
HAL Id: hal-00991851
https://hal.science/hal-00991851

Submitted on 16 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The twitaholic next door.: scalable friend recommender
system using a concept-sensitive hash function

Patrick Bamba, Julien Subercaze, Christophe Gravier, Nabil Benmira, Jimi
Fontaine

To cite this version:
Patrick Bamba, Julien Subercaze, Christophe Gravier, Nabil Benmira, Jimi Fontaine. The twitaholic
next door.: scalable friend recommender system using a concept-sensitive hash function. ACM Inter-
national Conference on Information and Knowledge Management, Oct 2012, Hawaii, United States.
pp.2275-2278. �hal-00991851�

https://hal.science/hal-00991851
https://hal.archives-ouvertes.fr

The Twitaholic Next Door.

Scalable friend recommender system using a concept-sensitive hash function

Patrick Bamba
Université Jean Monnet

25, rue du Dr Rémy Annino
F-42000, Saint-Etienne,

France
patrick.bamba@ymail.com

Julien Subercaze
Université Jean Monnet

25, rue du Dr Rémy Annino
F-42000, Saint-Etienne,

France
julien.subercaze@univ-

st-etienne.fr

Christophe Gravier
Université Jean Monnet

25, rue du Dr Rémy Annino
F-42000, Saint-Etienne,

France
christophe.gravier@univ-

st-etienne.fr

Nabil Benmira
Graphinium - ESSEC

VENTURES
CNIT - BP230

92053 Paris La Défense
nbenmira@graphinium.com

Jimi Fontaine
Graphinium - ESSEC

VENTURES
CNIT - BP230

92053 Paris La Défense
jfontaine@graphinium.com

ABSTRACT

In this paper we present a Friend Recommender System
for micro-blogging. Traditional batch processing of mas-
sive amounts of data makes it difficult to provide a near-
real time friend recommender system or even a system that
can properly scale to millions of users. In order to over-
come these issues, we have designed a solution that repre-
sents user-generated micro posts as a set of pseudo-cliques.
These graphs are assigned a hash value using an original
Concept-Sensitive Hash function, a new sub-kind of Locally-
Sensitive Hash functions. Finally, since the user profiles are
represented as a binary footprint, the pairwise comparison of
footprints using the Hamming distance provides scalability
to the recommender system. The paper goes with an online
application relying on a large Twitter dataset, so that the
reader can freely experiment the system.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
E.1 [Data Structures]: Graphs and networks

General Terms

Theory, Algorithms

Keywords

Social Networks, Twitter, Friends, Recommender System,
Graph, Pseudo-Clique, Locally-Sensitive Hash.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

1. INTRODUCTION
Microblogging websites produce a tremendous amount of

data each second. These Web 2.0 services are displaying an
exponential growth of human-generated data over time. For
instance, Twitter was known to publish an average of 140
millions tweets per day as of march 20111. In a single year,
this number has increased up to 340 millions tweets2. Con-
sequently, near real-time recommendation systems require
very scalable algorithms to proceed such a massive amount
of data. Twitter represents a pool of 140 millions active users
in March 2012. A primary need for Twitter users is therefore
to identify a dozen of possible friends among these millions
of users. Recommending new friends to Twitter users is
therefore twofold: a friend recommender system stands as
an algorithmic problem, and scalability is compulsory. Our
goal is to provide an efficient and scalable content-based
friend recommender system for Twitter users that scales for
millions of users and tweets on few commodity servers. A
content-based friend recommender system aims at drawing
recommendations out of users’ tweets and not from their so-
cial graph. We expect users to be more interested in other
users sharing the same interests, and not necessarily by users
who are only sharing friend-of-a-friend relationships in the
Twitter social user graph. Related works are summarized in
Section 2. To achieve our goal, our system proceeds in two
major steps. Section 3 presents the first step of the system
which is the encoding of the user profile as a pseudo-clique.
Section 4 explains the second step in which the system cre-
ates a binary footprint of the pseudo-clique that represents
the user profile. In Section 5 we introduce the system archi-
tecture and implementation. Finally, Section 6 concludes.

2. RELATED WORKS
Content recommender systems recommend tweets or ex-

ternal content sources to users whereas users recommender

1http://blog.twitter.com/2011/03/numbers.html
2http://blog.twitter.com/2012/03/
twitter-turns-six.html

systems predict links in a social graph. Both types of rec-
ommenders rely on a characterization of the user. For exam-
ple [12] is using Twitter for topical news recommendation.
The system crawls Twitter and RSS feeds, indexes terms
from both sources (as well as user’s friends on Twitter) us-
ing Lucene’s TF-IDF library and provides recommendation
based either on the user’s public timeline or friends’ time-
lines matching with the article terms. Regarding user rec-
ommender, Twopics [9] uses Wikipedia to query for named
entities in tweets in order to build a topic profile. Even if no
performance analysis is provided, [5] showed that executing
SPARQL queries over the web of linked data takes at least
20 seconds even with all data locally retrieved in advance,
which discards de facto such an approach for real-time pur-
pose. Given the hindrance due to the Web of Data speaking
of performance at query time, only a single document ap-
proach can be used when scalability is at stake. The bag of
words approach to characterize users or documents (as used
in [12, 4]) has shown its limitations, and machine learning
techniques have been developed to go beyond bag-of-words
representation. The most popular are continuous Condi-
tional Random Fields [7] and Latent Dirichlet Association
(LDA) [1]. The main drawback of these machine learning
techniques is the learning part, which is prohibitively ex-
tensive for real-time processing. This explains why the on-
line learning paradigm is gaining momentum in the Machine
Learning community. In this work, we investigate whether
original document-centric approach that makes use of statis-
tics and graph techniques could still scale while preserving
the advantage to exploit Semantic relatedness between terms
in documents.

3. STEP 1 : BUILDING USER PROFILES
In order to provide the most efficient user profile from

tweets, we applied standard text pre-processing strategies
(tokenization and stop words deletion). Then the next step
is inspired by the paper of Matsuo & Ishizuka [8] on key-
words extraction. They present a method to extract key-
words from a single document using statistical information.
In a first step their algorithm computes the co-occurrence
matrix of the terms in each sentence of the document. Fre-
quent terms are counted, and then clustered by pairs ac-
cording to a threshold. The most representative term of
the cluster item serves as a representative for terms in the
same cluster. Instead of clustering terms in a pairwise man-
ner as proposed in [8], we opted for a graph representation.
We look for clusters of terms in order to model the user-
generated content. In our work, each term (one of the graph
edges) is given a weight, which is the “freshness” associated
to this cluster. It is an age indication, calculated as the
current time of computation minus the date of last use of
the term. This information is normalized accross all terms
employed by a given user.

To sum up, our algorithm characterizes the user by ex-
tracting the meaningful clusters from his sequence of tweets
and encode this as a graph. We model the document ex-
traction result as a graph. As a consequence, the problem
of measuring semantic relatedness is to look for clusters in
the graph. From a graph point of view, pairwise clustering
from [8] is equivalent to the search for connected components
in the graph of terms. In graph theory, a maximal complete
subgraph is called a clique (i.e. a clique is a subgraph with
a density equal to 1). The problem of finding cliques in a

Sabotage Legal

Propaganda Recruitment

Bombers Strategie

Missiles

7.1

4.28

5.83

9.35

7.43

515.22

6.25

8.2

Figure 1: Graph of terms with weights computed

using Jensen-Shannon Divergence distance.

graph is NP-Complete and the current most efficient algo-
rithm is the one from Bron-Kerbosch [2]. Our intuition is
that pseudo-cliques may offer a more flexible manner to de-
tect interesting clusters in the graph of terms, as the one
presented in Figure 1. A pseudo-clique is a subgraph whose
density is greater than a fixed threshold σ. Any clique is
also a pseudo-clique. For instance, in Figure 1, {Bombers,
Strategie, Missiles} is a clique, and {Sabotage, Legal,

Propadanda, Recruitment} is a pseudo-clique of density equ-
als to 5

6
. We have designed an algorithm to detect pseudo-

cliques from the graph representation of the co-occurrence
matrix. This algorithm performs a most connected nodes
traversal approach, with a test that is reduced to the density
of the current clique. The result of this algorithm is a set of
pseudo-cliques. For instance, based on the graph 1, our algo-
rithm would represent the user with the set of pseudo-cliques
{{Sabotage, Legal, Propadanda, Recruitment}, {Bombers,
Strategie, Missiles}}.

In summary, the main operations for the first step of
our system presented so far are the following: i) Prepro-
cess the tweets text, ii) Build the graph of terms from the
co-occurrence matrix,and finally iii) Find relevant pseudo-
cliques in the graph.

4. STEP 2 : HASHING USER PROFILES
Each user can have his/her profile modeled as a set of

pseudo-cliques, whose vertices are terms extracted from the
user’s tweets. In order to find possible friends for a given
user, we need a distance metric between two sets of pseudo-
cliques. For the sake of the explanation, we assume in the
following that the profile of a user is composed of a sin-
gle pseudo-clique. This is also how the system is currently
implemented for the presented online application (more dis-
cussion on this at Section 6). In order to satisfy the near-real
time and scalablity objective, our intuition was to look for
a higher dimensional distance metric for computing similar-
ities between two pseudo-cliques. We therefore investigated
on the different options to encode a pseudo-clique as a bit
array, so that the Hamming distance could be used as a sim-
ilarity metric between user profiles. This issue is related to
the field of graph hash functions. An important review and
some approaches can be found in [11]. However, we aim at a
hash function that would preserve likelihood of the pseudo-

Twitter username :

How many friends :

@user

k

Search friends

Tweet querier

+

Text

preprocessing

@user

Twitter API

@
u

se
r

{tw
eet}

Co-occurencer

(Jensen-Shannon

divergence

threshold s = 0.3)

{cleaned tweets} Graph Builder

0.3

a b c d
a

b

0.6

0.7

0.9

< s

< s

c

d

a,b,c,d : terms from cleaned tweets

co-occurence matrix

Pseudo-clique

Finder

(density

threshold = 0.7)

a

c

b

d

0.3

0.6 0.7

0.9

in-memory

graph model

set of pseudo-cliques

(singleton in the demo)

a

c

b
0.3

0.6 0.7{

{

Graph

Signature

(«hashwordnet»

+ SimHash())

node 162 bits hash from hashwordnet
a
b
c

1100101010001...................... 01101111

0100100010111...................... 11000000

0000011110100...................... 00101011

(result of Simhash() applied to

hashwordnet values of a,b,c)

1110101.... 0101011

117 bits hash

of the pseudo-clique
ArgMax

(top-k users

closest to @user)

k

1110101.... 0101011

possible friends

dataset

100,000 users
15 millions of tweets
precomputed pro!les as hash of their pseudo-cliques
runs on a Cassandra cluster (3 VMs)

R = {user} / |R| ≤ k

You may want to follow :

@user1 Tweets Follow !

@user2 Tweets Follow !

@userk Tweets Follow !

....

CIKM

attendee

Querying

using in-house API

Step 1

Step 2

Figure 2: Architecture of the software solution

cliques when they are represented as hash values. Using a
cryptographic hash function to a pseudo-clique would only
result in obtaining possibly completely different hash values
for two near-similar pseudo-cliques. This is because a cryp-
tographic hash function needs to avoid preserving distances
between original data and encoded data. Unlike crypto-
graphic hash functions, Locally Sensitive Hash (LSH) func-
tions[6] aim at preserving likelihood between original data
and their corresponding hash values. Our intuition is to
make use of a LSH function to hash terms in the graph of
terms, and then to generate a footprint from the graph of
hashs. [3] proposed SimHash, a hash function for generating
a footprint out of a graph. SimHash can be applied to any
kind of resource (document, images . . .), and in our case
a graph. In SimHash, the resource, usually a document, is
splitted into token, possibly weighted. Each token is then
represented as its hash value, as the result of a traditional
cryptographic function applied to the token, which is orig-
inally a string. Then, a vector V, of length of the desired
hash size, is initialized to 0. For each hash value for the
set of tokens, the i

th element of V is decreased by the cor-
responding token’s weight if the i

th bit of the hash value
is 0. Otherwise, the i

th element of V is increased by the
corresponding token’s weight. SimHash works well even for
small fingerprints [3]. Nonetheless, the use of a traditional
function on string for obtaining hash values of a token, re-
stricts its usage to the detection of near duplicates. SimHash
was historically applied to the detection of near-duplicates
of webpages. It is possible to use SimHash in order to make
a footprint of a pseudo-clique with, given our user profile
representation, the following settings:

• As SimHash features : the set of edges and vertices of
the pseudo-clique serve as our set of tokens,

• As Simhash weights :

– For vertices: the freshness information (introduced
at Section 3) which is the node’s weight,

– For edges : the normalized Jensen-Shannon dier-
gence values, which is the edge’s weight.

This process would allow us to detect near-duplicates in
pseudo-cliques (i.e. user profiles) using the Hamming dis-
tance of the generated footprint out of the SimHash function
applied to each user’s pseudo-clique.

However, this solution presents a main drawback: users
who are denoting the same concepts in their tweets but us-
ing different terms, would not present profile with a high
degree of similarity. The main hindrance to this is the usage
of a traditional hash function for obtaining hash values of a
token. This is because the hash function of the token con-
veys the similarity between other documents since the same
token will have the same hash function. In case the two
pseudo-clique contain terms related to the same concepts
but represented with different strings, the hash function will
produce completely different hash values. Hence, the result-
ing footprint would have lost the conceptual relationship be-
tween the two terms. In order to insert a concept-sensitive
hash function in our system, we need to opt for a hash func-
tion that would take into account conceptual similarity of
the tokens. The hash function we have therefore introduced
in our system works as follows. We rely on the Wordnet
dictionary [10]. Wordnet contains hyponymy and synonymy
relationships between concepts, which are represented by a

bag of terms in English. We created a hash function that
produces a hash value from a term depending on its loca-
tion in the Wordnet hypernym tree. In order to do so, we
built a reverse table of Wordnet that associate a hash value
to Wordnet nodes. The hash value is constructed by per-
forming a depth-first search of Wordnet entries, and tagging
each entry with a unique and minimal binary value, whose
length is determined by the number of siblings for each en-
try. In order to uniquely encode all concepts, 117 bits are
needed. In other words, we associated a unique hash value
of 117 bits for each node in Wordnet, and store this in an
indexed table. We called this table “hashwordnet”. This
table was constructed once and is shipped in the server-
side friend recommender software presented at Section 5.
Consequently, each term in the pseudo-clique is associated
with a unique hash from this table. Two terms belonging
to the same concept in Wordnet will have the same hash
values. Furthermore, two terms whose associated concepts
are closely similar in Wordnet will be represented by similar
hash values. When the SimHash function is applied, it will
be sensitive to this similarity of token’s hash values, instead
of only relying on the strict equality of strings between to-
kens. The footprint can be expected to convey the Wordnet
concepts information to which the terms in the pseudo-clique
refer to.

5. IMPLEMENTATION
The complete architecture of the system presented in the

paper is provided at Figure 2. We have implemented the en-
tire software architecture described earlier in this paper on
a server-side component in the Java programming language.
The system relies on a dataset that consists of 15,000,000
tweets issued by 150,000 users. The dataset also have the
precomputed user profiles, which means the footprint of each
user encoded from their tweets in the dataset, and according
to our concept-sensitive hash function. It is hosted on a clus-
ter of three Apache Cassandra3 instances in our laboratory
private infrastructure.

A Web interface asks from the conference attendee its
Twitter account name and the number k of friend recom-
mendation that the end-user whishes. After the Twitter
secure authentication through Twitter OAuth4 service, the
server-side component retrieves the end-user’s tweets. It
constructs the end-user’s profile, which means it goes through
all the steps as illustrated at Figure 2. Finally, the Web ap-
plication displays the sorted list of the k closest users from
our dataset, whose footprint are the closest to the end-user’s
footprint according to a Hamming distance computation.
Because the end-user’s tweets will be processed in seconds,
and a recommendation is made out of two millions profiles,
this demonstrates the scalability of the solution. The ap-
plication is accessible online for anyone to experiment the
solution on his own account(s)5.

6. CONCLUSION
This paper introduced a new scalable and near real-time

approach for friend recommendation on Twitter. The friend

3http://cassandra.apache.org/
4http://oauth.net/
5http://demo-satin.telecom-st-etienne.fr/
lshrecommender/

recommender system works as follows: users profiles are rep-
resented as a pseudo clique, this pseudo-clique is encoded as
a graph, whose nodes are hashed using an original concept-
sensitive hash function introduced in this paper. Using this
function, the more two terms are similar using Wordnet as a
distance through the hyponymy relation, the more their two
hash values will be similar. A binary footprint is constructed
from this pseudo-clique using the SimHash algorithm. The
comparison of one user footprint against all other precom-
puted footprints from the other users makes the system scal-
able at runtime.

In future works, we expect to represent users profiles as
a set of pseudo-cliques. The key issue relies in generating
a footprint not of a single pseudo-clique, but out of several
pseudo-cliques.

7. REFERENCES
[1] D. Blei, A. Ng, and M. Jordan. Latent dirichlet

allocation. The Journal of Machine Learning

Research, 3:993–1022, 2003.

[2] K. J. Bron, C. Algorithm 457: finding all cliques of an
undirected graph. Communications of the ACM,
16:575–577, 1973.

[3] M. Charikar. Greedy approximation algorithms for
finding dense components in a graph. Approximation

Algorithms for Combinatorial Optimization, pages
139–152, 2000.

[4] J. Hannon, M. Bennett, and B. Smyth.
Recommending twitter users to follow using content
and collaborative filtering approaches. In Proceedings

of the fourth ACM conference on Recommender

systems, pages 199–206. ACM, 2010.

[5] O. Hartig, C. Bizer, and J. Freytag. Executing sparql
queries over the web of linked data. The Semantic

Web-ISWC 2009, pages 293–309, 2009.

[6] P. Indyk and A. Gionis. Similarity search in high
dimensions via hashing. Proceedings of the 25th

VLDB, pages 518–529, 1999.

[7] J. Lafferty, A. McCallum, and F. Pereira. Conditional
Random Fields: Probabilistic Models for Segmenting

and Labeling Sequence Data, volume CONF 18, pages
282–289. Morgan Kaufmann, San Francisco, CA, 2001.

[8] Y. Matsuo and M. Ishizuka. Keyword extraction from
a single document using word co-occurrence statistical
information. International Journal on Artificial

Intelligence Tools, 13(1):157–170, 2004.

[9] M. Michelson and S. Macskassy. Discovering users’
topics of interest on twitter: a first look. In
Proceedings of the fourth workshop on Analytics for

noisy unstructured text data, pages 73–80. ACM, 2010.

[10] G. A. Miller. Wordnet: A lexical database for english.
Communications of the ACM, 38:39–41, 1995.

[11] C. Papadimitriou. Wordnet: A lexical database for
english. Proceedings of the thirty-third annual ACM

symposium on Theory of computing, pages 749–753,
2001.

[12] O. Phelan, K. McCarthy, and B. Smyth. Using twitter
to recommend real-time topical news. In Proceedings

of the third ACM conference on Recommender

systems, pages 385–388. ACM, 2009.

