarantees that
producing a certificate to justify an inclusion property is always possible. This
motivates the two tier architecture we have chosen for our polyhedral abstract
domain.

The abstract domain is split in an untrusted Ocaml backend and a frontend
which is developed in Coq. The backend performs most complex computations
of the low level interface. Its interface is given on figure 5. The backend provides
certificates of type cert that allow the frontend to produce certified results.
Type poly is the internal representation of polyhedra used by the backend: it
remains opaque for the frontend. The functions isEmpty and isIncl produce
a certificate only when inclusion in ⊥ or in another polyhedron holds. Other
operations produce both polyhedra and certificates, except for renaming where
a certificate is not needed.

The communication protocol between the backend and the frontend is de-
tailed in next section. Section 5 describes the formalization in Coq of the backend
functions. Last, section 6 describes how complex polyhedra operations are built
from the low level interface.

4 Using certificates as build instructions

Three polyhedra operators use a certificate from the backend and produce a
polyhedron: the guard, join and projection operators. What we have presented
leads naturally to a pattern of algorithms for the frontend, which we illustrate for
the projection operator. First, polyhedron ps , Λ.p is built, using the certificate
Λ provided by the backend. Syntactic entailment is then checked with the result
p\x actually provided by the backend. An extra check is specific to the projection:
verifying that x is free in p.
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Definition project (pF , pB) x :=

let (pB’, ce) := Backend.project pB x in

let pF’ := projectUsing ce pF x in

(pF ’, pB ’)

Fig. 6. The implementation of the projection in the frontend

Checking syntactic entailment is actually unnecessary: p′ can be used as a
result of the projection operator. It satisfies the inclusion property, by construc-
tion. On top of sparing the entailment check, this approach removes the need
for the backend to communicate its result to the frontend. The certificate is
sufficient.

As a result, the operators follow a simpler pattern, illustrated for the pro-
jection operator on figure 6. The backend and the frontend both have their own
representation of a polyhedron, which we call pB and pF, respectively.

That pB and pF represent the same polyhedron is an invariant property. An
operator of the abstract domain consists in invoking the corresponding opera-
tor of the backend, thereby obtaining the backend representation pB’ for the
resulting polyhedron. The backend also produces a certificate ce, from which
the frontend computes its representation pF’ of the result of the operator, along
with a proof that it is correct. This restores the synchronisation between the
frontend and backend: pF’ and pB’ represent the same polyhedron.

4.1 The impact of bugs

Previous discussion makes the assumption that all goes well: the certificate is
well-formed and yields a representation of the result computed by the backend.
However, bugs might lurk in the backend, leading to incorrect results or erroneous
certificates. Two possible effects can be observed by the user of the abstract
domain.
– If the certificate is well-formed but yields a result different from that of the

backend, synchronization is lost and the results built by the abstract domain
are likely to be wildly over-approximated, yet correct.

– If an ill-formed certificate (e.g. refers to nonexistent constraints) is output
by the backend, the frontend will report a failure. Two failure modes are
supported: abort or return a correct ⊤ result.

Unless the backend aborts, the frontend returns correct results in all cases: sound-
ness bugs in the backend induce precision bugs of the abstract domain.

4.2 The certificate language

The frontend builds correct by construction results using certificates provided
by the backend. The type cert of the certificates is given in figure 7. We will
describe the design of the certificates from the ground up on the example of a
projection p\x for which the backend has produced a certificate Implies l.
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Inductive cert :=

| Implies : list (positive * consCert) → cert

| Empty : linComb → cert

| Bind : positive → consCert → cert → cert.

Fig. 7. Coq definition of polyhedron build instructions

From a high level of abstraction, Implies l is the sparse representation
of a matrix Λ which defines the result p′ , Λ.p of the projection. In order
to make the certificate compact, the constraints of p are identified by positive
numbers and the descriptions of linear combinations, the type linComb, refer to
constraints by their identifier. Identifier generation is handled by the backend:
the frontend requests freshId pB to get a constraint identifier that does not
appear in polyhedron pB. The frontend does not check the freshness of identifiers:
as described in §4.1, invalid identifiers may result in precision bugs.

Type consCert describes the various ways to build one constraint of p′1. Its
definition appears in figure 8. The Direct construct is the standard applica-
tion of Farkas’s lemma. For efficiency reasons, a backend may handle equality
constraints specially, instead of representing them as pairs of inequalities. Two
applications of Farkas’s lemma are necessary to build an equality a.x = b from
p ,

∧

i ci. One builds a.x ≤ b and the other builds a.x ≥ b. The equality follows
from their conjunction and we introduced the SplitEq construct to handle this
case.

The join operator requires a special construct, JoinCons. For each con-
straint c of the result of p1 ⊔ p2, it must be shown that p1 ⊑ c and p2 ⊑ c. To
this end, a JoinCons certificate contains one linear combination to build c1 ,

a1.x ≤ b1 such that p1 ⊑ c1 and another for c2 , a2.x ≤ b2 such that p2 ⊑ c2.
The frontend checks that a1 = a2 and then chooses c1 as the resulting constraint
if b1 ≥ b2, or c2 otherwise.

Type cert also provides a construct to build ⊥, as the result of a guard
for example. An Empty l certificate is used for this purpose, where the linear
combination l yields a trivially contradictory constraint, like 0 ≤ −1.

Let us motivate the last construct of type cert through a glimpse of the
redundancy elimination behind a backend implementation of the guard p ⊓ c,
with p ,

∧

i ci. Constraint c is rewritten using the equality constraints in p, so
as to lower the number of variables involved. The result c′ could then be involved

Inductive consCert :=

| Direct : linComb → consCert

| SplitEq : linComb → linComb → consCert

| JoinCons : linComb → linComb → consCert.

Fig. 8. Coq definition of constraint build instructions
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in proving that the system of inequalities
∧

i ci ∧ c′ hides an implicit equality e.
The new equality e could then used for further rewriting. Building a certificate
in that setting is hard. The construct Bind j cc ce helps by introducing a new
constraint resulting from the linear combination cc and giving it identifier j.
The remainder of the inclusion certificate, ce, may then use it.

5 Formalizing the backend in Coq

Our abstract domain is split in two components: the frontend, which is devel-
opped in Coq, and the backend, which is written in Ocaml. In order to execute
the code, the Coq frontend must be extracted to Ocaml code through Coq

extraction mechanism. Extraction roughly consists in removing all the proof-
related information from a Coq development, as Ocaml type system is not
powerful enough to represent it.

Once extracted, the frontend calls to the backend appear as function calls
in the operators code. For the extraction to generate these calls, the backend
functions must be declared to Coq as axioms. Let f be an external function of
Ocaml type A→ B. It is declared to Coq as a function f , of Coq type A→ B

and the extractor is instructed to replace calls to f with calls to f . Types A and
B must be the extracted versions of A and B. The Ocaml compiler will report
an error otherwise.

These declarations prevent the execution of the Coq development in Coq

virtual machine: the body of the backend functions is not available to Coq.
Furthermore, this process of linking certified Coq code to untrusted Ocaml

code may lead to a number of serious pitfalls.

Inconsistency. An axiom like failwith : ∀B, string → B introduces incon-
sistency as it builds a proof of any B from a string. In particular, failwith
False "" gives a proof of False. This pitfall is avoided by providing a model of
axioms in Coq: a proof that their Coq type is inhabited.

Implicit axioms. Inductive type B (e.g. {x : Z | x < 5}) may be extracted into a
strictly larger extracted type B (e.g. Z). This introduces an implicit requirement
on f (i.e. its results are lower than 5) that Ocaml typechecker cannot ensure. For
our frontend, we have thus carefully checked that Coq inductive types involved
in backend functions are identical to their Ocaml extraction.

Memory corruption. Our backend uses the GMP [11] C library. A bug in GMP

or its Ocaml frontend, zarith [12], may corrupt arbitrary memory locations.
However, it seems unlikely that such a bug breaks soundness silently.

Implicit purity axiom. Semantics of → are different in Coq and in Ocaml. In
Coq, f is implicitly a pure function: hence ∀x, f x = f x is provable. On the
contrary, f in Ocaml may use an implicit state such that, for a given x two
distinct calls f x give different results. In other word, axiomatizing f as A→ B
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?A , S → A× S k1≡k2 , ∀s, (k1 s)=(k2 s) k a , ∃s, fst (k s)=a

unit a , λs.(a, s) bind k1 k2 , λs0.let (a, s1)=(k1 s0) in (k2 a s1)

Fig. 9. The state-transformer model of may-return monads

in Coq introduces an implicit functional requirement: f is observationally pure.
Having an implicit state is allowed only if the effect of this implicit state remains
hidden (e.g. for memoization). See [13] for details.

However, it may be difficult to ensure that a backend has no observable
side effects. In ours, a bug in GMP or zarith may break this requirement.
Furthermore, our proofs do not rely on the purity of backend functions. The
following describes the theory of impure computations we have formalized in
Coq in order to declare the backend functions as potentially impure.

5.1 May-return monads: a simple theory of impure computations

Impure computations are Coq computations that may use external computa-
tions in Ocaml. For any Coq type A, we assume a type ?A to denote impure
computations returning values of type A. Type transformer “ ?. ” is equipped
with a monad:
– Operator bindA,B : ?A→ (A→ ?B)→ ?B encodes Ocaml “letx = k1 in k2”

as “bind k1 λx.k2”.
– Operator unitA : A→ ?A lifts a pure computation as an impure one.
– Relation ≡A: ?A→ ?A→ Prop is a congruence corresponding to equivalence

of semantics between Ocaml computations. Moreover, operator bind is as-
sociative and admits unit as neutral element.

Last, we assume a relation  A: ?A → A → Prop and write “k  a” to denote
the property that “computation k may return a”. This relation is assumed to be
compatible with ≡A and to satisfy the following axioms:

unit a1 a2 ⇒ a1=a2 bind k1 k2 b ⇒ ∃a, k1 a ∧ k2 a b

A may-return monad is a simple case of simulable monad [14], from which
the notion of prophecy has been dropped: we are not interested in generating
the backend from Coq.

As a result, backend functions f of type A→ B are axiomatized in Coq as
f : A→ ?B. Our frontend is parameterized by an implementation of may-return
monads: it does not depend on a particular model. Simple transformers over
a global state have a denotation in the state monad defined in figure 9, using
S as type of states. Even if building a model where any Ocaml computation
is denoted is complex [15] and beyond the scope of this work, this gives us
confidence in our frontend being correct when used with a side-effecting backend.
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?A,A k1≡k2 , k1=k2 k a , k=a unit a , a bind k1 k2 , k2 k1

Fig. 10. A trivial implementation of the may-return monad

5.2 External computations and extraction

The may-return monad is useful to control Coq assumptions that would oth-
erwise be left implicit. However, it is of no other practical interest and may be
removed at extraction time by providing the trivial implementation given on fig-
ure 10. The extractor inlines these definitions so that the monad has no runtime
overhead.

The trivial implementation of the may-return monad is also used to provide
a pure Coq interface to our abstract domain, by exposing that  is equality.
Although this partly puts the backend in the trusted computing base (TCB), this
was actually required to plug our library as an abstract domain of the analyzer
developed as part of the Verasco project [16].

5.3 Backward reasoning on impure computations

Using a monad for a development in Coq tends to encumber the proofs. We
illustrate here how to reduce this burden using Coq proof automation features.
Let us consider a function g defined in Coq, that first calls an external f re-
turning a natural number of N and second, increments its result. We define
g x , bind (f x) λn.(unit n+1). We now explain how to prove that g returns
only strictly positive naturals.

We first define an operator wlpA : ?A → (A → Prop) → Prop such that
wlp k P , ∀a, k a ⇒ (P a) is the weakest precondition ensuring that any
result returned by k satisfies postcondition P . Hence, correctness of g is ex-
pressed as the goal “∀x, wlp (g x) λn.n 6= 0”. Below, we provide a Ltac tactic
that simplifies this goal into a trivial consequence of “∀n : N, n+1 6=0”.

This tactic proceeds backward on wlp-goals, by applying repeatedly lemmas
which are represented below as rules. It first tries to apply backward a decompo-
sition rule: one for unit or bind below, or one for pattern-matching over some
usual types (booleans, option types, product types, etc.). When no decomposi-
tion applies, the tactic applies Cut&Unfold. Actually, it tries to discharge the
left premise using existing lemmas; if this fails, the definition of wlp is simply
unfolded; otherwise, the goal is replaced using the right premise: the unfolding
is thus performed with a lemma injection in hypothesis.

Decomp-unit
P a

wlp (unit a)P
Decomp-bind

wlp k1 λa.(wlp (k2 a)P )

wlp (bind k1 k2)P

Cut&Unfold
wlp k P1 ∀a, k a ∧ P1 a⇒ P2 a

wlp k P2
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In our Coq development, this tactic automates most of the bureaucratic reason-
ing on first-order impure computations. For higher-order impure computations
(e.g. invoking a list iterator), equational reasoning is also needed.

6 Modular construction of the abstract domain

We have described in the last two sections a basic interface to the abstract do-
main of polyhedra. It is a restricted version of the interface described in section 2:
the forward predicate transformer for assignment is missing, for example. The
gap between the low level interface, closer to what the backend provides, and
the fully-fledged interface, that our abstract domain offers to the user, is bridged
entirely in the Coq frontend. The extra functionality is provided through the
use of functors. Each functor takes an abstract domain and builds a richer one
while lifting the proofs as necessary. This decomposition makes the proofs more
manageable and modular.

The overall architecture of the abstract domain is pictured on figure 11. The
left-hand side, filled with colour, is the Coq frontend. Each of the pictured layers
represents a functor. The untrusted backend stands on the right-hand side. While
communication between the two is represented by arrows, it reduces to function
calls in the extracted frontend code.

6.1 Building the guard operator

A first example of our modular construction of some abstract domain features is
the guard operator presented in section 3. This operator p⊓c accepts an arbitrary
propositional formula as constraint c. However, the backend guard operator takes
only constraints of the form t ⊲⊳ 0, with ⊲⊳∈ {=,≤, <} and t an affine term. The
transformation from the more expressive guards to the basic guards is performed
by the frontend by the following steps:
1. Negations are eliminated using De Morgan’s laws on binary operators to

push negation inwards, eliminating double negations, and taking the dual
comparison on atomic formula.

the backend:
untrusted engine

• basic operators
• certificate generation

+ full set of operators

+ expressive conditions

low-level interface

requests

certificates

Fig. 11. Overview of the domain architecture
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2. Comparison 6= is rewritten as a disjunction of strict inequalities.
3. On Z, t1 < t2 is rewritten as t1−t2+1 ≤ 0. This increases precision of our

polyhedra computations where all variables are in Q.
4. Disjunctions are over-approximated by joins.

For a guard p ⊓ c, our algorithm performs a number of polyhedra operations
that is linear in the number of operations in c. The functor which provides this
extended guard operator to an abstract domain featuring only a basic one also
contains the proof that the algorithm described above is sound.

6.2 Framing potentially constrained variables

Generating fresh variables has many applications for program verification: han-
dling local variables, parameter passing during function inlining, implementing
the forward predicate transformer for assignment, etc. However, our Coq spec-
ifications of abstract domains do not provide any information about the set of
variables constrained by a polyhedron.

In this section and in the next one, we introduce generic abstract domains
(functors) gluing additional data about constrained variables to the value of an
underlying abstract domain. We certify these functors by expressing the invari-
ant of theses additional data through the concretization function of the newly
introduced domain. Such a trick is necessary to cope with our loose specifications
of abstract domains. We now detail these ideas on a functor that simply frames
the variables constrained by an abstract value (e.g. a polyhedron).

Formally, if F is a set of variables, we note m ≡F m′ if and only if memories
m and m′ coincide on F . Then, given a polyhedron p, we say that F frames p if
and only if ∀m1∀m2, m1 ≡F m2 ⇒ (JpKm1 ⇔ JpKm2), and that x is free in p if
and only if {x′ | x′ 6= x} frames p. An operator bnd(p) can then be defined such
that {x | x ≤ bnd(p)} frames p (variables are represented by positive integers).
This operator returns an upper bound β on the variables constrained by p: we
say that β bounds p. These definitions also apply to conditions and terms.

Operator bnd is provided by a new abstract domain Pbnd wrapping each
element p of the underlying domain into a pair (p, β) such that β bounds (p, β).
Operations of Pbnd are given figure 12.

Naive definitions of Pbnd fail to make provable the correctness of operations:
property “∀(p, β) ∈ Pbnd, β bounds p” may not be preserved by the opera-
tions of figure 12. For example, let us consider (p1, β1) ⊔

bnd (p2, β2). We ex-

bnd((p, β)) , β ⊤bnd
, (⊤, 1) ⊥bnd

, (⊥, 1)

(p1, β1) ⊔
bnd (p2, β2) , (p1 ⊔ p2,max(β1, β2))

(p, β) ⊓bnd
c , (p ⊓ c,max(β, bnd(c))) (p1, β1) ⊑

bnd (p2, β2) , p1 ⊑ p2 ∧ β1 ≤ β2

Fig. 12. Main operators of Pbnd



14 Alexis Fouilhe and Sylvain Boulmé

pect (p1 ⊔ p2,max(β1, β2)) to be a good candidate implementation, since if β1

bounds p1 and β2 bounds p2, then max(β1, β2) bounds both p1 and p2. However,
max(β1, β2) may not bound p1 ⊔ p2, as this somewhat contorted, yet correct,
implementation of p1 ⊔ p2 shows when x is chosen above the bound 1:

p1 ⊔ p2 ,

{

x ≤ 0 if p1 = p2 = ⊥

⊤ otherwise

Our solution consists in keeping the definitions given in figure 12, but chang-
ing that of J(p, β)K so that it implies the property “β bounds (p, β)”. Given a
concrete memory m, we impose that variables above β are free in J(p, β)Km by
quantifying over any abstract memory m♯ that results from the arbitrary update
of m on these variables:

J(p, β)Km , ∀m♯, m♯ ≡{ x | x≤β } m ⇒ JpKm♯

6.3 Assignment with buffered renaming

The Pbnd functor can be used to over-approximate the forward predicate trans-
former of assignment. Indeed, it allows to introduce an auxiliary fresh variable
x0 which names the value of variable x before the assignment:

p[x := t] , (p[x←x0] ⊓ x= t[x←x0]) \x0 where x0,max(bnd(t), bnd(p))+1

However, our abstract domain uses the P:= functor described below instead,
because it performs a lower amortized number of polyhedra renamings.

Functor P:= makes it possible to express relations between memory states in
the intermediary computations of the operators. This achieved by duplicating the
set of variable names: each variable x can be represented as x@0 or x@1. Of these
two representatives of x, the concretization imposes that exactly one refers to a
concrete memory cell. Similarly to what is done in Pbnd, the other representative
is arbitrarily updated in abstract memory m♯. The concretization involves a
function σ that associates its current representative to each variable. It also
involves a function π that associates concrete x to both abstract variables x@0
and x@1, for all x.

J(p, σ)Km , ∀m♯, m♯ ≡{ x♯ | x♯=σ(π(x♯)) } m ◦ π ⇒ JpKm♯

In the P:= functor, assignment to x switches the representative of x, instead
of renaming the variable in the underlying polyhedron as with Pbnd. Renamings
from assignments are buffered until joins or inclusions, where they may even-
tually be performed (only when representatives of identical variables need to
be unified). Furthermore, two successive renamings on the same variable in the
buffer annihilate (by involution of representative switch).

This functor could be extended so as to buffer projections, which can then be
reordered to get smaller intermediate results (in terms of size of representation).
The decision to apply projections is delegated to the backend. In this version,
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the functor introduces a unique representative at each assignment: a kind of SSA
form is thus computed on-the-fly in the abstract domain. This extension is not
implemented yet.

In conclusion, our modular treatments of assignment depart from [7]: man-
agement of fresh variables is not intricated with the implementation of other
operations. In [7], projections are systematically delayed until inclusion tests: we
believe that the choice of when to apply projections should be delegated to the
backend.

7 Conclusion

We presented one solution to prove the correctness of an implementation of the
abstract domain of polyhedra using the Coq proof assistant. In this setting,
correctness reduces to inclusions of polyhedra which, through Farkas’s lemma,
makes a posteriori verification of results a convenient approach. As a result, our
domain is composed of an untrusted backend, to which most of the complex
computations are offloaded, and a Coq frontend which validates the results
produced by the backend.

This work makes two main contributions. On one hand, we propose a light-
weight method for declaring the backend functions to Coq in such a way that
the proofs remain trustworthy even when the backend is not functionally pure.
On the other hand, we show how communication between the frontend and
the backend can be reduced to certificates, which serve as build instructions
for the frontend. The certificate language induces a low coupling between the
frontend and the backend: the latter could implement relaxations of some oper-
ators [9,10] or use entirely different data structures without requiring changes to
the frontend. Although it does not make abstract domain development easier,
our approach reduces the impact of bugs.

The complete domain further distinguishes itself from previous work by in-
tegrating certificate generation to the backend and by a more modular proof
architecture. The complete code is available on the Web, along with a demon-
stration application, from www-verimag.imag.fr/~fouilhe/vstte2014.html.
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