
A model introducing SOAs quality attributes

decomposition

Riad Belkhatir, Mourad Oussalah

Department of Computing

University of Nantes

Nantes, France
{riad.belkhatir, mourad.oussalah}@univ-nantes.fr

Arnaud Viguier

Department Research and Development

BeOtic

Rezé, France
arnaud.viguier@beotic.com

Abstract—Recently, service oriented architecture (SOA) has been

popularized with the emergence of standards like Web services.
Nevertheless, the shift to this architectural paradigm could

potentially involve significant risks including projects

abandonments. With this in mind, the question of evaluating

SOA quality arose. The appearance of methods like ATAM or

SAAM propelled software architecture evaluation to a standard

stage for any paradigm. However, there still are a number of

concerns that have been raised with these methods; in particular
their cost in terms of time and money, essentially because of the

hand-operated nature of the evaluations conducted. The model

proposed in this paper for evaluating SOAs takes as a starting

point the McCall model; it allows the whole architecture to be

decomposed in three types of quality attributes (factor, criterion
and metric).

Keywords- SOA; factor; criterion; metric

I. INTRODUCTION

Architectural paradigms are design patterns for the structure
and the interconnection between software systems [1]. Their
evolution is generally linked to the evolution of the technology.

An architectural paradigm defines groups of systems in
terms of:

 Model of structure.

 Component and connector vocabularies.

 Rules or constraints on relations between systems [2].

We can distinguish a few architectural paradigms for
distributed systems, and, among the most noteworthy ones,
three have contributed to the evolution of the concerns. These
are chronologically, object oriented architectures (OOA),
component based architectures (CBA) and service oriented

architectures (SOA).

First developers were quickly aware of code repetitions in
applications and sought to define mechanisms limiting these
repetitions. OOA is focused on this concern and its
development is one of the achievements of this research. OOA
provides great control of the reusability (reusing a system the
same way or through a certain number of modifications) which
paved the way to applications more and more complex and
consequently to the identification of new limits in terms of

granularity. These limits have led to the shift of the concerns
towards the composability (combining in a sure way its
architectural elements in order to build new systems or
composite architectural elements). Correlatively, the software
engineering community developed and introduced CBA to
overcome this new challenge and thus, the CBA reinforces
control of the composability and clearly formalizes the
associated processes. By extension, this formalization
establishes the base necessary to automation possibilities. At
the same time, a part of the software community took the
research in a new direction: the dynamism concern
(developing applications able to adapt in a dynamic, automatic
and autonomous ways their behaviors to answer the changing
needs of requirements and contexts as well as possibilities of
errors) as the predominant aspect. In short, SOA has been
developed on the basis of the experience gained by objects and
components, with a focalization from the outset on ways of
improving the dynamism.

Service oriented architecture is a popular architectural
paradigm aiming to model and to design distributed systems
[3]. SOA solutions were created to satisfy commercial
objectives. This refers to a successful integration of existing
systems, the creation of innovating services for customers and
cost cutting while remaining competitive. For the purpose of
making a system robust, it is necessary that its architecture can
meet the functional requirements ("what a system is supposed
to do"; defining specific behaviors or functions) and the non-
functional ones ("what a system is supposed to be"; in other
words, the quality attributes) [4]. Furthermore, developing an
SOA involves many risks, so much the complexity of this
technology is notable (particularly for services orchestration).
First and foremost among these, is the risk of not being able to
answer favorably to expectations in terms of quality of services
because quality attributes directly derive from business
objectives. Multi-million dollar projects, undertaken by major
enterprises (Ford, GSA) failed and were abandoned. As these
risks are distributed through all the services, the question of
evaluating SOA has recently arisen. It is essential to carry out
the evaluation of the architecture relatively early in the
software lifecycle to save time and money [5]. This is to
identify and correct remaining errors that might have occurred
after the software design stage and, implicitly, to reduce
subsequent risks. Lots of tools have been created to evaluate
SOAs but none of them clearly demonstrated its effectiveness

[6]. The model presented in this paper allows evaluating SOAs
by combining the computerized approach and the human
intervention. We first relate in the section 2 the state of the art
and we present the model in the section 3. We relate the
experimentation led by the lab team in the section 4 and we
conclude the paper with a discussion comparing the past works
and our model in the last section.

II. STATE OF THE ART

A. Related works on SOA Evaluation

There is something far more important with the SOA
evaluation as it is the bond between business objectives and the
system, insofar as evaluation makes it possible to assess quality
attributes of services composing the system [4].

The evaluation relates to:

 Qualitative and quantitative approaches.

 Load prediction associated with evolutions.

 Theoretical limits of a given architecture.

From this perspective, tools and existing approaches have
shown their limitations for SOA [6]. We are currently attending
the development of a new generation of tools developed by
industrialists in a hand-operated way. The scale of the task has
brought the academic world to tackle these issues and to try to
develop a more formal and generic approach than different
existing methods (ATAM, SAAM [6]) to evaluate SOAs.

B. Evaluation Results

In concrete terms, SOA evaluations product a report which
form and content vary depending on the method used. But, in
general terms, the evaluation generates textual information and
answers two types of questions [6].

1) Is the architecture adapted to the system for which it

has been conceived?

2) Is there any other architecture more adapted to the

system in question?

1) It could be said that the architecture is adapted if it

favorably responds to the three following points:

a) The system is predictable and could answer to the
quality requirements and to the security constraints of the

specification

b) Not all the quality properties of the system result

directly from the architecture but a lot do; and for those that
do, the architecture is deemed suitable if it makes it possible to

instantiate the model taking into account these properties.

c) The system could be established using the current
resources: the staff, the budget, and the given time before the

delivery. In other terms, the architecture is buildable.

This definition will open the way for all future systems and
has obviously major consequences. If the sponsor of a system
is not able to tell us which are the quality attributes to manage
first, well, any architecture will give us the answer [6].

2) A part of SOA evaluation consists in capturing the

quality attributes the architecture must handle and to prioritize

the control of these attributes. If the list of the quality

attributes (each of which is related to specific business

objectives) is suitable in the sense that at least all the business

objectives are indirectly considered, then, we can keep

working with the same architecture. Otherwise, it is time to

restart from the beginning and to work with a new

architecture, more suitable for the system.

C. Measuring the Quality.

It has been suggested that software production is out of
control because we cannot quantitatively measure it. As a
matter of fact, Tom DeMarco (1986) stated that "you cannot
control what you cannot measure" [7]. The measurement
activity must have clear objectives and a whole set of sectors
need to be measured separately to ensure the right management
of the software.

1) McCall model
One of the models that have been published is the McCall

model in 1977 decomposing quality attributes in three stages.
This model led to the IEEE standard: ISO/IEC 9126. A certain
number of attributes, called external (applicable to running
software), are considered as key attributes for quality. We call
them quality factors [6]. These attributes are decomposed in
lower level attributes, the internal attributes (which do not rely
on software execution), called quality criteria and each
criterion is associated to a set of attributes directly measurable
and which are called quality metrics.

D. From past works to our model.

Current methods of evaluation stop the quality attributes
decomposition at the “quality factors step” and remain too
vague when it comes to giving accurate measures to quality.
These methods are not precise because they cannot go further
in the decomposition and consequently they cannot be
automated to the point of defining a finite value for each
attribute. Our work differs from those existing insofar as we
wish to obtain a precise quantitative measurement for each
quality factor with our model.

III. THE MODEL PROPOSED

A. The model in more details.

The main idea of the process is to evaluate in three steps the
whole architecture from every metric to the set of quality
factors obtained after having previously identified the business
objectives. Our work is based on the architect point of view and
the attributes selected are the ones considered as the most
relevant among all existing. The process consists in three
principal stages corresponding each to a decomposition step of
our quality attributes.

1) We first identified relevant quality factors for our

architecture:

a) the CBA is defined with reusability and composability
[8]. Basing on previous analysis, we define the SOA with the

reusability, the composability and the dynamism. Moreover,

there exist a hierarchical ranking propelling “dynamism” on

top of SOA concerns, and this is precisely why we chose to

especially focus deeply on this quality factor.

2) Then, we isolate the quality criteria defining them:

a) We concentrated our work on technical criteria
because we adopted the point of view of an architect that is

itself a technical stakeholder. In this light, we identified six

criteria common to each of our three factors. These technical
criteria gather elements having significant impacts on global

quality, from the development process to the system produced:

the loose coupling (potential of dependences reduction
between services), the explicit architecture (paradigm ability

to define clear architectural application views), the expressive

power (potential of paradigm expression in terms of creation

capacity and optionalities), the communication abstractions
(paradigm capacity to abstract services functions

communications), the upgradability (paradigm ability to make

evolve its services), and the owner's responsibility

(corresponds to the responsibilities sharing out between

services providers and consumers).

3) And finally we define quality metrics composing each

criterion in order to quantify them numerically:

a) Our previous work allowed to conclude that the “loose

coupling” criterion is of biggest importance for the quality
factor “dynamism” [9]. We found three quality metrics for the

latter which must be considered for the last stage of our model

(the semantic coupling: {high, low or non-predominant} based
on the high-level description of a service defined by the

architect, the syntactic coupling: {high, low} measures

dependencies in terms of realization between abstract services

and concrete services and the physical coupling: {, and

with 0≤≤≤} focusing on the implementation of the service).
These metrics shall make it possible to identify physical

dependencies between concrete services.

B. Coefficients

Coefficients assigned to the factors will depend on the
company needs. Our works led us to conclude that for SOA
and the three factors we worked with, we would allocate a
coefficient of ‘3’ for the “dynamism” whereas we would affect
the value ‘2’ for the “reusability” and the “composability”.
With regards to the second step, our works led to list the six
technical quality criteria chosen under three distinct levels of
acceptance, α, β and γ at which we assign respectively the
values ‘3, 2 and 1’; We allocated the “loose coupling”, the
“upgradability” and the “communication abstraction” with the
value ‘3’. The coefficient ‘2’ goes for the “owner’s
responsibility” and “explicit architecture” criteria and ‘1’ for
the “expressive power”. And finally, the three metrics studied
may be all assigned to the value ‘1’ meaning that they are
equally important for calculating the global coupling of SOAs.
These coefficients will be used as a basis for the following
section. They have been affected to quality attributes as an
example; however, these latter have been chosen according to
the principle of proportionality validated by the lab-team. We
can select other impact coefficients providing that we keep the
same proportionality between the quality-attributes considered.

IV. EXPERIMENTATION

For the experimentation, we tempted to quantitatively
measure the key quality attributes discussed in the previous
sections of this paper; notably, the quality factor “dynamism”,
the “loose coupling” criteria and the “physical, syntactic and
semantic coupling” metrics. That being said, it is important to
note that the SOAQE method must be reproduced for every
quality factor identified after having analyzed the objectives of
the company and the set of criteria and metrics belonging to
that quality factor. Taking as a starting point an existing
formula of the field of “Preliminary analysis of risks” (see
formula 1.1) [10] our works led to the identification of a
mathematical formula (see formula 1.2) combining the three
couplings studied: semantic, syntactic and physical.

NB: The simplified formula (see formula 1.1) usually used
in the automotive industry, makes it possible to measure the
default risk of a car component A is the Criticality of the car
component, B is the Probability of occurrence of a failure on
this component and C is the Probability of non-detection of this
failure.

We associate this concept of risk with our vision of the
coupling. Correlatively, the quintessence of the coupling is the
expression of the dependences which can exist between two
elements and the principle of dependence defines that one
element cannot be used without the other. Reducing the risk
that the role defined by a service cannot be assured anymore is
decreasing the dependence of the application in relation to this
service and thus reducing its coupling. The calculation of this
risk takes into account all the characteristics influencing the
coupling by redefining the three variables A, B and C
according to the semantic, syntactic and physical couplings.
The global coupling corresponds to the sum of the three
couplings calculated individually beforehand. The lower this
result is, the more the coupling is weak.

NB: The criticality A[(a),(b),(c)] is affiliated to the
semantic coupling. ‘a’ if the service is only associated to non
predominant couplings, ‘b’ for non predominants and low
couplings and ‘c’ for non predominants, low and high
couplings, while ‘Ps’ is the probability of failure of a service.

Figure 1: Defaut risk of a car component (1.1) and global

coupling of an architecture (1.2) formulas.

This generic coupling formula can directly be used to
quantify the quality of the architecture by weighting up each of
the attributes concerned by means of the coefficients isolated
after having organized the attributes according to their
importance. Indeed, as we already specified in section 2, we
cannot automate this operation and define continuously the
same coefficients for all the architectures considered because
this operation is specific to the business objectives of the
company. By applying to known quality attributes the
coefficients determined in the section III.B, we obtain the
following tree:

Figure 2: SOA attributes tree weighted with means of

coefficients

Thus, according to the previous figure 2, we can establish
that the quantitative measure of the quality of an SOA
corresponds to the sum of the quality factors dynamism,
reusability and composability, all three affected by their
respective coefficients:

The following formula allows calculating the whole quality
of an SOA.

NB: the lower the loose coupling result is, the more the

coupling is weak. Conversely, the higher the architecture
quality result is, the more the quality is good; the result of each
criterion is expressed in percentage, this is why we subtract to
1 the result found.

For any architecture considered, we are able to determine a
finite value for the loose coupling criteria, the remaining work
consists in defining a way to calculate the five others criteria in
order to isolate a finite value for the quality.

V. DISCUSSION

Because SOA implies the connectivity between several
systems, commercial entities and technologies: some
compromises regarding the architecture must be undertaken,

and this, much more than for systems with a single application
where technical difficulties prevail. Forasmuch as the decisions
about SOA tend to be pervasive and, consequently, have a
significant impact on the company; setting an evaluation of the
architecture early in the life of the software is particularly
crucial. During software architecture evaluations, we weigh the
relevance of each problematic associated to the design after
having evaluated the importance of each quality attribute
requirement. The results obtained when evaluating software
architectures with existing methods (ATAM, SAAM) are often
very different and none of these latter carries out it accurately
(for example, SAAM does not provide any clear quality metric
for the architectural attributes analyzed [11]). We know the
causes of this problem: most methods of analysis and automatic
quality evaluation of software systems are carried out from the
source code; whereas, with regard to evaluation cases of
architectural models, the analysis is conducted based on the
code generated from the model. From this code, there exist
calculated metrics, more or less complex, associated with
algorithms, methods, objects or relations between objects.
From an architectural point of view, these techniques can be
indicated of low level, and can be found out of step with
projects based on new complex architectures. The finality of
our work is to design a conceptual framework and, in fine, a
semi-automated prototype called SOAQE (taking as a starting
point, past methods such as ATAM or SAAM) which could
quantify with an accurate value the quality of the whole service
oriented architecture.

VI. REFERENCES

[1] P.S.C. Alencar, D.D. Cowan, T. Kunz and C.J.P. Lucena, “A formal

architectural design patterns-based approach to software understanding,”
Proc. Fourth workshop on program comprehension, 2002.

[2] D. Garlan and M. Shaw, An introduction to software architecture,

CMU/SEI-94-TR-21, ESC-TR-94-21, 1994.

[3] H.K. Kim, “Modeling of distributes systems with SOA and MDA,”
IAENG, International Journal of Computer Science, ISSN 1819-656X,

Volumr: 35; Issue: 4; Start page: 509, 2008.

[4] O. Lero, P. Merson and L. Bass, “Quality attributes and service oriented
architectures” SDSOA 2007, 2007.

[5] P. Bianco, R. Kotermanski and O. Merson, “Evaluating a service
oriented architecture” CMU/SEI-2007-TR-015, Carnegie Mellon

University, Software Engineering Institute, 2007.

[6] P. Clements, R. Kazman and M. Klein, Evaluating Software
Architectures: Methods and case studied, published by Addison-Wesley

Professional, 2001.

[7] T. Demarco, Controlling software projects: management, measurement
and estimates, Prentice Hall, 296 pages, 1986.

[8] I. Crnkovic, M. Chaudron and S. Larsson, “Component-based

development process and component lifecycle” ICSEA’06, International
Conference on Software Engineering Advances, 2006.

[9] A. Hock-Koon, “Contribution à la compréhension et à la modélisation de

la composition et du couplage faible de services dans les architectures
orientées services” Thesis (PhD). University of Nantes, 2011.

[10] Y. Mortureux, Preliminary risk analysis. Techniques de l'ingénieur.

Sécurité et gestion des risques, SE2(SE4010):SE4010.1–SE4010.10,
2002.

[11] M.T. Ionita, D.K. Hammer and H. Obbink, “Scenario-based software
architecture evaluation methods: an overview”, ICSE 2002, 2002.

