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Spectral monodromy of small non-selfadjoint
perturbed operators: completely integrable or

quasi-integrable case

1Quang Sang Phan

Abstract

We build a combinatorial invariant, called the spectral monodromy from the spec-

trum of a non-selfadjoint h-pseudodifferential operator with two degrees of free-

dom in the semi-classical limit. We treat small non-selfadjoint perturbation of

selfadjoint h−pseudodifferential operators in two case: in the first, we assume

that the classical flow of the unperturbed part is integrable; the second case, more

interesting when this flow is assumed to be quasi-integrable.

Keywords: Hamiltonian systems, non-selfadjoint, spectral analysis, pseudo-differential
operators, Birkhoff normal form, KAM theory, asymptotic spectral.
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1 Introduction

This paper aims to understanding the structure of the spectrum of some classes of
non-selfadjoint operators in the semi classical limit.
Locally, under some conditions, the spectrum of non-selfadjoint h−pseudo-differential

operators is a deformed lattice. It is image by a pseudo-chart of a square lattice. A com-
binator invariant characterizes the global ability of the spectrum is spectral monodromy.
If this monodromy is not trivial, then the spectrum is not a global lattice.
We treat in this paper small non-selfadjoint perturbation of selfadjoint h−pseudodifferential

operators in dimension 2, assuming that the Hamiltonian flow of the unperturbed part
possesses a invariant Lagrangian torus enjoying a uniformly Diophantine condition in ev-
ery energy hyperplane. We propose two case: the first case when this flow is completely
integrable, and the second case this flow is quasi-integrable.

2 Pseudodifferential operators

We will work throughout this article with pseudo-differentials operators obtained by the
h−Weyl-quantization with standard classes of symbols on T ∗M = R2n

(x,ξ), here M = Rn

or a manifold compact.
These operators admit the standard properties of pseudo differential operators. For

more details, see the references [17], [38], [39].

Definition 2.1. A function m : R2n → (0,+∞) is called an order function (or tempered
weight in the book of D. Robert [38]) if there are constants C,N > 0 such that

m(X) ≤ C〈X − Y 〉Nm(Y ), ∀X, Y ∈ R2n,

with notation 〈Z〉 = (1 + |Z|2)1/2 for Z ∈ R2n.

One use often the order function m(Z) ≡ 1 or

m(Z) = 〈Z〉l/2 = (1 + |Z|2)l/2,

with a given constant l ∈ R.

Definition 2.2. Let m be an order function and k ∈ R, we define classes of symbols of
h-order k, Sk(m) (families of functions) of (a(·; h))h∈(0,1] on R2n

(x,ξ) by

Sk(m) = {a ∈ C∞(R2n) | ∀α ∈ N2n, |∂αa| ≤ Cαh
km}, (2.1)

for some constant Cα > 0, uniformly in h ∈ (0, 1].
A symbol a is called O(h∞) if it’s in ∩k∈RS

k(m) := S∞(m).
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Then Ψk(m)(M) denotes the set of all (in general unbounded) linear operators Ah

on L2(Rn), obtained from the h−Weyl-quantization of symbols a(·; h) ∈ Sk(m) by the
integral:

(Ahu)(x) = (Opwh (a)u)(x) =
1

(2πh)n

∫

R2n

e
i
h
(x−y)ξa(

x+ y

2
, ξ; h)u(y)dydξ. (2.2)

In this paper, we always assume that the symbols admit a classical asymptotic expan-
sion in integer powers of h. The leading term in this expansion is called the principal
symbol of the operator.

3 Spectral Asymptotic

3.1 Assumptions

We will first give the general assumptions of our operator as in the articles [27], [22],
[23], [24], [25] and the assumptions on the classical flow of the principal symbol of the
non-perturbed operator and some associated spectral results: the discrete spectrum, the
localization of the spectrum, the expansion of asymptotic eigenvalues ...
M denotes R2 or a connected compact analytic real (riemannian) manifold of dimen-

sion 2 and we denote by M̃ the canonical complexification of M , which is either C2 in
the Euclidean case or a Grauert tube in the case of manifold (see [10], [30]).
We consider a non-selfadjoint h− pseudodifferential operator Pε on M and suppose

that
Pε=0 := P is formally self-adjoint. (3.3)

Note that if M = R2, the volume form µ(dx) is naturally induced by the Lebesgue
measure on R2. If M is a compact Riemannian manifold, then the volume form µ(dx) is
induced by the given Riemannian structure of M . Therefore in both cases the volume
form is well defined and the operator Pε may be seen as an (unbounded) operator on
L2(M,µ(dx)).
We always denote the principal symbol of Pε by pε which is defined on T ∗M as we

discussed in the previous section.
We will assume the ellipticity condition at infinity for Pε at some energy level E ∈ R as
follows:
When M = R2, let

Pε = P (x, hDx, ε; h) (3.4)

be the Weyl quantification of a total symbol P (x, ξ, ε; h) depending smoothly on ε in a
neighborhood of (0,R) and taking values in the space of holomorphic functions of (x, ξ)
in a tubular neighborhood of R4 in C4 on which we assume that:

|P (x, ξ, ε; h)| ≤ O(1)m(Re(x, ξ)). (3.5)
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Here m is an order function in the sense of definition 2.1. We assume moreover that
m > 1 and Pε is classical

P (x, ξ, ε; h) ∼
∞∑

j=0

pj,ε(x, ξ)h
j, h → 0, (3.6)

in the selected space of symbols.
In this case, the main symbol is the first term of the above expansion, pε = p0,ε and the
ellipticity condition at infinity is

|p0,ε(x, ξ)− E| ≥
1

C
m(Re(x, ξ)), | (x, ξ) |≥ C, (3.7)

for some C > 0 large enough.
When M is a compact manifold, we consider Pε a differential operator on M such

that in local coordinates x of M , it is of the form:

Pε =
∑

|α|≤m

aα,ε(x; h)(hDx)
α, (3.8)

Where Dx = 1
i

∂
∂x

and aα,ε are smooth functions of ε in a neighborhood of 0 with values
in the space of holomorphic functions on a complex neighborhood of x = 0.
We assume that these aα,ε are classical

aα,ε(x; h) ∼
∞∑

j=0

aα,ε,j(x)h
j , h → 0, (3.9)

in the selected space of symbols.
In this case, the principal symbol pε in the local canonical coordinates associated (x, ξ)
on T ∗M is

pε(x, ξ) =
∑

|α|≤m

aα,ε,0(x)ξ
α (3.10)

and the elipticity condition at infinity is

|pε(x, ξ)−E| ≥
1

C
〈ξ〉m, (x, ξ) ∈ T ∗M, | ξ |≥ C, (3.11)

for some C > 0 large enough.
Note here that M has a riemannian metric, then | ξ | and 〈ξ〉 = (1+ | ξ |2)1/2 are
defined.
It is known from articles [27], [23] that with the above conditions, the spectrum of

Pε in a small but fixed neighborhood of E ∈ C is discrete, when h > 0, ε ≥ 0 are small
enough. Moreover, this spectrum is contained in a horizontal band of size ε:

|Im(z)| ≤ O(ε). (3.12)
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Let p = pε=0, it is principal symbol of the selfadjoint unperturbed operator P and
therefore real.

Let q = 1
i
( ∂
∂ε
)ε=0pε and assume that q is a bounded analytic function on T ∗M . We

can write the principal symbol

pε = p+ iεq +O(ε2). (3.13)

We assume that
p−1(E) ∩ T ∗M is connected (3.14)

and the energy level E is regular for p, i.e dp 6= 0 on p−1(E) ∩ T ∗M .
For T > 0, we introduce the symmetric average time T of q along the flow of p, defined

near p−1(0) ∩ T ∗M :

〈q〉T =
1

T

∫ T/2

−T/2

q ◦ exp(tHp)dt, (3.15)

where Hp is the Hamiltonian vector field of p, defined by σ(Hp, ) = −dp.

As explained in Ref. [27], the spectrum of Pε in the neighborhood of E ∈ C, {z ∈ C :
|z −E| < δ}, when ε, h, δ → 0 is confined in the band (voir [40], [41]):

]− δ + E, δ + E[+iε
[
lim
T→∞

inf
p−1(E)

Re〈q〉T − o(1), lim
T→∞

sup
p−1(E)

Re〈q〉T + o(1)
]
. (3.16)

With more assumptions about the dynamics of classical flow of the first term of the
unperturbed symbol (in a certain energy level), one can obtain more detailed results on
the asymptotic distribution of eigenvalues of Pε in such a band.

Now, assume that p is completely integrable, i.e there exists an analytic real valued
function f , differentially independent of p such that {p, f} = 0 with respect to the
Poisson bracket on T ∗M . That means

F = (p, f) : T ∗M → R2 (3.17)

is a momentum map.
Then the space of regular leaves of F is foliated by Liouville Lagrangian invariant tori

by Liouville-Arnold-Moser theorem 3.14.
As explained in ([27], p. 21-22 and 55), the energy space p−1(E) is decomposed into

a singular foliation:

p−1(E) ∩ T ∗M =
⋃

a∈J

Λa, (3.18)

where J is assumed to be a compact interval, or, more generally, a connected graph
with a finite number of vertices and of edges. We denote by S the set of vertices. For
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each a ∈ J , Λa is a connected compact subset invariant with respect to Hp. Moreover,
if a ∈ J\S, Λa is a invariant Lagrangian torus depending analytically on a. These tori
are regular leaves corresponding regular values of F .
Each edge of J can be identified with a bounded interval of R and we have therefore

a distance on J in the natural way. Next, we assume the continuity of tori: let Λa0 , a0 ∈
J\S, for all µ > 0, ∃ γ > 0, such that if dist(a, a0) < γ, then Λa ⊂ {ρ ∈ p−1(E)∩T ∗M :
dist(ρ,Λ0) < µ}.
Note that this hypothesis holds for integrable systems with non-degenerate singulari-

ties.
We denote Hp the Hamiltonian vector field of p, defined by σ(Hp, ·) = −dp(·).
For each a ∈ J , we define a compact interval in R:

Q∞(a) =
[
lim
T→∞

inf
Λa

Re〈q〉T , lim
T→∞

sup
Λa

Re〈q〉T
]
, (3.19)

where 〈q〉T , for T > 0, is the symmetric average time T of q along the Hp−flow, defined
by

〈q〉T =
1

T

∫ T/2

−T/2

q ◦ exp(tHp)dt. (3.20)

Then the spectral localization (3.16) becomes

Im(σ(Pε) ∩ {z ∈ C : |Rez − E| ≤ δ}) ⊂ ε
[
inf
⋃

a∈J

Q∞(a)− o(1), sup
⋃

a∈J

Q∞(a) + o(1)
]
,

(3.21)
when ε, h, δ → 0.
Each Lagrangian invariant torus Λa, with a ∈ J\S, locally can be embedded in a

Lagrangian foliation of Hp−invariant tori. By the action-angle theorem 3.14, there are
analytic action-angle local coordinates κ = (x, ξ) on a neighborhood V of Λa in T ∗M ,

κ = (x, ξ) : V → T2 × A, (3.22)

with A is a neighborhood of ξa ∈ R2 such that Λa is symplectically identified with
T2 × {ξa}, and p becomes a function of action variables ξ,

p = p(ξ) = p(ξ1, ξ2), ξ ∈ A. (3.23)

Then the frequency of an arbitrary Lagrangian invariant torus Λξ ⊂ V , that is near Λa,
is defined by

ω(ξ) =
∂p

∂ξ
(ξ) =

( ∂p
∂ξ1

(ξ),
∂p

∂ξ2
(ξ)
)
, ξ ∈ A. (3.24)

In particular, the frequency of torus Λa is ω(ξa) = ∂p
∂ξ
(ξa). It knows that ω depends

analytically of ξ ∈ A. In particular, the restriction ω(ξa) depends analytically of ξa,
when a ∈ J\S. We will assume that the function a 7→ ω(ξa) is not identically constant
on any connected component of J\S.
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From now, for simplicity, we will assume that q is real valued (in the general case,
simply replace q by Re q).
We define the average of q on an arbitrary Lagrangian invariant torus Λξ ⊂ V , with

respect to the natural Liouville measure on Λξ, denoted by 〈q〉Λ, as following

〈q〉Λξ
=

∫

Λξ

q. (3.25)

Remark 3.1. In the above action-angle coordinates (x, ξ) near Λa, a ∈ J\S, we have

〈q〉Λξ
= 〈q〉(ξ) =

1

(2π)2

∫

T2

q(x, ξ)dx, ξ ∈ A. (3.26)

In particular, 〈q〉Λa
= 〈q〉(ξa).

Remark 3.2 (([27], p. 56-57)). For a ∈ J\S, if ω(a) /∈ Q, that means the frequency
ω(a) is non resonant, then along the torus Λa, the Hamiltonian flow of p is ergodic and
the limit of 〈q〉T , when T → ∞ (the time average of q) exists, is equals to the space
average of q over the torus, 〈q〉Λa

. Therefore we have

Q∞(a) = {〈q〉Λa
}.

It is true that 〈q〉Λa
depends analytically of a ∈ J\S and we assume it can be extended

continuously on J . Furthermore, we assume that the function a 7→ 〈q〉(ξa) = 〈q〉Λa
is

not identically constant on any connected component of J\S.
Assume furthermore that the differential of the functions p(ξ), given in (3.23), and of

〈q〉, given in (3.26) are R−linearly independent when ξ = ξa.
Then 〈q〉 and p are in involution in the neighborhood V of Λa, due to 〈q〉 is invariant

under the flow of p.

3.2 Asymptotic eigenvalues

The asymptotic spectral theory of Hitrik co-workers (see Refs [23]-[25] and especially
Ref. [27]) allows us to give an asymptotic description of all the eigenvalues of Pε in some
small complex windows of the spectral band, which are associated with Diophantine tori
in the phase space. In Ref. [27] the force of the perturbation ε is treated by several
different case: it is small and can be dependent or independent of h.
In our work we present the result in the case when ε is sufficiently small, independent

of h and moreover we will assume that

h ≪ ε = O(hδ),

where δ > 0 is some number small enough but fixed. In this case, the spectral results
are related to h−independent small window.
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Definition 3.3. Let α > 0, d > 0, and Λξ be a Hp invariant Lagrangian torus. We say
that Λ is (α, d)−Diophantine if its frequency ω(ξ), defined in (3.24), satisfies

ω(ξ) ∈ Dα,d =
{
ω ∈ R2

∣∣|〈ω, k〉| ≥ α

|k|1+d
, ∀k ∈ Z2\{0}

}
. (3.27)

If (3.27) holds for some α > 0, and d > 0, we say that the torus Λξ or its frequency is
uniformly Diophantine.

Note also that when d > 0 is fixed, the Diophantine property (for some α) of Λξ is
independent of the choice of action-angle coordinates. If Λξ is (α, d)−Diophantine, then
it must be irrational.
It knew that the set Dα,d is a closed set with closed half-line structure. When we take

α to be sufficiently small, it is a nowhere dense set but with no isolated points, and its
measure tends to full measure as α tends to 0: the measure of its complement is of order
O(α). On the other hand, the trace of Dα,d on the unit sphere is a Cantor set.

Definition 3.4. For some α > 0 and some d > 0, we define the set of ”good values”
G(α, d, E), associated with the energy level E, obtained from ∪a∈JQ∞(a) by removing
the following set of ”bad values” B(α, d, E):

B(α, d, E) =

(
⋃

dist(a,S)<α

Q∞(a)

)
⋃
(

⋃

a∈J\S: |ω′(ξa)|<α

Q∞(a)

)
⋃
(

⋃

a∈J\S: |d〈q〉Λa |<α

Q∞(a)

)

⋃
(

⋃

a∈J\S: ω(ξa) is not (α,d)−Diophantine

Q∞(a)

)
.

Remark 3.5.

• When d > 0 is kept fixed, the measure of the set of bad values B(α, d, E) in
∪a∈JQ∞(a) (and in 〈q〉Λa

(J)) is small together with α, is O(α), when α > 0 is
small enough, provided that the measure of

(
⋃

a∈J\S: ω(ξa)∈Q

Q∞(a)

)
⋃
(
⋃

a∈S

Q∞(a)

)
(3.28)

is sufficiently small, depending on α (see Ref. [27]).

• Let G ∈ G(α, d, E) be a good value, then by definition of B(α, d, E) and re-
mark (3.2), there are a finite number of corresponding (α, d)−Diophantine tori
Λa1 , . . . ,ΛaL, with L ∈ N∗ and {a1, . . . , aL} ⊂ J \ S, in the energy space p−1(E)∩
T ∗M , such that the pre-image

〈q〉−1(G) = {Λa1 , . . . ,ΛaL}.

By this way, whenG varies in G(α, d, E), we obtain a Cantor family of (α, d)−Diophantine
invariant tori in the phase space satisfying {p = E, 〈q〉 = G}.
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When G ∈ G(α, d, E) is a good value, we define in the horizontal band of size ε of
complex plan, given in (3.21), a adapted window of size O(hδ) × O(εhδ), around the
good center E + iG, called ”good rectangle”,

R(E,G)(ε, h) = (E + iε G) +
[
−

hδ

O(1)
,

hδ

O(1)

]
+ iε

[
−

hδ

O(1)
,+

hδ

O(1)

]
. (3.29)

Now let G ∈ G(α, d, E) be a good value. As in Remark 3.5, there exists L elements in
pre-image of G by 〈q〉. However for simplicity, we shall assume through this work that
L = 1 and we write

〈q〉−1(G) = Λa ⊂ p−1(E) ∩ T ∗M, a ∈ J \ S, (3.30)

Note that this hypothesis can be achieved if we assume that the function 〈q〉 is infective
on J \ S.

Definition 3.6 (Refs. [44], [2], and [11]). Let E be a symplectic space and let Λ(E)
be his Lagrangian Grassmannian (which is set of all Lagrangian subspaces of E). We
consider a bundle B in E over the circle or a compact interval provided with a Lagrangian
subbundle called vertical. Let λ(t) be a section of Λ(B) which is transverse to the vertical
edges of the interval in the case where the base is an interval. The Maslov index of λ(t)
is the intersection number of this curve with the singular cycle of Lagrangians which do
not cut transversely the vertical subbundle.

Let Λa, a ∈ J\S be a some Lagrangian invariant torus and let κ be the action-angle
local coordinates in (3.22). The fundamental cycles (γ1, γ2) of Λa are defined by

γj = κ−1({(x, ξ) ∈ T ∗T2 : xj = 0, ξ = ξa}), j = 1, 2.

Then we note η ∈ Z2 the Maslov index and S ∈ R2 the integral action of these funda-
mental cycles,

S = (S1, S2) =

(∫

γ1

θ,

∫

γ2

θ

)
, (3.31)

where θ is locally a (primitive) Liouville 1− form of the closed form σ on (Λa, T
∗M),

whose existence if guaranteed by the Poincar lemma.
We recall here the result about the asymptotic spectrum treated for the stand at the

energy level E = 0, given by [27]. However this result can be immediately generalized
for any energy lever E by a translation, that we will carry out after in Sec. 3.3 of this
paper.

Theorem 3.7 ([27]). For E = 0 and assume that action-angle coordinates κ in (3.22)
send Λa to the section {ξa = 0} ∈ T ∗T2. Suppose that Pε is an operator with principal
symbol (3.13) which satisfies Assumptions 3.1. Assume that h ≪ ε = O(hδ) for 0 < δ <
1. Let G ∈ G(α, d, 0) be a good value. With the above notations, then the eigenvalues
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µ of Pε with multiplicity in a good rectangle R(0,G)(ε, h) of the form (3.29) have the
following expression:

µ = P (∞)
(
h(k −

η

4
)−

S

2π
; ε, h

)
+O(h∞), k ∈ Z2, (3.32)

where P (∞)(ξ; ε, h) is a smooth function of ξ evolving in a neighborhood of (0,R2) and
ε, h in neighborhoods of (0,R). Moreover P (∞)(ξ; ε, h) is real valued for ε = 0 and it
admits the following polynomial asymptotic expansion in (ξ, ε, h) for the C∞ topology:

P (∞)(ξ; ε, h) ∼
∑

α,j,k

Cαjk ξαεjhk, (3.33)

Particularly P (∞) is classical in the space of symbols with h−leading term:

p
(∞)
0 (ξ, ε) = p(ξ) + iε〈q〉(ξ) +O(ε2). (3.34)

Here p, q are the expressions of p, q in action-angle variables near Λa, given by (3.22),
and 〈q〉 is the average of q on tori, defined in (3.26).

Remark 3.8. We can write the total symbol P (∞) in the reduce form:

P (∞)(ξ; ε, h) = p(ξ) + iε〈q〉(ξ) +O(ε2) +O(h), (3.35)

uniformly for ε and h small. Note that dp, d〈q〉 are linearly independent in ξ = 0, and
in the regime h ≪ ε we can show that the function P (∞) is a local diffeomorphism from
a neighborhood B(0, r), r > 0, of ξ = 0 ∈ R2 into its image which covers the good
rectangle (see Ref. [51]).

3.3 The completely integrable case

In this section , we first apply the result of the stand case, spoken in Theorem 3.7 to given
the asymptotic expansion of eigenvalues of Pε in an any good rectangle R(E,G)(ε, h) of
spectral band. After, we will give a brief construction to show that the spectrum satisfies
the condition of an asymptotic pseudo-lattice. For more detail of this construction, we
refer to [51].
We are considering the operator Pε as in the preceding paragraph XXXX.
We note that 〈q〉, the average of q over the regular Lagrangian Hp−invariant torus

Λξ, given in (3.25), can be seen as a constant function on Λξ. In this way 〈q〉 well
defines a analytic function on the union of regular tori. It is true that the fibration of
all regular Lagrangian tori Λξ, given by the momentum map F , fills almost completely
the phase space T ∗M . So we assume that the function 〈q〉 can be extended smoothly on
the whole phase space T ∗M . Moreover we assume that the differentials dp and d〈q〉 are
linearly independent almost everywhere on T ∗M . It is clear that p and 〈q〉 commute in
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neighborhood of each regular torus Λa. So we can see (p, 〈q〉) as a completely integrable
system and we will take the momentum map F = (p, f), with f = 〈q〉.
We assume moreover that the map F is proper and has connected fiber. This ensures

all regular fibers of F are Lagrangian invariant tori.
Denote by Ur the set of its regular values and let U be a subset of Ur with compact

closure.
We assume further all assumptions as in Sec. 3.1 for any energy level E, taken in a

bounded interval of R.
We can take E in the interval px(U), where px is the projection on the real axe of

variable x.
The fact that the horizontal spectral band of size O(ε) suggest us introducing the

function

χ : R2 ∋ u = (u1, u2) 7→ χu = (u1, εu2) ∈ R2 (3.36)
∼= u1 + iεu2 ∈ C,

in which we identify C with R2.
Let a point c ∈ U . We recall that by the action-angle theorem, we have action-

angle coordinates in a neighborhood of torus Λc := Φ−1(c) in M : there exists r >
0, a neighborhood V := F−1(B(c, r)) of Λc, an small open A ⊂ R2 of center 0, a
symplectomorphism κ : V → T2 × A and a diffeomorphism ϕ = (ϕ1, ϕ2) : A → ϕ(A) =
B(c, r) such that: κ(Λc) = T2 × {ξ = 0}, F ◦ κ−1(x, ξ) = ϕ(ξ), for all x ∈ T2, ξ ∈ A and
here we have ϕ(0) = c.
Denote

B(u, r; ε) := χ(B(u, r))

for some ball B(u, r) (r > 0) and

U(ε) := χ(U).

Note that in previous action-angle coordinates the functions p and 〈q〉 become p(ξ) =
ϕ1(ξ), 〈q〉 = ϕ2(ξ), as in (3.23) and (3.26).
Now for any point a = (E,G) ∈ B(c, r) such that G is a good value, G ∈ G(α, d, E),

as in Definition 3.4. Then the corresponding torus Λa = F−1(a), as told about in (3.30),
is (α, d)−Diophantine (note that in our context L = 1). Suppose that by κ, the tours
Λa is sent to the section T2 × {ξ = ξa}, ξa = ϕ−1(a) ∈ D.
Noting that σ(Pε) = σ(Pε−χa)+χa and applying the asymptotic spectral result in the

stand case for the operator (Pε−χa) with respect to the good rectangle R(0,G)(ε, h), The-
orem 3.7, we obtain the asymptotic eigenvalues of Pε in the good rectangle R(E,G)(ε, h).
Then all the eigenvalues µ of Pε in the good rectangle R(E,G)(ε, h), defined by 3.29,

modulo O(h∞) are given by the asymptotic expansion of a smooth function P (ξ, ε; h)
(for ease the notation, writing P instead of P (∞), given in Theorem 3.7) of ξ in a
neighborhood of (ξa,R

2) and ε, h in neighborhoods of (0,R).

σ(Pε) ∩R(E,G)(ε, h) ∋ µ = P
(
ξa + h(k −

η

4
)−

S

2π
; ε, h

)
+O(h∞), k ∈ Z2, (3.37)

11



Here η ∈ Z2 is the Maslov index and S ∈ R2 is the integral action of the fundamental
cycles of Λa. Moreover P (ξ; ε, h) admits the asymptotic expansion in (ξ, ε, h) of the
form (3.33) and in particularity the h−leading term of P is of the form (3.34):

p0(ξ, ε) = p(ξ) + iε〈q〉(ξ) +O(ε2) (3.38)

= ϕ1(ξ) + iεϕ2(ξ) +O(ε2). (3.39)

Remark 3.9. The previous result shows that the eigenvalues of P (ξ; ε, h) in a good
rectangle form (micro-locally) a deformed lattice, it is image of a square lattice of hZ2

by a local diffeomorphism. Moreover we can show that the lattice has horizontal spacing
O(h) and vertical spacing O(εh).
In this paper, we use the vocabulary ”micro” for some objects in the sense that they

are linked with a domain depending of h.
In the case when the map F is n’t supposed to have connected fibre, then fiber

F−1(a) can contain of L tori, with L ≥ 1, and the eigenvalues of Pε in the associated
good rectangle are union of L deformed lattices.

As a property of classical system, it is true that the difference between the integral
actions, with factor 1

2π
and the action coordinates are locally constant on regular tori

Λa (see Ref. [51]):
S

2π
− ξa := τc ∈ R2, (3.40)

is locally constant in c ∈ Ur.
From Remark 3.8, we know that Equation (3.37) have a bijective correspondence

between the eigenvalues in the good rectangle R(E,G)(ε, h) and hk in a part of hZ2.
Moreover this correspondence is given by a smooth local diffeomorphism in E ∈ C,
denoted by f = f(µ; ε, h), which sends R(E,G)(ε, h) to its image, denoted by E(a, ε, h)
(which is close to S

2π
), such that it send µ ∈ σ(Pε) ∩ R(E,G)(ε, h) to hk ∈ hZ2 modulo

O(h∞):

f = f(µ, ε; h) = τc + h
η

4
+ P−1(µ) (3.41)

f(R(E,G)(ε, h)) = E(a, ε, h)

σ(Pε) ∩ R(E,G)(ε, h) ∋ µ 7→ f(µ, ε; h) ∈ hZ2 +O(h∞). (3.42)

We say that the map f in (3.41) is a micro-chart of the spectrum of Pε on the good
rectangle R(E,G)(ε, h).

Let f̃ = f ◦ χ, then we have

f̃ = τc + h
η

4
+ P−1 ◦ χ. (3.43)

To analysis P−1 ◦ χ, we first discuss about its inverse, P̂ := χ−1 ◦ P . It is obtained
from P by dividing the imaginary part of P by ε. As P admits an asymptotic expansion

12



in (ξ, ε, h), so it is true that P̂ admits an asymptotic expansion in (ξ, ε, h
ε
) (here h ≪ ε).

Moreover we can write P̂ in the reduce form as below:

P̂ (ξ, ε, h) = P̂0(ξ) +O(ε) +O(
h

ε
)

= P̂0(ξ) +O(ε,
h

ε
), (3.44)

uniformly for h, ε small and h ≪ ε, with P̂0(ξ) = ϕ1(ξ) + iϕ2(ξ).

Proposition 3.10. (see [51]) Let P̂ = P̂ (ξ;X) a complex-valued smooth function of ξ

near 0 ∈ R2 and X near 0 ∈ Rn. Assume that P̂ admits an asymptotic expansion in X
near 0 of the form

P̂ (ξ;X) ∼
∑

α

Cα(ξ)X
α

with Cα(ξ) are smooth functions and C0(ξ) := P̂0(ξ) is local diffeomorphism near ξ = 0.

Then, for | X | small enough, P̂ is also a smooth local diffeomorphism near ξ = 0 and

its inverse admits an asymptotic expansion in X near 0 whose the first term is (P̂0)
−1.

This proposition ensure that the map P̂−1 = P−1 ◦χ admits an asymptotic expansion
in (ε, h

ε
) whose first term is (P̂0)

−1 = (ϕ)−1. So from (3.43), f̃ admits an asymptotic
expansion in (ε, h

ε
) with the leading term

f̃0 = τc + (ϕ)−1. (3.45)

We note that the leading term f̃0 is a local diffeomorphism, completely defined on
B(c, r). It does n’t depend of the chosen good rectangle, is valid for any good value
a ∈ B(c, r).
However, in the domain B(c, r; ε), we have many good rectangles. They can be disjoint

or no, and despite their density, not quite fill B(c, r; ε). In fact we know moreover from
Remark 3.5 that the set of good values is a Cantor set, and outside a set of small measure.
We have therefore locally a Cantor family of micro-charts with common leading term of
the spectrum of Pε on the domain B(c, r; ε), called spectral pseudo-chart.
The above construction ensures that the spectrum of Pε on the domain U(ε) satisfies

all conditions of a particular discrete lattice - an asymptotic pseudo-lattice, given in
[51], that we recall here:

Definition 3.11. Let U be a subset of R2 with compact closure, U(ε) = χ(U), and let
Σ(ε, h) (which depends on small h and ε) be a discrete set of U(ε). For h, ε small enough
and in the regime h ≪ ε, we say that (Σ(ε, h), U(ε)) is an asymptotic pseudo-lattice if:
for any small parameter α > 0, there exists a set of ”good values” in R2, denoted by
G(α), whose complement is of small measure together with α in the sense:

| CG(α) ∩ I |≤ Cα | I |,
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for any domain I ⊂ R2 with a constant C > 0.
For all c ∈ U , there exists a ball B(c, r) ⊂ U around c (r > 0) such that for every ”good
value” a ∈ B(c, r)∩G(α), there is a good rectangle R(a)(ε, h) ⊂ χ(B(c, r)) of good center
χ(a) of size O(hδ)× εO(hδ), 0 < δ < 1 and a smooth local diffeomorphism f = f(·; ε, h)
which sends R(a)(ε, h) on its image, denoted by E(a, ε, h) satisfying

f : R(a)(ε, h) → E(a, ε, h) (3.46)

Σ(ε, h) ∩ R(a)(ε, h) ∋ µ 7→ f(µ; ε, h) ∈ hZ2 +O(h∞)

such that f̃ := f ◦ χ admits asymptotic expansions in (ε, h
ε
) for the C∞ topology in a

neighborhood of a, uniformly with respect to the parameters h, ε, with the leading term
f̃0 is a diffeomorphism, independent of α, globally defined on B(c, r) and independent of
the selected good value a ∈ B(c, r).
We also say that the couple (f(·; ε, h), R(a)(ε, h)) is a micro-chart, and the family of

micro-charts (f(·; ε, h), R(a)(ε, h)), with a ∈ B(c, r) ∩ G(α), is a local pseudo-chart on
B(c, r, ε) of (Σ(ε, h), U(ε)).

Remark 3.12. There exists an other lattice with some similar properties but lighter,
called asymptotic lattice, given in [45]. The last lattice is locally defined, while the
asymptotic pseudo-lattice is very fine, it is micro-locally defined.
The introduction of this discrete lattice aims to show that a invariant-monodromy

that we will define is directly built from the spectrum of a operator. If the different
operators have the same spectrum, then they have the same monodromy.

Now we can define the spectral monodromy of the operator Pε on the domain U(ε),
denoted by [Msp], as the monodromy of the asymptotic pseudo-lattice (σ(Pε), U(ε)), as
the following.
Let {Bα}α be an arbitrary (small enough) locally finite covering of U . Then as in

Definition 3.11, the asymptotic pseudo-lattice (Σ(ε, h), U(ε)) is covered by the associated
local pseudo-charts {((fα(·; ε, h)), Bα(ε))}α, here Bα(ε) := χ(Bα). Note that the leading

terms f̃α,0(·; ε, h) are well defined on whole Bα and we can see them as the charts of
U . It know from [51] that on each nonempty intersection Bα ∩ Bβ 6= ∅, there exists a
unique integer linear map Mαβ ∈ GL(2,Z) (independent of h, ε) such that:

d
(
f̃α,0 ◦ (f̃β,0)

−1
)
= Mαβ. (3.47)

The class, denoted by [M] ∈ Ȟ1(U(ε), GL(2,Z)), defined from the 1-cocycle of {Mαβ},
in the Čech cohomology with value in the linear group GL(2,Z), is called the (linear)
monodromy of the asymptotic pseudo-lattice (Σ(ε, h), U(ε)). It does n’t depend on the
selection of the covering {Bα}α.
We can also associate the class [M] with its holonomy, a group morphism from the

fundamental of U(ε) into the group GL(2,Z), modulo conjugation. Their trivial prop-
erty is the same.
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Definition 3.13. For ε, h > 0 small such that h ≪ ε ≤ hδ, 0 < δ < 1, the spectral
monodromy of the operator Pε, discussed in, on the domain U(ε), is the class [Msp] ∈
Ȟ1(U(ε), GL(2,Z)).

3.4 Relationship with the classical monodromy

Theorem 3.14 (Angle-action theorem). Let F = (f1, . . . , fn) : W → Rn be completely
integrable system on a connected smooth symplectic manifold (W,σ) in the sense that
theirs component functions are in involution with respect to the Poisson bracket gener-
ated from σ.
Let U be a subset of the set regular values of F and let Λc be a compact regular sheet

of F with F |Λc
= c ∈ U . Then there exists a neighborhood V c of Λc in M such that

F |V c defines a locally trivial fibres bundle on a neighborhood Bc ⊂ U of c, whose fibres
are Lagrangian n−tori. Moreover, there exists a symplectic diffeomorphism

κc = (x, ξ) : V c → Tn ×Ac,

with Ac ⊂ Rn is an open set, such that F ◦(κc)−1(x, ξ) = ϕc(ξ) for all x = (x1, . . . , xn) ∈
Tn, all ξ = (ξ1, . . . ξn) ∈ Ac, and here ϕc : Ac → ϕ(Ac) = Bc is locally a diffeomorphism.
We call (x, ξ) local angle-action variables near Λc and (V c, κc) an angle-action chart on
V c.

Note that we can choose the local chart such that the torus Λc is sent by κc to the
zero section T n×{0}. By this theorem, if a ∈ Bc, then Λa := F−1(a)∩V c is Lagrangian
n−torus, and its image by κc is a n−torus T n × {ξa}, with ξa ∈ Ac. We often write

Λa ≃ T n × {ξa}.

4 The quasi-integrable case

In this section we will study the spectral monodromy of perturbed non-selfadjoint classi-
cal operator in a more general case when the unperturbed symbol is close to a completely
integrable non-degenerate one. In this case, according to spectral asymptotics [27], the
similar result about asymptotic spectrum of such operator is already known. We apply
it to show that the spectrum should be an asymptotic pseudo-lattice on spectral band.
To get asymptotic expansions of eigenvalues from a h− dependent complex window, a

radical general hypothesis, given in [27], is that the Hamiltonian flow of the unperturbed
leading symbol, on the real energy surface at certain level, possesses several Diophantine
invariant Lagrangian tori. However, this hypothesis is ensured when this symbol is not
only completely integrable system, as in Sec. but also nearly integrable one, by classical
Kolmogorov-Arnold-Moser (KAM) theory.
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4.1 KAM theorem

The classical KAM theory allows to treat perturbations of a completely integrable Hamil-
tonian system. Under the isoenergetic condition, this theory proves the persistence of
invariant Lagrangian tori, called KAM tori, on which the flow of perturbed system stills
quasi-periodic with Diophantine frequencies. Moreover, the union of these KAM tori is
a nowhere dense set, with complement of small measure in phase space.
We consider a perturbed Hamiltonian that is close to a completely integrable non-

degenerate one:
pλ = p+ λp1, 0 < λ ≪ 1, (4.48)

where p and p1 are holomorphic bounded Hamiltonian in a tubular neighborhood of
T ∗M , real on T ∗M and furthermore p is assumed to be completely integrable, as in Sec.
Let Λa be a Hp−invariant Diophantine Lagrangian torus in the energy space p−1(E).

In action-angle coordinates (x, ξ) on a neighborhood Ω of Λa, given as in (3.22), the
function pλ becomes:

pλ ◦ κ
−1 = pλ(x, ξ) = p(ξ) + λp1(x, ξ).

The Hamiltonian flow of p on a Hp−invariant Lagrangian torus Λ ⊂ Ω, close to Λa,
Λ ≃ T2 × {ξ}, denoted by Λξ, is quasi-periodic of constant Hamiltonian vector field

Hp(x, ξ) = ω1(ξ)
∂

∂x1

+ ω2(ξ)
∂

∂x2

, x ∈ T2, ξ ∈ A, (4.49)

with the frequency ω(ξ), given by (3.24).
In particular, the frequency of Λa ≃ Λξa is ω(ξa) =

∂p
∂ξ
(ξa) satisfying the Diophantine

condition in (3.27), for some α > 0.
We say that p is (Kolmogorov) non-degenerate if the isoenergetic condition holds: the

local frequency map ω : A → R2, defined by (3.24), is a diffeomorphism onto its image.
In fact, this condition is equivalent to:

det
∂ω

∂ξ
(ξa) = det(

∂2p

∂ξ2
)(ξa) 6= 0.

It means that the Hp−invariant Lagrangian tori near Λa can (locally) be parametrized
by their frequencies.
Let Aα,d = ω−1(ω(A) ∩ Dα,d), where Dα,d is defined in (3.27). The intersection of

p−1(E) with T2×A is of the form T2×Γa, with a certain curve Γa in A passing through
ξa. Note that when we take α to be sufficiently small, the set Aα,d is nowhere dense of
positive measure. Moreover, the measure of A \ Aα,d is O(α).
Now for α small enough, we have the quasi-periodic stability of Diophantine invariant

Lagrangian tori in T2 × Aα,d, as then following theorem.
This theorem is combined form the different known versions of classical KAM theo-

rem as citequyen 3, 17, 5, , 8, 33. In particular the paper cite 33 proved the smooth
dependence, in the sense of Whitney, of the KAM tori on the frequencies.
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Theorem 4.1. Assume that p is non-degenerate. Let d > 0 fixed and α > 0 be small
enough. Assume that 0 < λ ≪ α2. Then there exists a map Φλ : T2 ×A → T2 ×A with
the following properties:

1. Φλ, depending analytically on λ, is a C∞− diffeomorphism onto its image, close
to the identity map in the C∞− topology.

2. For each ξ ∈ A, the Lagrangian invariant torus Λξ := T2 × {ξ} is sent, by Φλ, to
a Lagrangian invariant torus Φλ(Λξ), close to Λξ, denoted by Λξλ, and of the form
Λξλ = T2 × {ξλ}, with ξλ in a certain open set Aλ ⊂ A, induced by Φλ.

Moreover, if ξ ∈ Aα,d, then Λξλ, with ξλ in a certain set Aα,d,λ ⊂ Aλ, are still
uniformly Diophantine tori, called KAM tori. The restricted map on each Dio-
phantine Lagrangian torus Λξ, with ξ ∈ Aα,d, Φλ|Λξ

conjugates the Hamiltonian
vector field Hp|Λξ

= Hp(x, ξ), as in (4.49), to the Hamiltonian vector field Hpλ |Λξλ
,

i.e. Φλ|Λξ
∗Hp = Hpλ.

In particular, if ξ ∈ Γa, then the torus Λξλ ⊂ p−1
λ (E) ∩ T2 × Γa,λ, with a certain

curve Γa,λ ⊂ Aλ. Moreover, when ξ ∈ Γa ∩ Aα,d, the Liouville measure of the
complement of the union of the KAM tori Λξλ, in p−1

λ (E), is small, O(α).

Note that in the previous theorem, we can see ξλ as a smooth function of ξ ∈ A. From
this theorem, we obtain a family of KAM invariant tori, Aα,d,λ, of positive measure that
is furthermore Cantor type, hence nowhere dense set, on which the Hamiltonian flow of
the perturbed system pλ is quasi-periodic of constant vector field.
We would to cite a very interesting paper citeUni-kam, that attested the unicity of

KAM tori on a subset of full measure of Diophantine tori. In the context of the above
theorem, the latter paper asserts that conjugacy map Φλ, after restriction to T2 ×A∗

α,d,
is unique up to a torus translation. Here A∗

α,d is the subset of density points of Aα,d,
that has similar properties as Aα,d.

4.2 Monodromy

In this section, we use also again all notations of Section 3.3.
Let p1 be an analytic function in a tubular neighborhood of T ∗M , real on the real

domain, with p1(x, ξ) = O(m(Re(x, ξ)) in the case when M = R2, and p1(x, ξ) =
O(〈ξ〉m) in the manifold case.
Let

Pε,λ, 0 < λ ≪ 1, (4.50)

be a classical operator that is perturbation of the self-adjoint operator Pλ := Pε=0,λ, and
with the h−leading symbol

pε,λ = pλ + iεq +O(ε2), pλ = p+ λp1, (4.51)

17



where p, q are symbols satisfying all assumptions of Sec. 3.3. Moreover, we assume that
p is global non-degenerate, as following.
Let X = F−1(U), where the map F and the set U are given as in Sec. 3.3. Then the

map F |X : X → U defines a smooth locally trivial bundle, whose fibres are Lagrangian
tori. From the angle-action theorem, we can cover X by an atlas of angle-action charts
{(V c, κc)}c∈U , where κc = (xc, ξc) : V c = F−1(U c) → T2 × Ac, as in Theorem. As in

3.24, we define the local frequency map ωc : Ac → R2, ωc(ξ) = ∂(p◦κ−1)
∂ξc

(ξ). We say

that p is global non-degenerate (with respect to F |X) if each local frequency map is a
diffeomorphism onto its image, for every atlas of angle-action charts {V c, κc}c∈U of X .
We will introduce a set, associated with the energy level E of pλ, which is similar to

the set of good values, given in the integrable case.
Let a = (E,G) be a point in U such that G is a good value in G(α, d, E), as in

Definition 3.4, and Λa ≃ Λξa , ξa ∈ Γa, be the corresponding (α, d)−Diophantine torus.
We assume moreover 0 < λ ≪ α2. Then by Theorem 4.1, there exists a smooth

Cantor family of KAM tori, Λξλ = T2 × {ξλ}, close to Λξa , with ξλ ∈ Aα,d,λ, on which
the Hpλ−flow is quasi periodic of a constant uniformly Diophantine frequency, denoted
by ω(ξλ) . Therefore, over these KAM tori, pλ become a function of only ξλ:

pλ = pλ(ξλ), ξλ ∈ Aα,d,λ.

In particular, when ξ ∈ Γa ∩ Aα,d, then Λξλ ⊂ p−1
λ (E) ∩ T2 × (Γa,λ ∩ Aα,d,λ).

Similarly as in (3.25), we define locally a smooth function 〈q〉Λξλ
of ξλ ∈ Aλ, denoted

by 〈q〉(ξλ), obtained by averaging q over the tori Λξλ .
Then, we have, in C1−sense in ξλ ∈ Aλ, as λ → 0,

〈q〉(ξλ) = 〈q〉Λξλ
→ 〈q〉Λξλ|λ=0

= 〈q〉Λξ
.

Therefore, for every ξλ ∈ Γa,λ and λ small enough, we get

∣∣d〈q〉(ξλ)
∣∣ ≥ α

2
. (4.52)

Note that we have also the differentials of pλ(ξλ) and 〈q〉(ξλ) in every ξλ ∈ Γa,λ ∩Aα,d,λ

are R−linearly independent:
ω(ξλ) ∧ d〈q〉(ξλ) 6= 0. (4.53)

Let us define the set of good values

Gλ(α,E,G) =
⋃

ξλ∈Γa,λ∩Aα,d,λ

〈q〉(ξλ) =
⋃

{〈q〉(ξλ) : ξ ∈ Γa ∩ Aα,d}. (4.54)

Then the measure of the complement of Gλ(α,E,G) in
⋃

ξλ∈Γa,λ
〈q〉(ξλ) is small, is equal

to O(α), when α is small and d is kept fixed.
If K ∈ Gλ(α,E,G), then there exists ξ ∈ Γa ∩Aα,d such that the corresponding KAM

torus Λξλ ⊂ p−1
λ (E) is still uniformly Diophantine Lagrangian torus, 〈q〉(ξλ) = 〈q〉Λξλ

=
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K. And moreover, the Hpλ−flow on Λξλ is quasi-periodic of the Diophantine constant
frequency ω(ξλ), satisfying 4.52 and 4.53. Therefore, all these basis assumptions on
the dynamic of Hpλ allow us to carry out, microlocally near Λξλ , a construction of the
Birkhoff normal form for Pε,λ. The principe of this normalization is use excessively
canonical transformations near the torus Λξλ, to conjugate Pε,λ, by means of analytic
Fourier integral operators, to a new operator, whose total symbol of the new operator is
independent of angle variables x, and homogeneous polynomial to high order in (h, ξ, ε).
The Diophantine condition of Λξλ is indispensable for this construction.
So as result of Ref. [27], one obtains asymptotic spectral results for the operator Pε,λ,

that are similar to those of the operator Pε, in the integrable case. More explicitly:

Theorem 4.2 ([27]). Let Pε,λ be the operator in (4.50), with leading term pε,λ (4.51),
satisfying all assumptions given in this section. We work in the regime h ≪ ε = O(hδ),
for 0 < δ < 1, and 0 < λ small enough. Let a = (E,G) be any point in U such that
G ∈ G(α, d), with 0 < α small enough, and d > 0 fixed, as in Definition 3.4. We assume
that λ ≪ α2, and define the set Gλ(α,E,G) as in (4.54).
For each K ∈ Gλ(α,E,G), there exists a KAM torus Λξλ = p−1

λ (E) ∩ 〈q〉−1(G), as
already discussed above, and canonical coordinates κ = (x, ξ) : neigh(Λξλ, T

∗M) →
neigh(ξ = ξλ, T

∗T2) mapping Λξλ to T2 × {ξλ}, with ξλ ∈ neigh(0,R2), such that

pλ ◦ κ
−1 = pλ(x, ξ) = pλ,∞(ξ) +O(ξ − ξλ)

∞,

and pλ,∞(ξ) = E + ω(ξλ) · (ξ − ξλ) +O(ξ − ξλ)
2.

Then all the eigenvalues µ of Pε,λ in the rectangle R(E,K)(ε, h), defined by 3.29 with K
instead of G, are given by the asymptotic expansion of a smooth function Pλ(ξ, ε; h), of
ξ in a neighborhood of (ξλ,R

2) and ε, h in neighborhoods of (0,R), with modulo O(h∞):

σ(Pε,λ) ∩ R(E,K)(ε, h) ∋ µ = Pλ

(
ξλ + h(k −

η

4
)−

S

2π
; ε, h

)
+O(h∞), k ∈ Z2, (4.55)

Here η ∈ Z2 is the Maslov index and S ∈ R2 is the integral action of the fundamental
cycles of Λξλ. Moreover Pλ admits the asymptotic expansion in (ξ, ε, h) of the form
(3.33) and particularity the h−leading term of Pλ is of the form:

p0,λ(ξ, ε) = pλ(ξ) + iε〈q〉(ξ) +O(ε2), (4.56)

where pλ(ξ) and 〈q〉(ξ) are expression of pλ and 〈q〉 in the previous angle-action coordi-
nates near Λξλ.

We can see that the formulas (4.55) and (4.56) are exactly the same as (3.37) and
(3.38). So from the construction in Sec. 3.3 and the Definition 3.11, we can state that
the spectrum of Pε,λ on the domain U(ε), (σ(Pε,λ), U(ε)) satisfies all hypothesis of an
asymptotic pseudo-lattice once again. Therefore we can define the monodromy of the
operator Pε,λ due to the monodromy of the asymptotic pseudo-lattice (σ(Pε,λ), U(ε)),
discussed in Sec. 3.3 (see also [51] for more detail).

19



References

[1] M. K. Ali, The quantum normal form and its equivalents, J. Math. Phys. 26
(1985), no.10, p. 2565–2572.

[2] V. I. Arnold, On a characteristic class entering into conditions of quantization,
Funkcional. Anal. i Priložen. 1 (1967), p. 1–14.
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