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Abstract—Coherent detection with Polarization Multiplexing
(PolMux) is the most promising technique for future optical
fiber transmission systems. However, the optical channel suffers
from non-unitary impairments known as Polarization Dependent
Loss (PDL). Space-Time coding, originally designed for wireless
Rayleigh fading channels, was proven to be capable of mitigat-
ing PDL. Coding gains of ST codes were evaluated through
simulations and experiments that showed differences in their
performance on the optical channel and on the wireless channel.
In this paper, we derive an upper bound of the pairwise error
probability of an optical channel considering the PDL effect.
This upper bound explains the performance of ST codes used to
mitigate PDL and yields the design criterion that a code should
satisfy in order to completely mitigate PDL.

Index Terms—Polarization Dependent Loss, Error Probability,
Polarization-Time Coding, Optical Fiber Communication, MIMO

I. INTRODUCTION

From long-haul links to metropolitan and access networks,

optical fibers are today’s indispensable carriers of data traffic

over the world. They are able to transport light over long

distances with a low attenuation. Due to this property and

to the THz bandwidth in the near infrared region of the

electromagnetic spectrum, binary modulation schemes such

as On-Off Keying carrying 1 bit/symbol were first used to

send data on fiber-optic systems. However, the rapidly growing

Internet traffic urged the search for techniques that increase

the capacity of the optical fiber channel. For this purpose,

coherent detection started replacing conventional direct de-

tection schemes. The main advantages of coherent detection

are the enhanced receiver sensitivity and the introduction of

multilevel modulation formats that achieve high spectral effi-

ciency. Moreover, research in Digital Signal Processing (DSP)

algorithms and development of high-speed electronics offered

the possibility of compensating for fiber impairments in the

electrical domain at the receiver rather than optically [1]–[3],

allowing the implementation of forward error correction codes

and advanced equalization techniques in a DSP-based emitter

and receiver.

Apart from the amplitude and the phase of an electromag-

netic field, the polarization state is an available degree of

freedom that is not yet used. With Polarization Multiplexing

(PolMux) [4], [5], we can double the spectral efficiency of an

optical fiber link by sending independent information on two

orthogonal polarization states. However, during propagation

through the optical channel, the transmitted signal suffers

several impairments. We focus on the linear impairments that

include dispersive effects: deterministic Chromatic Dispersion

(CD) and random Polarization Mode Dispersion (PMD), as

well as fiber attenuation and random fading effects known

as Polarization Dependent Loss (PDL). To mitigate the linear

impairments of the optical channel and recover the transmitted

data, a polarization diversity coherent receiver along with

DSP algorithms are needed [3]–[5]. While dispersive effects

have been thoroughly studied and completely compensated,

mitigation of PDL was still not considered and system margins

were left in order to absorb the induced penalties.

A PolMux scheme can be described as a 2×2 Multi-Input-

Multi-Output (MIMO) system where 2 polarization states are

used at the emission and the reception [6]. Instead of the spa-

tial dimension (antennas) in a wireless scheme, we use here the

polarization dimension. Hence, Space-Time (ST) coding can

be applied to mitigate PDL by taking advantage of the diversity

of the MIMO configuration. The motivation behind the use of

ST codes, or more appropriately Polarization-Time (PT) codes

in this context, is the random nature of PDL. Indeed, some

optical elements attenuate unequally the polarization states of

the transmitted signal. This along with random polarization

rotations results in breaking the orthogonality of these states.

Therefore, it is more likely to recover the original data symbols

by sending linear combinations of these symbols at different

time slots and on two different polarizations.

The performance of ST codes such as the Golden code [7],

Silver code [8] and Alamouti code [9] was evaluated on an

optical channel with PDL through simulations [10] and exper-

imental demonstrations [11]. The Silver code performed better

than the Golden code, unlike the case of the wireless Rayleigh

fading channel. Besides, it was found that the performance of

Alamouti code is independent of the amount of PDL in the

link [12]. In this work, we aim to explain these observations

through error probability calculus. We also check whether the

Silver code is the optimal code for an optical channel with

PDL or better coding schemes can be found.

Accordingly, the paper is organized as follows: in Section

II, we recall the main linear impairments of an optical fiber

link, then we present in Section III a mathematical model of

an optical channel with PDL that will be used in Section IV to

compute an upper bound of the error probability expression.

Afterwards, in Section V, we derive the design criterion of

codes that minimize the error probability of a transmission

on an optical fiber channel with PDL and we investigate in



Section VI the performance obtained with the existing codes.

Finally, we conclude and set forth the perspectives of our work.

II. OPTICAL FIBER EFFECTS

A. Fiber attenuation & dispersive effects

The loss coefficient of Standard Single Mode Fibers (SSMF)

is equal to 0.2dB/km. For long-haul links spanning thousands

of kilometers, optical amplifiers are periodically inserted to

raise the signal power to its initially injected value at the

transmitter. As for chromatic dispersion (CD) and polarization

mode dispersion (PMD), both time-domain and frequency-

domain equalizations exist [3]. However, a special multicarrier

format, Orthogonal Frequency Division Multiplexing (OFDM)

has proven to be capable of eliminating all interference caused

by dispersive effects using a cyclic prefix [6].

B. Polarization Dependent Loss

While the dispersion compensation was thoroughly studied,

PDL effects were not being considered until recently. In

fact, PDL is mainly introduced by inline components such

as amplifiers, isolators, couplers and not the fiber itself. The

individual PDL value of each component is kept as low as

possible. However, many of these components are found in

long-haul optical links leading to a large accumulated PDL.

Unlike unitary dispersive effects, PDL causes Optical Signal-

to-Noise Ratio (OSNR) distortions. The information-carrying

polarizations experience unequal loss and crosstalk [13].

III. OPTICAL CHANNEL MODEL

In order to proceed with an error probability calculus, we

will first mathematically define the studied optical channel.

A. Optical channel with PDL

An overview of previous works on PDL, especially by A.

Mecozzi, M. Shtaif [14] and N. Gisin [15], shows that PDL

must be described statistically. However, we consider in our

work a simple representation, commonly found in literature

[16], [17], that takes into account the OSNR inequality be-

tween two polarization states as well as their crosstalk. This

representation had been used in [10] to simulate the perfor-

mance of PT coding in mitigating PDL and an experimental

demonstration [11] validated the obtained numerical results.

PDL can be described by the following transmission matrix:

HPDL = Rα

︂ √
1− � 0
0

√
1 + �

︂

R
−1
α

���ℎ Rα =

︂

cos(�) − sin(�)
sin(�) cos(�)

︂ (1)

The diagonal matrix gives the imbalanced attenuation values of

the least and most attenuated polarization states. The rotation

matrix Rα describes a mismatch between the polarization

states of the incident signal and the axes of the PDL compo-

nent. � is defined through ΓdB = 10���10
1+γ
1−γ where ΓdB ≥ 0

is the PDL coefficient in dB and consists of the ratio between

the highest and the lowest gains of the link. Hence, 0 ≤ � ≤ 1
with � = 0 being a PDL-free case and � = 1 corresponding to

a perfect polarizer. We consider in this work constant values

of ΓdB and the angles of the rotation matrices are drawn from

a uniform distribution over [0 : 2�].

B. PolMux OFDM channel model

In a PolMux OFDM transmission, an OFDM signal is

sent on each polarization. At the transmitter, the information

symbols are assigned to different subcarriers in the frequency

domain then the signal is converted to time domain by an

inverse Fast Fourier Transform (iFFT). In order to absorb the

interference induced by CD and PMD, a suitable cyclic prefix

(CP) is added to the beginning of each OFDM symbol. At the

receiver, the CP is removed and an FFT operation converts the

signal back into the frequency domain. Despite the redundancy

introduced by the CP, this prefix eliminates all Inter-Symbol-

Interference and allows to correct any distortion caused by a

linear dispersive channel with a single-tap frequency equalizer.

Each subcarrier sees a flat channel and the received symbols

are given by [6]:

Yk,i = exp(��i) exp(��D(�k))HkXk,i +Nk,i (2)

where Xk,i is the symbol on the �th subcarrier of the �th

OFDM symbol. Yk,i is the received symbol. �i is the laser

phase noise, �D(�k) is the phase shift owing to chromatic

dispersion common to both polarizations. Hk is the 2×2 Jones

matrix of the link, resulting from a concatenation of PMD and

PDL components. Nk,i represents the additive noise.

We consider next that the CP is larger than the delay spread

induced by CD and PMD. Hence, it absorbs all resulting

interference and the remaining effect is the non-unitary PDL

that we shall regard in the error probability calculus.

IV. DERIVATION OF AN UPPER BOUND OF THE ERROR

PROBABILITY

To get an insight on the behavior of PT codes on an optical

link with PDL, we consider a PolMux OFDM transmission

and use HPDL defined in (1) as the channel matrix. Therefore,

each subcarrier can be seen as a slow fading and frequency

non-selective channel:

Y2×T = HPDLX2×T +N2×T (3)

� is the temporal length of the code. X is the PT codeword

matrix. Y is the received matrix. When � = 1, X and Y

are vectors and X contains two QAM symbols (No Coding).

When � > 1, PT coding is used (� = 2 for the codes

investigated in this paper). The noise N is modeled as additive

white with independent and identically distributed circular

complex Gaussian components �� (0, 2�2).
According to the channel model in (3), a maximum likeli-

hood (ML) decoder estimates X
′ with X

′′ as:

X
′′ = ������

X′∈�

‖Y −HPDLX
′‖2 (4)

where � is the set of all possible codewords and ‖ · ‖ is the

Euclidian norm. We suppose that we have perfect channel



state information, i.e. HPDL is known. The error probability

is defined as:

Perror = ��{X′′ ̸= X
′}

=
︁

X′∈�

��{X′}��{X′′ ̸= X
′|X′} (5)

For equiprobable codewords, the error probability can be

upper-bounded by [18]:

�error ≤ 1

card(�)
︁

X
′,X′′∈C,
X

′′ ̸=X
′

��(X′ → X
′′) (6)

where card(�) is the cardinality of � and ��(X′ → X
′′)

is the pairwise error probability obtained by averaging the

conditional pairwise error probability defined as:

��(X′ → X
′′|HPDL) = ��{‖Y −HPDLX

′′‖2 ≤
‖Y −HPDLX

′‖2|X′,HPDL} (7)

When computing the pairwise error probability, we suppose

that X
′ and X

′′ are the only possible codewords in the

codeword space. Hence, we can write the pairwise error

probability in terms of the Gaussian tail function �:

��(X′ → X
′′|HPDL) = �(

‖HPDL(X
′ −X

′′)‖
2�

) (8)

���ℎ �(�) =
1√
2�

︁ +∞

x

exp−t2/2 �� (9)

Using Chernoff’s bound �(�) ≤ 1

2
exp−

x
2

2 ∀�, and averaging

over HPDL, we get:

��(X′ → X
′′) ≤ EH [exp(−‖HPDL(X

′ −X
′′)‖2

8�2
)] (10)

where EH [] is the averaging operation over all possible chan-

nel realizations.

Let X = X
′ − X

′′ be the difference of two codewords and

D =

︂ √
1− � 0
0

√
1 + �

︂

, we have:

‖HPDL(X
′ −X

′′)‖2 = ‖HPDLX‖2 = ‖RαDR
−1
α X‖2

= ‖DR
−1
α X‖2

(11)

Now, let � = −�. We can write RβX = U =

︂

�⃗1
�⃗2

︂

, �⃗1,2

being row vectors, we get:

‖DU‖2 = ‖�⃗1‖2 + ‖�⃗2‖2 + �(‖�⃗2‖2 − ‖�⃗1‖2) (12)

However, ‖�⃗1‖2 + ‖�⃗2‖2 = ‖U‖2 = ‖X‖2 because a rotation

matrix is unitary. Besides, we develop ‖�⃗2‖2 − ‖�⃗1‖2 and

obtain:

‖�⃗2‖2 − ‖�⃗1‖2 = �(�) = (‖�⃗2‖2 − ‖�⃗1‖2) cos(2�)
+ 2��(⟨�⃗1, �⃗2⟩) sin(2�)

(13)

with X =

︂

�⃗1

�⃗2

︂

, �⃗1,2 being row vectors. Let:

� = ‖�⃗2‖2 − ‖�⃗1‖2 (14)

� = 2��(⟨�⃗1, �⃗2⟩) (15)

Substituting (12) to (15) in (10), we get:

��(X′ → X
′′) = EH [��(X′ → X

′′|HPDL)]

≤ exp(−‖X‖2
8�2

)EH [exp(− �

8�2
(� cos(2�) + � sin(2�)))]

(16)

The last step consists of averaging over HPDL. Considering

constant values of ΓdB , we are left with one random variable

� that varies uniformly on the interval [0 : 2�]. Using the

following trigonometric identity:

����(2�) + ����(2�) =
︀

�2 + �2 cos(2� + �)

���ℎ � =

︂

−������( ba ) �� � > 0
� − ������( ba ) �� � < 0

︂

(17)

We obtain:

��(X′ → X
′′) ≤

exp(−‖X‖2
8�2

)
1

2�

︁ 2π+φ

φ

exp(− �

8�2

︀

�2 + �2���(�))��

(18)

The function inside the integral is periodic of period 2� and

has an axis of symmetry � = � in the interval [0 : 2�]. Using

these two properties, (18) becomes:

��(X′ → X
′′) ≤

exp(−‖X‖2
8�2

)
1

�

︁ π

0

exp(− �

8�2

︀

�2 + �2���(�))�� (19)

Hence,

��(X′ → X
′′) ≤ exp(−‖X‖2

8�2
)�0(

�

8�2

︀

�2 + �2) (20)

where �0(�) is the 0th order modified Bessel function of the

first kind.
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Fig. 1. Plot of the 0th order modified Bessel function of the first kind.



We can approximate the error probability expression in (20)

for high SNR values by using a first order approximation of

�0(�) when � → ∞:

�0(�) ≈
exp(�)√

2��
(21)

Then, we get:

exp(−‖X‖2
8�2

)�0(
�

8�2

︀

�2 + �2)

≈ exp(−‖X‖2 − �
√
�2 + �2

8�2
)

(22)

V. DESIGN CRITERION

In Fig. 1, we see that �0(�) is monotonously increasing

for � ≥ 0 and hence has its minimum for � = 0. This

corresponds to � and � in (20) equal to zero and as a result, the

obtained error probability expression will be independent of

PDL. Consequently, we define the following design criterion:

Proposition 1. A Polarization-Time code completely mitigates

PDL if and only if all codeword differences satisfy:

1) � = ‖�⃗2‖2 − ‖�⃗1‖2 = 0 and

2) � = 2��(⟨�⃗1, �⃗2⟩) = 0 .

When the design criterion is met, we recover the perfor-

mance for two parallel additive white Gaussian channels which

is the best performance we can achieve:

�error,AWGN ≈ exp−
‖X‖2

8σ2 (23)

We clearly see that the resulting criteria are completely

different from the rank and the minimum determinant criteria

for a Rayleigh fading channel [19], defining respectively a

diversity gain and a coding gain. If we compare the approxi-

mation of the error probability expression at high SNR (22) to

the one obtained in the case of a 2×2 MIMO Rayleigh fading

channel, we notice different behaviors: the error probability of

the Rayleigh fading channel decays as SNR−2r [19] where �

is the rank of the matrix X, whereas the error probability of

the PDL channel decays exponentially as a function of the

SNR. Hence, Space-Time codes bring no diversity gain to the

optical channel with PDL. Furthermore, if one of the design

criterion is not satisfied, (22) points out that the minimum

value of ‖X‖2 − �
√
�2 + �2 should be maximized in order to

minimize the error probability.

VI. CODE PERFORMANCE ANALYSIS

In this section, we analyze the performance of both coded

and uncoded schemes using the derived upper bound of the

pairwise error probability expression in (22). All the reported

performance in the next subsections match with the perfor-

mance presented in [10].

In Table I, we report the minimum values of ‖X‖2 −
�
√
�2 + �2 for each investigated ST code at four different

PDL values. To fill the table, we set a spectral efficiency of

4 bits per channel use (/cu) for all coding schemes. Hence,

TABLE I
MINIMUM VALUE OF ‖X‖2 − γ

√
a2 + b2 FOR DIFFERENT CODING

SCHEMES AT DIFFERENT PDL VALUES

Γ = 0dB Γ = 3dB Γ = 6dB Γ = 10dB

Silver Code 2 2 2 1.23
Golden Code 2 1.7 1.46 1.07
No Coding 2 1.34 0.8 0.38

Alamouti Code 0.8 0.8 0.8 0.8

we use 4-QAM information symbols to build the codewords

of the Silver and the Golden codes (full-rate codes with 2

symbols/cu), and 16-QAM symbols for the Alamouti code

because of the redundancy in its structure (1 symbol/cu).

We consider an average symbol energy �S = 1 for all

constellations.

A. Alamouti code

In Fig. 2, we report the performance of Alamouti code

for different PDL values (Γ = 3, 6, 10��) obtained through

Monte Carlo simulations. We notice that the performance of

the Alamouti code is independent of the amount of PDL in

the link. The orthogonality of the Alamouti codeword matrix

induces � = � = 0 for all possible codeword differences.

This explains why it performs the same independently of PDL.

However, its performance is affected by the use of 16-QAM

symbols giving a squared minimal distance ‖X‖2 = 0.8.
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Fig. 2. Bit Error Rate as a function of SNR for the Alamouti code, obtained
through Monte Carlo simulations.

B. Silver code

The Silver code is not optimal in mitigating PDL since

it does not satisfy the derived design criterion. Unlike the

Alamouti code, the Silver code has only some codeword

differences having � = � = 0. In Fig. 3, we plot the

performance of the Silver code for different PDL values. We

see that the code mitigates almost all PDL when the PDL

coefficient is equal to 3 and 6dB. A slight difference in

performance is observed for these two PDL values. Whereas

for a PDL of 10dB, the code is not able to completely palliate

PDL. Looking at Table I, we find that the minimum value

of ‖X‖2 − �
√
�2 + �2 for the Silver code is the same at a



PDL of 3 and 6dB, and is equal to 2. Whereas at a PDL of

10dB, this minimum falls to 1.23 which explains the obtained

performance.
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Fig. 3. Bit Error Rate as a function of SNR for the Silver code, obtained
through Monte Carlo simulations.
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Fig. 4. Performance comparison of 4-QAM (No coding), Silver, Golden and
Alamouti coding schemes when ΓdB = 6.

C. Golden code and uncoded scheme

From Fig. 4, we can see that the Silver code outperforms

the Golden code for Γ = 6��, and both reduce the penalty

that PDL causes to the uncoded scheme. Again, this result

can be explained by looking at Table I. Indeed, the minimum

value of ‖X‖2−�
√
�2 + �2 is the greatest for the Silver code

followed by the Golden code and then the uncoded scheme.

In conclusion, we were able to explain, in terms of error

probability bounds, the performance of the Alamouti, Silver

and Golden codes when applied on an optical channel with

PDL. The Golden and the Silver codes were designed to satisfy

the rank and the minimum determinant criteria for a wireless

channel that are no more relevant for the optical channel.

VII. CONCLUSION AND PERSPECTIVES

We have established an upper bound of the error probability

expression for an optical channel with PDL that allows to

predict and compare the performance of any Polarization-Time

code used to mitigate PDL by computing a certain distance that

depends on the codewords and the PDL value. This expression

also yields the design criterion required to construct codes that

guarantee a PDL-independent error probability matching the

performance for an additive white Gaussian channel. In our

future work, we look forward to elaborate the error probability

calculus by including the statistics of the PDL coefficient ΓdB

that is, under some conditions, Maxwellian distributed [14]

and design specific codes for the optical channel.
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