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Only scarce field studies concern the consequences of natural soil organic matter (SOM) and metal

interactions on SOM dynamics in soils. We investigated the interactions of four metals (Pb, Zn, Cu and Cd)

with the SOM associated to five different size fractions (between 2000 µm and b2 µm) of a sandy top soil

contaminated by waste water. Metal, organic carbon and nitrogen concentrations were measured and

chemical extractions (with Na4P2O7 and EDTA) were also performed to assess the variations of SOM–metal

interactions irrespective of the size fraction. In addition, as in that selected contaminated site, maize (C4

plant), replaced C3 crops 15 years ago, natural isotopic 13C labelling gave new insights into SOM turnover.

First, the results suggest that metals influence the SOM dynamics in that sandy soil: a C3 “old carbon”

enrichment was observed in the small or clay size fractions, while the “new” C4 carbon associated with sandy

soil particles presents a rapid turnover. Metal accumulation in the clay fraction is attributed to particulate

organic matter (poorly associated) and SOM decay which overtime accumulated metals and eventually these

metal–SOM associations prevent the biological decomposition of such carbon pools. Moreover, the δ
13C

signals, C/N ratios and results from chemical extractions clearly showed differences in the origin, nature and

reactivity of the SOM as a function of the size fraction with consequences on the metal behaviour. Differences

were observed between metals studied: Zn seems to be mainly bound to SOM associated with clay particles,

while Pb seems to prefer to interact directly with the mineral surfaces versus the SOM.

1. Introduction

Due to various anthropogenic activities, potentially toxic metals

are accumulated in soils, with a risk of water and biota contamination

(Alloway, 1995). The design of pertinent soil criteria for environment

protection and remediation relies on an understanding of the

mechanisms controlling metal behaviour (Cecchi et al., 2008; Arshad

et al., 2008). Among the various reactive soil constituents, soil organic

matter (SOM) has a large sorption capacity towards metals (Yin et al.,

2002). The metal–SOM interaction has various and complex con-

sequences both on the solubility, mobility and bioavailability of metals

(Impellitteri et al., 2002) and on SOM turnover (Boucher et al., 2005).

Generally, solid phase SOM is associated with retention, decreased

mobility and reduced bioavailability of trace metals (Sauvé et al.,

2000). But cationic metals that would ordinarily precipitate at the pH

values of most soils are sometimes maintained in solution through

complexation with soluble organics (Ferrand et al., 2006). Further-

more, metals participate and/or affect biogeochemical cycles in soils

and influence the soil biota (Barajas-Aceves et al., 1999).

Reactive soil components are obviously in interaction (Dumat et

al., 1997) and SOM consists of various components with a wide range

of turn-over times, weight, reactivity and chemical nature: therefore

the way such interactions are studied is complex (Woomer et al.,

1994). The studies concerning one extracted soil component are open

to criticism, conversely, methods of soil particle-size fractionation can

be used to assess the distribution of metals in soils (Ducaroir and

Lamy, 1995) and provide information on the SOM behaviour.

The metal distribution among the different soil components can be

estimated using specific chemical reagents in order to discriminate

the total metal content over various operationally defined frac-

tions in the solid phase (Tessier et al., 1979; Dumat et al., 2001). For

instance, sodium pyrophosphate (Na4P2O7) is used to dissolve SOM:
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pyrophosphate complexes themetals which stabilize the SOM and the

hydrogen bonds between OM and minerals are broken (Dumat et al.,

1997). In contrast, EDTA is a powerful but unspecific complexing

agent: the metals adsorbed both by SOM and oxides are extracted

(Miller et al., 1986). The comparison of Na4P2O7 and EDTA metal

extractions should improve the estimation of metals specifically

linked to SOM.

In soils where the vegetation changes from C3 to C4 (or vice versa),

the variations in the natural abundance of 13C (13C/12C ratio) in SOM

over time can be used to identify organic carbon sources in the soil

(Schwartz et al., 1996) or to determine the SOM turnover rate

(Balesdent and Mariotti, 1996). Using that tool, Dumat et al. (2006)

highlighted the influence of metals on the SOM turnover on

pseudogley brown leached soils strongly contaminated by inorganic

atmospheric fallout from a smelter. However, only scarce field studies

concern the consequences of natural SOM–metal interactions on SOM

dynamics: supplementary studies in various pedologic and pollution

contexts are therefore needed.

In the present work a contaminated sandy top soil under maize

that had receivedwaste water applications was used to investigate the

interactions between four metals (Pb, Cd, Zn and Cu) and SOM. The

tested hypothesis throughout these experiments was a significant

influence of organic matter–metal interaction both on SOM dynamics

and metals fate.

2. Materials and methods

2.1. Soil sample preparation and soil properties

The studied sandy luvisols, in the north of the Paris basin, has been

precisely described by Lamy et al. (2006). Moreover the site manage-

ment history is widely exposed in several publications (Bourennane et

al., 2006; Lamy et al., 2006; Dère et al., 2006, 2007): wastewater

irrigation of garden markets occurred from 1899 to 2002 (average

40,000 m3 ha−1 year−1).

In comparison with experiments performed in controlled labora-

tory conditions, only few study dealing with organic matter–metals

interactions concern field experimentations based on concrete case.

Our study offers an original experimental design from this point of

view. The studied site has been considered only after metal

contamination has been noticed, which means: several years after

that the spreading has been forbidden, thus the waste water was not

available for analysis. However Dère et al. (2006, 2007) observed that

metals concentrations in the sandy topsoil have increased by tenfold

compared to the pedogeochemical background and concluded to a soil

metal pollution due to waste water spreading.

Field sampling was oriented to collect representative soil samples

weighing 40 kg in closed bags. After mixing, all the samples were air

dried and sieved to exclude particles larger than 2mm to give the bulk

soil. Thereafter trace metal, carbon and nitrogen concentrations were

measured. The cation exchange capacity (CEC), determined by the

ammonium acetate method at pH 7 (Metson's method, AFNOR NF X

31130) was 4.9 Cmol(+) kg−1 and the pHwater=7.1.

2.2. Physical fractionation of the various soil size fractions

Before particle size fractionation, an initial physical dispersion of

the soil samples was performed by end-to-end shaking overnight in

pure de-ionised water in order to minimise the potential variations of

metal speciation that could occur with chemical dispersion. The solid/

solution ratio was 1/5 (m/V) with the use of glass balls favouring the

soil dispersion. The suspensions were then sieved through a series of

grids (AFNOR French reference) with decreasing mesh size (2000, 200

and 50 µm). Then the fractions (20 µmbsizeb50 µm) and

(2 µmbsizeb20 µm) were obtained by sedimentation at normal

gravity (g), during times determined by Stokes' law. The b2 µm

fractions were finally obtained after concentration of the suspensions

by centrifuging at 39,200 g for 1 h at 15 °C on a Beckman Avanti J30I

apparatus. All the particles recoveredwere air dried at 60 °C, weighed,

ground (200 µm) and homogenised.

2.3. Measure of metal concentrations and chemical extractions

The total metal concentrations in the various soil size fractions

were analysed by inductively coupled plasma atomic emission

spectrometry (ICP-AES) on a Jobin Yvon JYESS 4.03 apparatus, after

triple acid digestion (HF, HCl and HNO3) of the solid samples. The

digestion protocol and measurement accuracy were checked by

reference to a known standard soil (GRX2). It indicated the efficiency

of the digestion protocol and of the ICP-AES assay (within ±1%). All the

results correspond to the mean of two replicates.

Two extractions were performed on separate sub-samples. The

Na4P2O7 extractions were performed with the procedure of Vieiriae

et al. (1993). The contact timewas 16 h, with 0.1 M Na4P2O7 at pH=10:

maximum efficiency is for pHN9 (Asher and Bar-Yosef, 1982). The

EDTA extraction conditions were chosen such that EDTAwas in excess

at equilibrium (Gesthem and Bermond, 1998). The contact time was

24 h, with 0.05 M EDTA at pH=6.5. The various solid phase

fractionations were performed at room temperature (20 °C), with a

solid/solution ratio of 1/10, with two replicates per sample. In order to

obtain a solution free of solid material before filtration, a strong

centrifugation (50,000 g) was performed on the Na4P2O7 extracts

(20,000 g for EDTA extracts). After each extraction, the soil was rinsed

with deionised water to limit precipitation of metals and to improve

the extraction efficiency. The extracts and rinses were analysed after

filtration (0.2 µm), for metals using ICP-AES. Analyses of soil

extractions were calibrated using standard solutions made with the

extracting agents.

2.4. Amounts of organic carbon and stable carbon isotopic signals (δ13C)

The ploughed contaminated topsoil (0–30 cm), which has been

under maize (C4metabolismwith δ
13C from −10 to−12‰) for 15 years,

was previously used for garden markets cultures, presenting a C3

metabolism (δ13C from −27.6 to −30.5‰). That C3–C4 sequence allows

natural labelling of organicmatter in relationwith the dynamics of the

carbon sources (Bender, 1971; O'Leary, 1981; Collister et al., 1994).

Organic carbon and nitrogen contents of the soil samples were

determined by dry combustion in a Carlo Erba NA 1500 CHN elemental

analyser. Stable carbon isotope ratios of SOM and plants were

measured on a Fisons SIRA 10 Isotope Ratio Mass Spectrometer. 13C

natural abundance was expressed in δ units, by reference to the

international standard PDB (marine carbonate: belemnite from the

PEE Dee formation) (Craig, 1957), according to the following equation:

δ
13Cx =

13C=12C
h i

sample
−

13C=12C
h i

PDB

13C=12C
h i

PDB

×1000:

All samples were sieved to 1 mm, ground to 100 µm and

homogenised. Organic carbon, nitrogen and δ
13C were measured in

duplicate, with previous elimination of carbonates by acidification.

According to Balesdent and Mariotti (1996) and Boutton (1996), mean

δ
13C (‰) reference values for carbon isotopic composition are around

−27 for C3plants (mainly trees, rice,wheat, certain grass species), −14 for

C4 plants (mainly maize, tropical grasses and certain other grasses) and

−8 for current atmospheric CO2.

2.5. Statistical data treatment

Data obtainedwere subjected to analysis of variance (ANOVA)with

one factor, using the software Statistica, Edition'98 (StatSoft Inc., Tulsa,



OK, USA). For each bioassay, mean values with different letters

represent a significant difference (pb0.05) as measured by the LSD

Fisher test. Letters are reported on the figures.

3. Results

3.1. Amounts of trace metals, carbon and nitrogen in the various size

fractions

For the bulk topsoil sample: (i) trace metal concentrations (mg kg−1)

were [Pb]=142, [Zn]=1233, [Cu]=68 and [Cd]=1.8; (ii) organic

carbon (%) and nitrogen (%) concentrations are respectively 1.75 and

0.15, with a C/N value of 11.7. These results are given as the means of

the two replicates and the relative standard deviation never

exceeded 7%. Compared with the natural pedogeochemical back-

ground values ([Pb]=5.9 mg kg−1, [Zn]=13.4 mg kg−1, [Cu]=3.9 mg

kg−1 and [Cd]=0.1 mg kg−1), our results indicate a significant

contamination of the top soil (Lamy et al., 2006).

Particle size fractionation of soil samples resulted in the

recovery of 98±0.5% of the initial sample mass. The size dis-

tribution observed was: 42.3% (2000 µmN fractionN200 µm),

40.4% (200 µmN fractionN50 µm), 5.4% (50 µmN fractionN20 µm),

4.5% (20 µmN fractionN2 µm) and 7.4% fractionb2 µm i.e. the sand

fractions (fine and coarse) accounted for 80% of the total weight.

The results of total metal and organic carbon concentrations in the

different soil particle size classes are given in Table 1. Whatever the

metal considered, the concentration strongly increased as the size

decreased according to Harter and Naidu (1995): 30–40 times for Zn,

Pb and Cu and 375 times for Cd. The clay fraction is also that with the

highest levels of organic carbon and nitrogen. The concentrations

measured increased from 1.3% C and 0.04% N in the 2000–200 µm

fraction to 7.2% C and 0.7% N in the clay fraction. The proportion of the

different soil particle size classes was multiplied by the concentration

of the metals in each class to give the actual quantity of each metal in

each size class (Fig. 1). The determination of these different metal

pools demonstrated the relevance of focussing both on the clay

fraction and on the sum of the different coarse fractions in order to

study the SOM–metal interaction.

3.2. Chemical extractions

The results of the chemical extractions performed on the sandy top

soil size fractions for Zn (A), Cu (B), Pb (C) and Cd (D) are reported both

in Fig. 2: quantities of metals extracted (mg of the metal per kg of soil

fraction) by EDTA or Na4P2O7 and in Fig. 3: ratios of the quantities of

metals extracted by EDTA or Na4P2O7 divided by the total metal

content of that size fraction. The data of Fig. 2 indicate that the

quantities extracted per unit weight of the fraction increased with

decreasing particle size. However, for the ratios (Fig. 3), the reverse

trend was generally observed, in particular with Na4P2O7 extraction: a

large proportion of metals extractable from the coarse fraction and in

the 20–2 µm fraction.

In the clay fraction, more Zn and Cu were extracted with Na4P2O7

than with EDTA (Fig. 2). Moreover, higher proportions of Zn and Cu

were extracted by Na4P2O7 than Cd and Pb (Fig. 3) suggesting two

different patterns depending on the metal.

3.3. Use of the δ13C signal to study the organic matter dynamics in relation

with metals

Fig. 4 gives: (a) δ13C and (b) C4/C: ratio between carbon of C4 origin

and total organic carbon for the different size fractions (Balesdent and

Mariotti, 1996; Dumat et al., 2006). The value of δ13C for the topsoil was

between −21.8‰ for the coarse fraction and −23.2‰ for thefine fraction.

No δ
13C values for organic matter from waste water are available from

the literature, however a δ
13C signature of −25.4‰ measured for

anaerobically digested sludge fromSouthWest France (Paratet al., 2007)

could give a general idea. In fact, the quantity of organic carbon inwaste

waters is generally very low compared to the carbon inputs from plants,

therefore the influence of the organic matter fromwaste waters on the

δ
13C signature of the SOM can be ignored considering the much greater

inputs of organic matter from C3 and C4 plants.

4. Discussion and conclusion

4.1. SOM and metal interaction

The comparison between EDTA (a powerful but unspecific metal

chelating agent) and Na4P2O7 (whichmobilises metals bound to SOM)

(Fig. 2) suggests that a significant part of all the metals is bound to the

SOM. That hypothesis is moreover supported by total concentrations

results: carbon from the clay fraction represented more than 25% of

the total soil carbon and the highest proportion of metals was also

Na4P2O7 extracted from this fraction. For lead and zinc, two metals

with high total concentrations in the sandy top soil, the following

empirical equations between metal concentrations (expressed in mg

kg−1) and organic carbon concentrations (expressed in percent) were

determined: [Pb]=228.59×[C]−294.93 with a correlation coefficient

(r) of 0.96 and [Zn]=1150.4×[C]−1412.6 with r=0.95.

Table 1

Metal concentrations (mg kg−1), organic C (%), N (%) and C/N of the various size fractions of the contaminated sandy top soil

Soil size

fraction

Concentration (mg kg−1) %

Pb Zn Cu Cd C N C/N

2000–200 µm 43.2±5 258±19 32±11 0.06±0.02 1.26±0.075 0.04±0.005 31.5

200–50 µm 94.2±7 429±16 93.6±15 0.46±0.05 1.24±0.05 0.07±0.005 17.71

50–20 µm 340±22 1893±98 296.7±21 4±0.2 3.4±0.1 0.21±0.015 16.33

20–2 µm 749±54 4112±165 429±33 13.15±0.3 5.5±0.3 0.42±0.03 13.12

b2 µm 1560±19 7688±73 1267±94 22.5±2 7.2±0.3 0.67±0.05 10.75

Fig. 1. Metal pools (Pb: , Zn: , Cu: □ and Cd: ■) in the different size fractions of the

topsoil.



However in relation to SOM influence, two different behaviours

were observed for the four studied metals. For Zn and Cd, the

quantities extracted by EDTA and Na4P2O7 were fairly similar (except

for Zn in the case of clay fraction: Na4P2O7NEDTA) suggesting that

these two metals were preferentially linked to the SOM (Fig. 2). In

contrast, for lead and cadmium, the quantities extracted by EDTAwere

significantly higher than the quantities extracted by Na4P2O7: other

soil components (like clay minerals or oxides) significantly interact

with these two metals (Dumat et al., 2001; Cecchi et al., 2008).

The general trend observed was that of a decrease of metal

proportions extracted by Na4P2O7 with the decrease of the soil particle

size: the metal extraction yield was greater in sand and in the 20–2 µm

fractions compared with the clay fraction (Fig. 3). The efficiency of

Na4P2O7 could be influenced by the nature of the SOM and by the

interactions between SOM and other soil components. Indeed, with

decreasing particle size, Table 1 shows a decrease in C/N ratio, in

agreement with a change in the chemical nature of the SOM (Dormaar,

1984; Besnard et al., 2001). Twodifferent pools ofmetalswith contrasting

behaviours (in relationwith the SOM characteristics) could be present in

the soil: metals in the coarse fractions and metals in the clay fraction.

The coarsest fraction was mainly composed of sand and poorly

degraded particulate organic matter (POM) (Cambaradella and Elliott,

1992). Minerals in the 2000–20 µm fraction were relatively inert, so

the interaction between these minerals and metals should mainly be

weak such as electrostatic bonding; POM (with high specific surface

area) may therefore play a significant role (Besnard et al., 2001).

Sequential extraction performed by Dère et al. (2007) on the bulk

fraction of the same sandy topsoil ranked lability (potential to be

remobilized from solid phase to soil solution) as: Zn ≫ CuNPbNCd.

Doelsch et al. (2006) also observed the high lability of Zn in sewage

sludge. In the coarse fractions of the soil, the metals associated with

POM will therefore mainly be under relatively labile forms.

During biodegradation, the level of SOM oxidation increases

(Baldock et al., 1997), leading to an increase of its reactivity towards

metals. Since the level of humification increases as particle size

decreases, SOM from thefine fraction constitutes a highly reactive pool

for binding metals. Moreover, the metals arrived in the sandy top soil

simultaneously with organic matter from the waste water, the metals

could therefore have already been associated with dissolved organic

matter (Vaca-Paulín et al., 2006; Doelsch et al., 2006). In addition,

Wong et al. (2007) concluded that dissolved organic matter interacts

with the clay minerals becoming less accessible to microorganisms.

Due to its higher stability againstmicroorganismdegradation, the SOM

of the clay fraction could have a stabilization effect on the metals and

reduce their bioavailability (Dabkowska-Naskret, 2003).

4.2. Use of the δ
13C signal to study organic matter dynamics in relation

with metals

Themeasurement for the topsoil (under maize for 15 years) of δ13C

(‰) between −21.8 (coarse fraction) and −23.2 (clay fraction),

whereas the value of −12.5‰ has been measured on a maize sample

Fig. 2. Chemical extractionsperformedonvarious size fractionsof the sandy topsoil. Quantities ofmetals extracted (mgof themetal perkgof soil fraction)byEDTAorNa4P2O7. A)Zn-EDTA:●

and Zn-Na4P2O7:○; B) Cu-EDTA: ♦ and Cu-Na4P2O7: ◊. C) Pb-EDTA:■ and Pb-Na4P2O7: □; D) Cd-EDTA: and Cd-Na4P2O7: ——.



composed of crushed leaves and stalks by Jolivet et al. (2003),

indicates that the SOM is relatively unaffected by the maize δ13C. From

the C4/C ratios calculated, the amount of SOM of C4 origin was seen to

be under 40% and decreased with the soil size fraction: 0.4 for the

2000–200 µm fraction and 0.3 for the clay fraction. Balesdent and

Mariotti (1996) or Balesdent et al. (1987) estimated the residence time

of carbon in size fractions of different uncontaminated soils under

maize for 13 years: the expected proportion of new C4 carbon from

maize in the coarse fraction (2000–200 µm) of these uncontaminated

soils was 80%. Balesdent and Mariotti (1996) concluded that turnover

times were 4±1.5 years for the 2000–200 µm fraction and 13±2 years

for the 200–50 µm fraction. In contrast all fractions finer than 10 µm

exhibited a slow turnover. Our results are therefore consistent with a

preferential accumulation of old C3 organic matter in the polluted soil,

particularly in the clay fraction. Even in heavily metal contaminated

soils, biological activity occurs (Valsecchi et al., 1995; Aoyama and

Nagumo, 1997), but alterations of organic matter decomposition are

reported (Berg et al., 1991; Cotrufo et al., 1995).

In comparison with more contaminated “old” C3 plant residues in

the clay fraction, the “new” C4 maize residues left in the soil (after the

harvest) were mineralised more quickly. The POM is poorly associated

with the soil mineral matrix and has a relatively rapid turnover in

comparison with the finest SOM in the clay fraction (Cambaradella

and Elliott, 1992; Balesdent, 1996). Parat et al. (2007) suggest an

accumulation of plant residues in the coarse fraction of a sludge-

contaminated soil by physical protection as the sludge could enhance

aggregate formation. However, the topsoil studied here had been

intensively used for crops for several decades and its sandy texture

limits the physical protection of SOM (Guggenberger et al., 1995).

Moreover, the soil we studied received mainly waste water amend-

ment, so the effect on aggregation was limited.

Somemetals are progressively released during the decay of C3 POM.

Then, part of the metals was adsorbed by the reactive colloidal organic

matter in the clay fraction (Besnard et al., 2001; Boucher et al., 2005).

According to Brookes (1995) orMhatre and Pankhurst (1997), decreased

organic matter decomposition in polluted soils could result from the

inhibition of microbial activity by bio-available toxic metals. However,

Hattori (1996) concluded that the recalcitrance of plant residues

towards microorganism degradation should also be considered. The

formation, in the clay fraction, of organo-metallic complexes relatively

resistant to biodegradation (Orlov et al., 1988) could therefore result.

This hypothesis is consistent with the lack of accumulation of highly

contaminated coarse plant residues in the top soil i.e. the microorgan-

isms degrade the fresh organic matter (relatively free of metals and not

protected by clay minerals), but tend to leave the old C3 organic matter

residues stabilized by chemical and physical phenomena.

Finally from the results obtained in the present study, it can be

concluded that the presence of metals carried by waste water

modified the turnover rate of the SOM in the contaminated sandy

top soil. A decrease of SOM turnover due to the influence ofmetals was

previously observed for pseudogley brown leached soils strongly

contaminated by inorganic atmospheric fallout from a smelter (Dumat

Fig. 3. Chemical extractions performed on various size fractions of the sandy topsoil. Ratios (%) of the quantities of metals extracted by EDTA (■) or Na4P2O7 (□) divided by the total

metal content of that size fraction. A) Zn, B) Cu, C) Pb and D) Cd.



et al., 2006), i.e. in a very different context. Decreased SOM turnover

could therefore be considered as a general phenomenon to take into

account when studying carbon sinks and organic matter turnover in

polluted soils.
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