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Abstract

The Bogoliubov-Dirac-Fock (BDF) model is a no-photon, mean-field approxi-
mation of quantum electrodynamics. It describes relativistic electrons in the Dirac
sea. In this model, a state is fully characterized by its one-body density matrix,
an infinite rank nonnegative operator. We prove the existence of the positronium,
the bound state of an electron and a positron, represented by a critical point of the
energy functional in the absence of external field. This state is interpreted as the
ortho-positronium, where the two particles have parallel spins.
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1 Introduction and main results

The Dirac operator

In relativistic quantum mechanics, the kinetic energy of an electron is described
by the so-called Dirac operator D0. Its expression is [Tha92]:

D0 := mec
2β − i~c

3∑

j=1

αj∂xj (1)

where me is the (bare) mass of the electron, c the speed of light and ~ the reduced
Planck constant, β and the αj ’s are 4× 4 matrices defined as follows:

β :=

(
IdC2 0

0 −IdC2

)
, αj

(
0 σj
σj 0

)
, j ∈ {1, 2, 3}

σ1 :=

(
0 1

1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3

(
1 0

−1 0

)
.

The Dirac operator acts on spinors i.e. square-integrable C
4-valued functions:

H := L2
(
R

3,C4
)
. (2)

It corresponds to the Hilbert space associated to one electron. The operator D0

is self-adjoint on H with domain H1(R3,C4), but contrary to −∆/2 in quantum
mechanics, it is unbounded from below.

Indeed its spectrum is σ(D0) = (−∞,mec
2]∪ [mec

2,+∞). Dirac postulated that
all the negative energy states are already occupied by "virtual electrons", with one
electron in each state, and that the uniform filling is unobservable to us. Then, by
Pauli’s principle real electrons can only have a positive energy.

It follows that the relativistic vacuum, composed by those negatively charged
virtual electrons, is a polarizable medium that reacts to the presence of an external
field. This phenomenon is called the vacuum polarization.

If one turns on an external field that gets strong enough, it leads to a transition
of an electron of the Dirac sea from a negative energy state to a positive one. The
resulting system – an electron with positive energy plus a hole in the Dirac sea –
is interpreted as an electron-positron pair. Indeed the absence of an electron in the
Dirac sea is equivalent to the addition of a particle with same mass and opposite
charge: the positron.

Its existence was predicted by Dirac in 1931. Although firstly observed in 1929
independently by Skobeltsyn and Chung-Yao Chao, it was recognized in an experi-
ment lead by Anderson in 1932.

Charge conjugation

Following Dirac’s ideas, the free vacuum is described by the negative part of the
spectrum σ(D0):

P 0
− = χ(−∞,0)(D0).

The correspondence between negative energy states and positron states is given by
the charge conjugation C [Tha92]. This is an antiunitary operator that maps RanP 0

−
onto Ran(1− P 0

−). In our convention [Tha92] it is defined by the formula:

∀ψ ∈ L2(R3), Cψ(x) = iβα2ψ(x), (3)

where ψ denotes the usual complex conjugation. More precisely:

C ·




ψ1

ψ2

ψ2

ψ4


 =




ψ4

−ψ3

−ψ2

ψ1


. (4)
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In our convention it is also an involution: C2 = id. An important property is the
following:

∀ψ ∈ L2,∀ x ∈ R
3, |Cψ(x)|2 = |ψ(x)|2. (5)

Positronium

The positronium is the bound state of an electron and a positron. This system
was independently predicted by Anderson and Mohorovičić in 1932 and 1934 and
was experimentally observed for the first time in 1951 by Martin Deutsch.

It is unstable: depending on the relative spin states of the positron and the
electron, its average lifetime in vacuum is 125 ps (para-positronium) or 142 ns (ortho-
positronium) (see [Kar04]).

In this paper, we are looking for a positronium state within the Bogoliubov-Dirac-
Fock (BDF) model: the state we found can be interpreted as the ortho-positronium
where the electron and positron have parallel spins. Our main results are Theorem
1 and 3. In our state, the wave function of the real electron and that of the virtual
electron defining the positronium are charge conjugate of each other.

BDF model

The BDF model is a no-photon approximation of quantum electrodynamics
(QED) which was introduced by Chaix and Iracane in 1989 [CI89], and studied
in many papers [BBHS98, HLS05a, HLS05b, HLS07, HLS09, GLS09, Sok12].

It allows to take into account real electrons together with the Dirac vacuum in
the presence of an external field.

This is a Hartree-Fock type approximation in which a state of the system "vac-
uum + real electrons" is given by an infinite Slater determinant ψ1 ∧ ψ2 ∧ · · · .
Equivalently, such a state is represented by the projector onto the space spanned by
the ψj ’s: its so-called one-body density matrix. For instance P 0

− represents the free
Dirac vacuum.

Here we just give main ideas of the derivation of the BDF model from QED, we
refer the reader to [CI89, HLS05a, HLS07] for full details.

Remark 1. To simplify the notations, we choose relativistic units in which, the mass
of the electron me, the speed of light c and ~ are set to 1.

Let us say that there is an external density ν, e.g. that of some nucleus and let
us write α > 0 the so-called fine structure constant (physically e2/(4πε0~c), where
e is the elementary charge and ε0 the permittivity of free space).

The starting point is the (complicated) Hamiltonian of QED HQED that acts on
the Fock space of the electron Felec [Tha92]. The (formal) difference between the
infinite energy of a Hartree-Fock state ΩP and that of ΩP0

−

, state of the free vacuum

taken as a reference state, gives a function of the reduced one-body density matrix
Q := P − P 0

−.
It can be shown that a projector P is the one-body density matrix of a Hartree-

Fock state in Felec iff P − P 0
− is Hilbert-Schmidt, that is compact such that its

singular values form a sequence in ℓ2.
To get a well-defined energy, one has to impose an ultraviolet cut-off Λ > 0: we

replace H by its subspace

HΛ :=
{
f ∈ H, supp f̂ ⊂ B(0,Λ)

}
.

This procedure gives the BDF energy introduced in [CI89] and studied for instance
in [HLS05a, HLS05b].

Notation 1. Our convention for the Fourier transform F is the following

∀ f ∈ L1(R3), f̂(p) :=
1

(2π)3/2

∫
f(x)e−ixpdx.
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Let us notice that HΛ is invariant under D0 and so under P 0
−.

For the sake of clarity, we will emphasize the ultraviolet cut-off and write ΠΛ for
the orthogonal projection onto HΛ: ΠΛ is the following Fourier multiplier

ΠΛ := F
−1χB(0,Λ)F . (6)

By means of a thermodynamical limit, Hainzl et al. showed in [HLS07] that the
formal minimizer and hence the reference state should not be given by ΠΛP

0
− but

by another projector P0
− in HΛ that satisfies the self-consistent equation in HΛ:





P0
− − 1

2
= −sign

(
D0

)
,

D0 = D0 −
α

2

(P0
− − 1

2
)(x− y)

|x− y|
(7)

We have P0
− = χ(−∞,0)(D0).

In H, the operator D0 coincides with a bounded, matrix-valued Fourier multiplier
whose kernel is H⊥

Λ ⊂ H.

The resulting BDF energy EνBDF is defined on Hartree-Fock states represented by
their one-body density matrix P :

N :=
{
P ∈ B(HΛ), P

∗ = P 2 = P, P − P0
− ∈ S2(HΛ)

}
.

This energy depends on three parameters: the fine structure constant α > 0,
the cut-off Λ > 0 and the external density ν. We assume that ν has finite Coulomb
energy, that is

D(ν, ν) := 4π

∫

R3

|ν̂(k)|2
|k|2 dk. (8)

Remark 2. The Coulomb energy coincides with
s

R3×R3

ν(x)∗ν(y)
|x−y| dxdy whenever this

integral is well-defined.

Remark 3. The operator D0 was previously introduced by Lieb et al. in [LS00] in
another context in the case α log(Λ) small.

Notation 2. We recall that B(HΛ) is the set of bounded operators and Sp(HΛ) the set
of compact operators whose singular values form a sequence in ℓp [RS75, Appendix
IX.4 Vol II], [Sim79] (p ≥ 1). In particular S∞(HΛ) is the set Comp(HΛ) of compact
operators.

Notation 3. Throughout this paper we write

m = inf σ
(
|D0|

)
≥ 1, (9)

and
P0

+ := ΠΛ − P0
− = χ(0,+∞)(D0). (10)

The same symmetry holds for P0
− and P0

+: the charge conjugation C maps RanP0
−

onto RanP0
+.

Minimizers and critical points

The charge of a state P ∈ N is given by the so-called P0
−-trace of P − P0

−

TrP0
−

(
P − P0

−
)
:= Tr

(
P0

−(P − P0
−)P0

− + P0
+(P − P0

−)P0
+

)
.

This trace is well defined as we can check from the formula [HLS05a]

(P − P0
−)

2 = P0
+(P − P0

−)P0
+ − P0

−(P − P0
−)P0

−. (11)

Minimizers of the BDF energy with charge constraint N ∈ N corresponds to ground
states of a system of N electrons in the presence of an external density ν.
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The problem of their existence was studied in several papers [HLS09, Sok12,
Sok13]. In [HLS09], Hainzl et al. proved that it was sufficient to check binding
inequalities and showed existence of ground states in the presence of an external
density ν, provided that N − 1 <

∫
ν, under technical assumptions on α,Λ.

In [Sok12], we proved that, due to the vacuum polarization, there exists a mini-
mizer for E0

BDF with charge constraint 1: in other words an electron can bind alone
in the vacuum without any external charge (still under technical assumptions on
α,Λ).

In [Sok13], the effect of charge screening is studied: due to vacuum polarization,
the observed charge of a minimizer P 6= P0

− is different from its real charge TrP0
−
(P−

P0
−).

Here we are looking for a positronium state, that is an electron and a positron
in the vacuum without any external density. So we have to study E0

BDF on

M :=
{
P ∈ N , TrP0

−

(
P − P0

−
)
= 0

}
. (12)

From a geometrical point of view M is a Hilbert manifold and E0
BDF is a differentiable

map on M (Propositions 1 and 2).
We thus seek a critical point on M , that is some P ∈ M , P 6= P0

− such that
∇E0

BDF(P ) = 0. We also must ensure that this is a positronium state. A good
candidate is a projector P that is obtained from P0

− by substracting a state ψ− ∈
RanP0

− and adding a state ψ+ ∈ RanP0
+, that is

P = P0
− + |ψ+〉〈ψ+| − |ψ−〉〈ψ−|. (13)

But there is no reason why such a projector would be a critical point. If it were that
would mean that there exists a positronium state in which, apart from the excitation
of the virtual electron giving the electron-positron pair, the vacuum is not polarized.

Keeping (13) in mind, we identify a subset MC ⊂ M , made of C-symmetric
states.

Definition 1. The set MC of C-symmetric states is defined as:

MC = {P ∈ M , −C(P − P0
−)C = P − P0

−}. (14)

Remark 4. Let P ∈ MC . As −C(P0
− − P0

+)C = P0
− −P0

+, writing

P − P0
− = 1

2

(
P − (ΠΛ − P )−P0

− + P0
+

)
,

there holds:
P ∈ MC ⇒ P + CPC = ΠΛ, (15)

that is
∀P ∈ MC , C : RanP → Ran(ΠΛ − P ) is an isometry.

The set MC has fine properties: this is a submanifold, invariant under the gra-
dient flow of E0

BDF (Proposition 3). Moreover it has two connected components E1

and E−1 (Proposition 4). In particular, any extremum of the BDF energy restricted
to MC is a critical point on M .

So we are lead to seek a minimizer over each of these connected components: the
first (E1) gives P0

−, which is the global minimizer over N , but the second gives a
non-trivial critical point. It corresponds to the positronium and is a perturbation of
a state which can be written as in (13).

Our main Theorems are the following:

Theorem 1. There exist α0,Λ0, L0 > 0 such that if α ≤ α0,Λ
−1 ≤ Λ−1

0 , and
α log(Λ) ≤ L0, then there exists a minimizer of E0

BDF over E−1. Moreover we have

E1,1 := inf{E0
BDF(P ), P ∈ E−1} ≤ 2m+

α2m

g′1(0)
2
ECP +O(α3),
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where ECP < 0 is the Choquard-Pekar energy defined as follows [Lie77]:

ECP = inf
{
‖∇φ‖2L2 −D

(
|φ|2, |φ|2

)
, φ ∈ L2(R3), ‖φ‖L2 = 1

}
. (16)

Theorem 2. Under the same assumptions as in Theorem 1, let P be a minimizer
for E1,1. Then there exists an anti-unitary map A ∈ A(HΛ), and P0

1,1 of form (13)
such that

P = eAP0
1,1e

A,

eAψε = ψε, ε ∈ {+,−} and ψ− = Cψ+,

A =
[[
A,P0

−
]
,P0

−
]
∈ S2(HΛ), ‖A‖S2

> α,

and CAC = A.

(17)

Moreover, the following holds:

E1,1 = 2m+
α2m

g′1(0)
2
ECP +O(α3). (18)

We emphasize that ψ+ does not represent the electron state.

Theorem 3. Under the same assumptions as in Theorem 1, let P be a minimizer
for E1,1 and Q0 = P − P0

−. Let π be

π := χ(−∞,0)

(
ΠΛDQ0ΠΛ

)
. (19)

Then there holds Ran (ΠΛ − π) ∩ RanP = Cψe. The unitary wave function ψe
satisfies the equation

DQ0ψe = µeψe, (20)

where µe is some constant

K0α
2 ≤ m− µe ≤ K1α

2, K0,K1 > 0.

By C-symmetry ψv := Cψe satisfies DQ0ψv = −µeψv, and we have

P = π + |ψe〉〈ψe| − |ψv〉〈ψv|. (21)

Moreover the following holds. We split ψe into upper spinor ϕe ∈ L2(R3,C2) and

lower spinor χe ∈ L2(R3,C2) and scale ϕe by λ :=
g′1(0)

2

αm
:

ϕ̃e(x) := λ3/2ϕe
(
λx

)
.

Then in the non-relativistic limit α→ 0 (with α log(Λ) kept small), the lower spinor
χe tends to 0 and, up to translation, ϕ̃e tends to a Pekar minimizer.

Remark 5. As ψe and ψv = Cψe have antiparallel spins, the state P represents one
electron in state ψe and the absence of one electron in state ψv in the Dirac sea,
that is an electron and a positron with parallel spins.

Remark 6. To prove that ϕ̃e tends to a Pekar minimizer up to translation, it suffices
to prove that its Pekar energy tends to ECP [Lie77].

Notation 4. Throughout this paper we write K to mean a constant independent of
α,Λ. Its value may differ from one line to the other. We also use the symbol >:
0 ≤ a > b means there exists K > 0 such that a ≤ Kb.

Remarks and notations about D0

D0 has the following form [HLS07]:

D0 = g0(−i∇)β − iα · ∇
|∇|g1(−i∇) (22)

where g0 and g1 are smooth radial functions on B(0,Λ) and α = (αj)
3
j=1. Moreover

we have:
∀ p ∈ B(0,Λ), 1 ≤ g0(p), and |p| ≤ g1(p) ≤ |p|g0(p). (23)
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Notation 5. For α log(Λ) sufficiently small, we have m = g0(0) [LL97, Sok12].

Remark 7. In general the smallness of α is needed to ensure technical estimates
hold. The smallness of α log(Λ) is needed to get estimates of D0: in this case D0 can
be obtained by a fixed point scheme [HLS07, LL97], and we have [Sok12, Appendix
A]:

g′0(0) = 0, and ‖g′0‖L∞ , ‖g′′0 ‖L∞ ≤ Kα

‖g′1 − 1‖L∞ ≤ Kα log(Λ) ≤ 1
2

and ‖g′′1 ‖L∞ > 1.
(24)

Acknowledgment The author wishes to thank Éric Séré for useful discussions and
helpful comments. This work was partially supported by the Grant ANR-10-BLAN
0101 of the French Ministry of Research.

2 Description of the model

2.1 The BDF energy

Definition 2. Let α > 0,Λ > 0 and ν ∈ S ′(R3) a generalized function with
D(ν, ν) < +∞. The BDF energy E0

BDF is defined on N as follows: for P ∈ N

we write Q := P − P0
− and





E0
BDF(Q) = TrP0

−

(
D0Q

)
− αD(ρQ, ν) +

α

2

(
D(ρQ, ρQ)− ‖Q‖2Ex

)
,

∀x, y ∈ R
3, ρQ(x) := TrC4

(
Q(x, x)

)
, ‖Q‖2Ex :=

x |Q(x, y)|2
|x− y| dxdy,

(25)

where Q(x, y) is the integral kernel of Q.

Remark 8. The term TrP0
−

(
D0Q

)
is the kinetic energy, −αD(ρQ, ν) is the interaction

energy with ν. The term
α

2
D(ρQ, ρQ) is the so-called diract term and −α

2
‖Q‖2Ex is

the exchange term.

1. Let us see that this function is well-defined and more generally that formula (25)
is well-defined whenever Q is P0

−-trace-class [HLS05a, HLS09].

– We start by defining this notion. For any ε, ε′ ∈ {+,−} and A ∈ B(HΛ), we write

Aε,ε
′

:= P0
εAP0

ε′ .

The set S
P0

−

1 of P0
−-trace class operator is the following Banach space:

S
P0

−

1 =
{
Q ∈ S2(HΛ), Q

++, Q−− ∈ S1(HΛ)
}
, (26)

with the norm

‖Q‖
S

P0
−

1

:= ‖Q+−‖S2
+ ‖Q−+‖S2

+ ‖Q++‖S1
+ ‖Q−−‖S1

. (27)

We have N ⊂ P0
−+S

P0
−

1 thanks to Eq. (11). The closed convex hull of N −P0
−

in the S
P0

−

1 -topology gives

K :=
{
Q ∈ S

P0
−

1 (HΛ), Q
∗ = Q, −P0

− ≤ Q ≤ P0
+

}

and we have [HLS05a, HLS05b]: ∀Q ∈ K, Q2 ≤ Q++ −Q−−.

– For Q in S
P0

−

1 , we show EνBDF(Q) is well defined. We have

P0
−(D0Q)P0

− = −|D0|Q−− ∈ S1(HΛ), because |D0| ∈ B(HΛ),

this proves that the kinetic energy is defined.
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– Thanks to the Kato-Seiler-Simon inequality [Sim79, Chapter 4], the operator Q is
locally trace-class:

∀φ ∈ C
∞
0 (R3), φΠΛ ∈ S2 so φQφ = φΠΛQφ ∈ S1(L

2(R3)).

We recall this inequality states that for all 2 ≤ p ≤ ∞ and d ∈ N, we have

∀ f, g ∈ Lp(Rd), f(x)g(−i∇) ∈ Sp(HΛ) and ‖f(x)g(−i∇)‖Sp ≤ (2π)−d/p‖f‖Lp‖g‖Lp .
(28)

In particular the density ρQ of Q, given by the formula

∀ x ∈ R
3, ρQ(x) := TrC4

(
Q(x, x)

)

is well defined. In [HLS05a] Hainzl et al. prove that its Coulomb energy is finite
D(ρQ, ρQ) < +∞. By Cauchy-Schwartz inequality, D(ν, ρQ) is defined.
– By Kato’s inequality

1

| · | ≤
π

2
|∇|, (29)

the exchange term is well-defined: this implies that ‖Q‖2Ex ≤ π
2
Tr

(
|∇|Q∗Q

)
.

– Furthermore the following holds: if α < 4
π
, then the BDF energy is bounded from

below on K [BBHS98, HLS05b, HLS09]. Here we assume it is the case.

2. For Q ∈ K, its charge is its P0
−-trace: q = TrP0

−
(Q). So we define charge sectors

sets:
∀ q ∈ R

3, Kq :=
{
Q ∈ K, Tr(Q) = q

}
.

A minimizer of EνBDF over K is interpreted as the polarized vacuum in the presence
of ν while minimizer over charge sector N ∈ N is interpretreted as the ground state
of N electrons in the presence of ν. We define the energy functional EνBDF:

∀ q ∈ R
3, EνBDF(q) := inf

{
EνBDF(Q), Q ∈ Kq

}
. (30)

We also write:

K0
C := {Q ∈ K, TrP0

−
(Q) = 0, −CQC = Q}. (31)

Lemma 1 states that this set is sequentially weakly-∗ closed in S
P0

−

1 (HΛ).

Notation 6. For an operator Q ∈ S2(HΛ), we write RQ the operator given by the
integral kernel:

RQ(x, y) :=
Q(x, y)

|x− y| .

2.2 Structure of manifold

We define

V =
{
P − P0

−, P
∗ = P 2 = P ∈ B(HΛ), TrP0

−

(
P − P0

−
)
= 0

}
⊂ S2(HΛ).

Up to adding P0
−, we deal with

M := P0
− + V =

{
P, P ∗ = P 2 = P, TrP0

−

(
P − P0

−
)
= 0

}
.

From a geometrical point of view, we recall that these sets are Hilbert manifolds: V

lives in the Hilbert space S2(HΛ) and M lives in the affine space P0
− +S2(HΛ).

Proposition 1. The set M is a Hilbert manifold and for all P ∈ M ,

TPM = {[A,P ], A ∈ B(HΛ), A
∗ = −A and PA(1− P ) ∈ S2(HΛ)}. (32)

Writing

mP := {A ∈ B(HΛ), A
∗ = −A, PAP = (1−P )A(1−P ) = 0 and PA(1−P ) ∈ S2(HΛ)},

(33)
any P1 ∈ M can be written as P1 = eAPe−A where A ∈ mP .
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The BDF energy EνBDF is a differentiable function in S
P0

−

1 (HΛ) with:




∀Q, δQ ∈ S
P0

−

1 (HΛ), dEνBDF(Q) · δQ = TrP0
−

(
DQ,νδQ

)
.

DQ,ν := D0 + α
(
(ρQ − ν) ∗ 1

|·| −RQ
)
.

(34)

We may rewrite (34) as follows:

∀Q, δQ ∈ S
P0

−

1 (HΛ), dEνBDF(Q) · δQ = TrP0
−

(
ΠΛDQ,νΠΛδQ

)
(35)

Notation 7. In the case ν = 0 we write DQ := DQ,0.

Proposition 2. Let (P, v) be in the tangent bundle TM and Q = P − P0
−. Then

[[ΠΛDQΠΛ, P ], P ] is a Hilbert-Schmidt operator in TPM and:

dE0
BDF(P ) · v = Tr

([[
ΠΛDQΠΛ, P

]
, P

]
v
)
. (36)

Remark 9. The operator [[ΠΛDQΠΛ, P ], P ] is the "projection" of ΠΛDQΠΛ onto
TPM . It properly defines a vector in the tangent plane which is exactly the gradient
of E0

BDF at the point P .

∀P ∈ M , ∇E0
BDF(P ) =

[[
ΠΛDQΠΛ, P

]
, P

]
. (37)

We recall MC is the set of C-symmetric states (14).

Proposition 3. The set MC is a submanifold of M , which is invariant under the
flow of E0

BDF. For any P ∈ MC , writing

m
C

P = {a ∈ mP , CaC = a}, (38)

we have
TPMC = {[a, P ], a ∈ m

C

P } = {v ∈ TPM , −CvC = v}. (39)

Furthermore, for any P ∈ MC we have

ρP−P0
−
= 0. (40)

Proposition 4. The set MC has two connected components E1 and E−1:

∀P ∈ MC , P ∈ E1 ⇐⇒ DimRanP ∩RanP0
+ ≡ 0[2]. (41)

In particular, E1 contains P0
− and E−1 contains any P0

− + |ψ〉〈ψ| − |Cψ〉〈Cψ| where
ψ ∈ RanP0

+.

We end this section by stating technical results needed to prove Propositions 1,3
and 4.

2.3 Form of trial states

Theorem 4 (Form of trial states). Let P1, P0 be in N and Q = P1 − P0. Then
there exist M+,M− ∈ Z+ such that there exist two orthonormal families

(a1, . . . , aM+
) ∪ (ei)i∈N in RanP0

+,

(a−1, . . . , a−M+
) ∪ (e−i)i∈N in RanP0

−,

and a nonincreasing sequence (λi)i∈N ∈ ℓ2 satisfying the following properties.

1. The ai’s are eigenvectors for Q with eigenvalue 1 (resp. −1) if i > 0 (resp.
i < 0).

2. For each i ∈ N the plane Πi := Span(ei, e−i) is spanned by two eigenvectors fi
and f−i for Q with eigenvalues λi and −λi.
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3. The plane Πi is also spanned by two orthogonal vectors vi in Ran(1− P ) and
v−i in Ran(P ). Moreover λi = sin(θi) where θi ∈ (0, π

2
) is the angle between

the two lines Cvi and Cei.

4. There holds:

Q =

M+∑

i=1

|ai〉〈ai| −
M−∑

i=1

|a−i〉〈a−i|+
∑

j∈N

λj(|fj〉〈fj | − |f−j〉〈f−j |).

Remark 10. We have

Q++ =

M+∑

i=1

|ai〉〈ai|+
∑

j∈N

sin(θj)
2|ej〉〈ej |,

Q−− = −
M−∑

i=1

|a−i〉〈a−i| −
∑

j∈N

sin(θj)
2|e−j〉〈e−j |.

(42)

Thanks to Theorem 4, it is possible to characterize C-symmetric states.

Proposition 5. Let γ = P − P0
− be in MC . For −1 ≤ µ ≤ 1 and A =∈ {γ, γ2},

we write
EAµ = Ker(A− µ).

Then for any µ ∈ σ(γ), we have CEγµ = Eγ−µ. Moreover for |µ| < 1: if we decompose
Eγµ ⊕Eγ−µ into a sum of planes Π as in Theorem 4, then each Π is not C-invariant

and dimEγµ is even. Equivalently dimEγ
2

µ2 is divisible by 4.
Moreover there exists a decomposition

Eγ
2

µ2 =
⊥
⊕

1≤j≤N
2

Vµ,j and Vµ,j = Πaµ,j
⊥
⊕ CΠaµ,j

where the Πaµ,j ’s and CΠaµ,j ’s are spectral planes described in Theorem 4.

3 Proof of Theorem 1

3.1 Strategy and tools of the proof

Topologies

The upper bound in (18) comes from minimization over C-symmetric state of
form (13).

We prove the existence of the minimizer over E−1 by using a lemma of Borwein
and Preiss [BP87, HLS09], a smooth generalization of Ekeland’s Lemma [Eke74]:
we study the behaviour of a specific minimizing sequence (Pn)n or equivalently
(Pn − P0

− =: Qn)n.
Each element of the sequence satisfies an equation close to the one satisfied by a

real minimizer and we show this equation remains in some weak limit.

Remark 11. We recall different topologies over bounded operators, besides the norm
topology ‖·‖B [RS75].

1. The so-called strong topology, the weakest topology Ts such that for any f ∈ HΛ,
the map

B(HΛ) −→ HΛ

A 7→ Af

is continuous.
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2. The so-called weak operator topology, the weakest topology Tw.o. such that for
any f, g ∈ HΛ, the map

B(HΛ) −→ C

A 7→ 〈Af , g〉

is continuous.

We can also endow S
P0

−

1 with its weak-∗ topology, the weakest topology such that
the following maps are continuous:

S
P0

−

1 −→ C

Q 7→ Tr
(
A0(Q

++ +Q−−) +A2(Q
+− +Q−+)

)

∀ (A0, A2) ∈ Comp(HΛ)×S2(HΛ).

We emphasize that the weak-∗ topology is different from the weak topology (where
Comp(HΛ) must be replaced by B(HΛ)).

The following Lemma is important in our proof.

Lemma 1. The set K0
C (defined in (31)) is weakly-∗ sequentially closed in S

P0
−

1 (HΛ).

We prove this Lemma at the end of this Subsection.

Borwein and Preiss Lemma

We recall this Theorem as stated in [HLS09]:

Theorem 5. Let M be a closed subset of a Hilbert space H, and F : M →
(−∞,+∞] be a lower semi-continuous function that is bounded from below and not
identical to +∞. For all ε > 0 and all u ∈ M such that F (u) < infM +ε2, there
exist v ∈ M and w ∈ Conv(M) such that

1. F (v) < infM +ε2,

2. ||u− v||H <
√
ε and ||v − w||H <

√
ε,

3. F (v) + ε||v − w||2H = min
{
F (z) + ε||z −w||2H, z ∈ M

}
.

Here we apply this Theorem with H = S2(HΛ), M = E−1 −P0
− and F = E0

BDF.

The BDF energy is continuous in the S
P0

−

1 -norm topology, thus its restriction
over V is continuous in the S2(HΛ)-norm topology.

This subspace H is closed in the Hilbert-Schmidt norm topology because V =
MC is closed in S2(HΛ) and E−1 −P0

− is closed in V .
Moreover, we have

Conv(E−1 −P0
−)

S2 ⊂ K0
C .

For every η > 0, we get a projector Pη ∈ E−1 and Aη ∈ K0
C such that Pη that

minimizes the functional

Fη : P ∈ E−1 7→ E0
BDF(P − P0

−) + ε‖P − P0
− −Aη‖2S2

.

We write

Qη := Pη − P0
−, Γη := Qη − Aη, D̃Qη := ΠΛ

(
D0 − αRQη + 2ηΓη

)
ΠΛ. (43)

Studying its differential on TPηMC , we get that

[
D̃Qη , Pη

]
= 0. (44)

In particular, by functional calculus, we get that
[
π
η
−, Pη

]
= 0, π

−
η := χ(−∞,0)(D̃Qη ). (45)
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We also write
π

+
η := χ(0,+∞)(D̃Qη ) = ΠΛ − π

−
η . (46)

We can decompose HΛ as follows (here R means Ran):

HΛ = R(Pη)∩R(π−
η )

⊥
⊕R(Pη)∩R(π+

η )
⊥
⊕R(ΠΛ−Pη)∩R(π−

η )
⊥
⊕R(ΠΛ−Pη)∩R(π+

η ).
(47)

We will prove

1. RanP ∩ Ranπ
+
η has dimension 1, spanned by a unitary ψη ∈ HΛ.

2. As η tends to 0, up to translation and a subsequence, ψη ⇀ ψe 6= 0, Qη ⇀ Q.
There holds Q+ P0

− ∈ E−1, ψe is a unitary eigenvector of ΠΛDQΠΛ and

Q+ P0
− = χ(−∞,0)

(
ΠΛDQΠΛ

)
+ |ψe〉〈ψe| − |Cψe〉〈Cψe|.

In the following part we write the spectral decomposition of trial states and prove
Lemma 1.

Spectral decomposition

Let (Qn)n be any minimizing sequence for E1,1. We consider the spectral decom-
position of the trial states Qn: thanks to the upper bound, DimKer(Qn − 1) = 1,
as shown in Subsection 3.2.

There exist a non-increasing sequence (λj;n)j∈N ∈ ℓ2 of eigenvalues and an or-
thonormal basis Bn of RanQn:

Bn := (ψn,Cψn) ∪ (eaj;n, e
b
j;n,Ce

a
j;n,Ce

b
j;n), P0

−ψn = P0
−e

⋆
j;n = 0, ⋆ ∈ {a, b}, (48)

such that the following holds. We omit the index n:

∀ j ∈ N, ea−j := −Cebj , e
b
−j := Ceaj , (49a)

f⋆j :=
√

1−λj

2
e⋆−j +

√
1+λj

2
e⋆j ,

f⋆−j := −
√

1+λj

2
e⋆−j +

√
1+λj

2
e⋆j .

(49b)





Qn = |ψn〉〈ψn| − |Cψn〉〈Cψn|+
∑

j≥1

λjqj;n

qj;n = |faj 〉〈faj | − |fa−j〉〈fa−j |+ |fbj 〉〈fbj | − |fb−j〉〈fb−j |.
(49c)

Remark 12. Thanks to the cut-off, the sequences (ψn)n and (ej;n)n are H1-bounded.
Up to translation and extraction ((nk)k ∈ N

N and (xnk)k ∈ (R3)N), we assume
that the weak limit of (ψn)n is non-zero (if it were then there would hold E1,1 = 2m).

We consider the weak limit of each (en): by means of a diagonal extraction, we
assume that all the (ej,nk(· − xnk))k and (ψj,nk (· − xnk))k, converge along the same
subsequence (nk)k. We also assume that

∀ j ∈ N, λj,nk → µj , (µj)j ∈ ℓ2, (µj)j non-increasing, (50)

and that the above convergences also hold in L2
loc and almost everywhere.

Proof of Lemma 1

Let (Qn)n be a sequence in K0
C that converges to Q ∈ K in the weak-∗ topology

of S1
P0

− , that is:
∀(G0, G2) ∈ Comp(HΛ)×S2(HΛ) :

{
Tr(Q+−

n G2) →
n→+∞

Tr(Q+−G2) and Tr(Q−+
n G2) →

n→+∞
Tr(Q−+G2),

Tr(Q++
n G0) →

n→+∞
Tr(Q++G0) and Tr(Q−−

n G0) →
n→+∞

Tr(Q−−G0).
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In particular we have S := supn‖Qn‖S2
< +∞ by the uniform boundedness princi-

ple. The C-symmetry is a weak-∗ condition: for all φ1, φ2 ∈ HΛ:

Tr
(
− CQnC|φ1〉〈φ2|

)
= −〈QnCφ1 , Cφ2〉

thus −CQC = Q. There remains to prove that TrP0
−

(Q) = 0.

We consider the spectral decomposition of Pn := P0
− + Qn. We know that this

is compact perturbation of P0
−, thus its essential spectrum is {0, 1} and there exist

an ONB of HΛ:
(ek;n)

K1

k=1 ∪ (fj;n)j∈N ∪ (gj;n)j∈N, K1 ∈ Z+

and two sequences (rj;n)j , (sj;n)j in [0, 1
2
) that tend to 0, such that

Pn =
1

2

K1∑

k=1

|ek;n〉〈ek;n|+
∑

j∈N

{
rj;n|fj;n〉〈fj;n|+ (1− sj;n)|gj;n〉〈gj;n|

}
.

Our aim is to prove we can rewrite Pn as follows:

Pn = Pn + γn,

γn =
∑

j

tj;n
(
|φj;n〉〈φj;n| − |Cφj;n〉〈Cφj;n|

)
,

Pn ∈ MC , 2
∑
j tj;n ≤ Tr

(
Q++
n −Q−−

n

)
,

(φj;n)j ∪ (Cφj;n)j orthonormal family.

(52)

Let us assume this point for the moment. Up to extraction, it is clear that the
weak limit γ∞ of (γn) has trace 0: the eventual loss of mass of (φj;n)n is compensated
by that of (Cφj;n)n: |φj;n(x)|2 = |Cφj;n(x)|2 for all x ∈ R

3. So the weak limit of

tj;n
(
|φj;n〉〈φj;n| − |Cφj;n〉〈Cφj;n|

)

has trace 0.
The same goes for Qn := Pn − P0

−. We write S := lim supn TrP0
−

(Qn) < +∞.

We decompose each Qn as in (49) and take the same notations. We may have

Dn := Dim(Q
2

n − 1) > 2 but the sequence (Dn)n is bounded by S. There is at most
S
2

different ψj;n in the spectral decomposition of Qn (j = 1, . . . , ⌊S
2
⌋).

We study the weak-limit of the ψj;n’s and the e⋆j;n’s: there may be a loss of mass.
However from (42), we see that the loss of mass in ψj;n is compensated by that of
Cψj;n, and that of e⋆j;n is compensated by that of Ce⋆j;n.

The subscript ∞ means we take the weak limit. If the sequences of eigenvalues
(λj)j ∈ ℓ2 weakly converges to (µj)j ∈ ℓ2, then we get that




Q++ =
∑

1≤j≤⌊S/2⌋
|ψj;∞〉〈ψj;∞|+

∑

j∈N

µ2
j

{
|eaj,∞〉〈eaj,∞|+ |ebj,∞〉〈ebj,∞|

}

Q−− = −
∑

1≤j≤⌊S/2⌋
|ψ−j;∞〉〈ψ−j;∞| −

∑

j∈N

µ2
j

{
|ea−j,∞〉〈ea−j,∞|+ |eb−j,∞〉〈eb−j,∞|

}

where |ψj,∞|2 = |ψ−j,∞|2 resp. |e⋆j,∞|2 = |e⋆−j,∞|2. Thus

Tr
(
Q++ +Q−−) = 0.

Proof of (52) The condition −CQnC = Qn is equivalent to CPnC = ΠΛ − Pn,
so for any µ ∈ R we have

CKer
(
Pn − µ

)
= Ker

(
Pn − (1− µ)

)
.

Up to reindexing the sequences, we can assume that rj;n = sj;n and up to changing
the ONB, we can assume that gj;n = Cfj;n. Let us remark that

CBnC = Bn where Bn :=
1

2

K0∑

k=1

|ek;n〉〈ek;n|.
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As shown in [HLS09, Lemma 15, Appendix B], the condition Qn ∈ S
P0

−

1 gives

Tr
(
Q++
n −Q−−

n

)
=

K1

2
+

∑

j≥1

{
rj;n‖P0

+fj;n‖2L2 + (1− rj;n)‖P0
−fj;n‖2L2

}

+
∑

j≥1

{
(1− sj;n)‖P0

+gj;n‖2L2 + sj;n‖P0
−gj;n‖2L2

}
,

which implies
K1

2
+

∑

j≥1

(rj;n + sj;n) ≤ TrP0
−
(Qn).

In particular we can write

Pn = Pn + γn +Bn,

γn =
∑

j≥1

rj:n
(
|fj;n〉〈fj;n| − |Cfj;n〉〈Cfj;n|

)
,

P ′
n =

∑

j≥1

|Cfj;n〉〈Cfj;n|.

Both γn and Bn are trace-class, thus P ′
n−P0

− ∈ S
P0

−

1 . We know that TrP0
−
(P ′
n−P0

−)

is an integer [HLS05a], this gives

K1

2
= K0 ∈ N.

Let us prove that we can decompose RanBn as follows:

RanBn = Fn
⊥
⊕ CFn, DimFn = K0. (53)

This ends the proof: we have

Bn = Proj(CFn) +
1

2

(
Proj(Fn)− Proj(CFn)

)

where Proj(E) is the orthogonal projection onto E. We choose then

Pn := P ′
n + Proj(CFn),

γn := γn + 1
2

(
Proj(Fn)− Proj(CFn)

)
.

Let φ ∈ RanBn with Cφ /∈ Cφ. Else, we take φ ⊥ φ′ with

Cφ = eiθφ, Cφ′ = eiθ
′

φ′, θ, θ′ ∈ R.

Up to considering eiθ/2φ and eiθ
′/2φ′ we may assume that Cφ = φ, Cφ′ = φ′. Then

writing

φ± :=
1√
2

(
φ± iφ′)

we have 〈Cφ+ , φ+〉 = 0, which is absurd.
Let us consider Span(φ,Cφ) and assume ‖φ‖L2 = 1. Thus z = 〈Cφ , φ〉 = −reiθ

with 0 ≤ r ≤ 1. There exist a, b ∈ C such that

〈C(aφ+ bCφ) , aφ+ bCφ〉 = 0.

If r = 0 we take a = 1 and b = 0, else it suffices to take a = r0e
−iθ/2 and b = r1e

iθ/2

where r0, r1 > 0 are any number that satisfies

r0
r1

+
r1
r0

=
2

r
.

This is possible because as 0 < r ≤ 1 we have 2
r
≥ 2. By an easy induction, we can

write RanBn as in (53).
2
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3.2 Upper and lower bounds of E1,1

Upper bound

We consider trial states of the following form:

Q = |ψ〉〈ψ| − |Cψ〉〈Cψ|, ‖ψ‖L2 = 1 and P0
−ψ = 0.

The set of these states is written E
0
−1. We will prove that the energy of a particular

Q gives the upper bound. For such a Q, the BDF energy is simply:

2〈|D0|ψ , ψ〉 − α

2

x |ψ ∧ Cψ(x, y)|2
|x− y| dxdy. (54)

Following [Sok12], we take φCP ∈ L2(R3,C) the unique positive radial minimizer
of the Choquard-Pekar energy. We know that this minimizer is in the Schwartz class
(here we just need it to be in H2). We form the spinor:

φ := (φCP 0 0 0 )T,

and scale φ by a constant λ−1 ∼ α to be chosen later:

φλ(x) := λ−3/2φ(x/λ).

We define ψλ := ΠΛφλ and write:

ψ+ :=
P0

+ψλ
‖P0

+ψλ‖L2

and ψ− :=
P0

−Cψλ
‖P0

−Cψλ‖L2

= Cψ+. (55)

Let us compute the energy of

Q0 := |ψ+〉〈ψ+| − |ψ−〉〈ψ−|. (56)

We have:

‖P0
+ψλ‖2L2 =

∫

B(0,Λ)

|ψ̂λ(p)|2
g0(p)

2

(
1 + 1

Ẽ(p)

)
dp,

=

∫

B(0,Λ)

|ψ̂λ(p)|2g0(p)
(
1− g1(p)

2

4g0(p)2

)
dp+O(λ−4),

=

∫

B(0,Λ)

|ψ̂λ(p)|2
(
m− g′1(0)

2

4m

)
dp+O((α+ λ−2)λ−2),

= 1− g′1(0)
2

4λ2m
‖φCP‖2L2 +O((α+ λ−2)λ−2).

Similarly the following holds:

〈|D0|P0
+ψλ , ψλ〉 =

∫

B(0,Λ)

Ẽ (p) 〈P̂0
+(p)ψ̂λ(p) , ψ̂λ(p)〉R3dp

=

∫

B(0,Λ)

|ψ̂λ(p)|2
1

2

(
g0(p) + Ẽ (p)

)
dp

= m+
g′1(0)

2

4λ2m
‖φCP‖2L2 +O((α+ λ−2)λ−2).

Then we estimate:
x |ψ+ ∧ ψ−(x, y)|2

|x− y| dxdy = 2
{
D
(
|ψ+|2, |ψ−|2

)
−D

(
ψ∗

+ψ−, ψ
∗
+ψ−

)}

= 2
{

1
λ
D
(
|φCP|2, |φCP|2

)
+O(λ−2)−D

(
ψ∗

+ψ−, ψ
∗
+ψ−

)}

= 2
{

1
λ
D
(
|φCP|2, |φCP|2

)
+O(λ−2)

}
.
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Indeed we have:

‖ψ∗
+ψ−‖L1 > ‖∇ψλ‖L2‖ψλ‖L2 = O(λ−1).

|ψ∗
+ψ−| ∗ 1

|·| ≤ |ψ+|2 ∗ 1
|·| ≤ π

2
〈|∇|ψ+ , ψ+〉

= O(λ−1).

Thus we get that:

E0
BDF(Q0) = 2m+

g′1(0)
2

λ2m
‖∇φCP‖2L2 − α

λ
D
(
|φCP|2, |φCP|2

)
+O((α+λ−2)λ−2). (57)

If we choose
1

λ
:=

αm

g′1(0)
2

(58)

we get the following upper bound:

E1,1 ≤ E0
BDF(Q0) = 2m+ α2 m

g′1(0)
2
ECP +O(α3). (59)

A priori lower bound

Let Q ∈ M − P0
− be an approximate minimizer such that

E0
BDF(Q) < E1,1 + α2 m

2g′1(0)
2
|ECP| < 2m.

Our aim is to prove the following
{

E1,1 − 2m ≥ −Kα2,

Tr
(
|∇|Q2

)
≤ Kα.

(60)

We have
(
1− α

π

4

)
Tr(|D0|Q2) ≤ E0

BDF < 2m so ‖Q‖2S2
<

2m

1− απ
4

< 3.

However ‖Q‖2S2
≥ DimKer(Q2−1) = 2Dim Ker(Q−1), thus Q has the form written

in (49); in particular we have:

Q = |ψ〉〈ψ| − |Cψ〉〈Cψ|+ γ, ψ ∈ Ran(P0
+), ψ+ := ψ,ψ− := Cψ ∈ Ker γ.

Let us remark that γ + P0
− ∈ M . The energy of Q is:

E0
BDF(Q) = E0

BDF(γ)+2〈|D0|ψ , ψ〉−α
2

x |ψ ∧ Cψ(x, y)|2
|x− y| dxdy−α

∑

ε∈{+,−}

(
〈ψεRγ , ψε〉

)
.

(61)
We substract 2m: as g′0(0) = 0 and ‖g′′0 ‖L∞ ≤ Kα [Sok12, Appendix A], we have

|g0(p)−m| ≤ p2
∫ 1

0

|g′′0 (tp)|(1− t)dt ≤ Kαp2,

thus:

Ẽ (p)−m =
g1(p)

2 + (g0(p)−m)(g0(p) +m)

Ẽ (p) +m

≤ g1(p)
2(1−Kα)

2Ẽ (p)
.

Going back to the energy, we have by Cauchy-Schwartz inequality:

|〈ψε , Rγψε〉| ≤ ‖N [ψε]‖Ex‖γ‖Ex, N [ψε] := |ψε〉〈ψε|.
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The quantity ‖N [ψε]‖2Ex is simply D
(
|ψε|2, |ψε|2

)
and we get:

(1−Kα)〈 g
2
1(−i∇)

|D0| ψ , ψ〉+ Tr(|D0|γ2) ≤ K1α
2 + 2αD

(
|ψ|2, |ψ|2

)
+ 3α

2
‖γ‖2Ex,

(1−Kα)〈 g
2
1(−i∇)

|D0| ψ , ψ〉+
(
1− 3απ

4

)
Tr(|D0|γ2) ≤ K1α

2 + απ〈 |∇|ψ , ψ〉.

Now we have:

(1−Kα)
p2

Ẽ (p)
≥ 2α|p| ⇐⇒ p2 ≥ 4α2(1−Kα)Ẽ (p)2 . (62)

We can take K = ‖g0‖L∞ : this inequality holds for

|p| ≥ r0 :=
2α‖g0‖L∞

√
1− α‖g0‖L∞

√
1− 4α2‖g′1‖2L∞ (1− α‖g0‖L∞)

. (63)

If we split 〈|∇ψ| , ψ〉 at level |p| = r0, we have:

1− ‖g0‖L∞α

2
〈 g

2
1(−i∇)

|D0| ψ , ψ〉+
(
1− 3απ

4

)
Tr(|D0|γ2) ≤ K1α

2 + αr0 > α2. (64)

and
〈|∇|ψ , ψ〉 > α. (65)

Substituting these estimates in (61), we get:

E1,1 − 2m ≥ E0
BDF(Q)− 2m+ α2 m

2g′1(0)
2
ECP ≥ −Kα2. (66)

Form of a minimizer for E1,1

If a minimizer P ∈ E−1 exists, then it satisfies the following:

P = P0
− +Q = P0

− + |ψ+〉〈ψ+| − |Cψ+〉〈Cψ+|+ γ

ψ+,Cψ+ ∈ Ker γ, P0
−ψ+ = 0.

Moreover the proof of the lower bound ensures that ‖γ‖S2
> α. So let P0

1,1 be:

P0
1,1 := P0

− + |ψ+〉〈ψ+| − |Cψ+〉〈Cψ+|.

Then we have ‖P0
1,1 − P‖S2

= ‖γ‖S2
> α. Using Propositions 1 and 3, we write

P = eAP0
1,1e

−A, A ∈ m
C

P0
1,1

where there exist (θj)j ∈ ℓ2 decreasing and K0 > 0 such that

‖γ‖S2
= 4

+∞∑

j=1

sin(θj)
2 ≤ K0α

2, thus

‖A‖2S2
= 4

∞∑

j=1

θ2j ≤ π2

4
K0α

2.

Assuming Theorem 1, this proves the description of Theorem 2.
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3.3 Existence of a minimizer for E1,1

We consider a family of almost minimizers (Pηn)n of type (43) where (ηn)n is any
decreasing sequence. We assume that Λ2α−2ηn is small. We also consider the
spectral decomposition (49) of any Qn := Pηn − P0

−.
For short we write Pn := Pηn and in general replace the subscript ηn by n.

– We study weak limits of (Qn)n. We recall that Cψn = Ker(Qn − 1), and

Qn = |ψn〉〈ψn| − |Cψn〉〈Cψn|+ γn, ψn,Cψn ∈ Ker γn. (67)

– We first prove that there is no vanishing:

∃A > 0, lim sup
n

sup
z∈R3

∫

B(z,A)

|ψn(x)|2dx > 0.

Indeed, let us assume this is false. Then for any A > 0 the following holds:

D
(
|ψn|2, |ψn|2

)
≤ 1

A
+ 2Λ

{
sup
z∈R3

∫

B(z,A)

|ψn(x)|2dx
}1/2

,

where we have used Cauchy-Schwarz inequality and Hardy inequality. In the limit
n→ +∞ and then A→ +∞, we have: lim supnD

(
|ψn|2, |ψn|2

)
= 0.

There holds a priori estimates (60): using Kato’s inequality we would get

lim inf
n

E0
BDF(Qn) ≥ 2 lim inf

n
〈|D0|ψn , ψn〉+ lim inf

n
E0
BDF(γn) ≥ 2m.

Thus, up to translation, we assume that Qn ⇀ Q∞ 6= 0.
– As the BDF energy is sequential weakly lower continuous [HLS05b], we have

E1,1 ≥ E0
BDF(Q∞).

Our aim is to prove that Q∞ + P0
− ∈ MC : in other words that Q∞ is a minimizer

for E1,1.
– The spectral decomposition (67) is not the relevant one: let us prove we can
describe Pn in function of the spectral spaces of the "mean-field operator" D̃Qn : the
first step is to prove (69) below.

We recall that Qn satisfies Eq. (44), that we have the decomposition (47).
The following holds:

〈D̃Qnψn , ψn〉 = 〈|D0|ψn , ψn〉+O
(
α‖ |∇|1/2ψn‖L2‖ |∇|1/2Q‖S2

+ ηn‖Γn‖S2

)

= 〈|D0|ψn , ψn〉+O(α2) ≥ m−Kα2.

Thus RanPn∩Ranπ
n
+ 6= {0}. Let us prove this subspace has dimension 1: we use the

minimizing property of Qn. The condition on the first derivative gives (44), what is
the condition on the second derivative ? For any A ∈ mC

Pn
, expanding eAPne−A−Pn

in power of A, we get that the Hessian HessPn(Fn) of Fn := Fηn at point Pn is

∀V ∈ TPnMC , A =
[
V, Pn

]
,

HessFn(Pn;V, V ) = Tr
(
D̃Qn (A

2Pn − APnA)
)
+ ηn‖V ‖2S2

− α

2
‖V ‖2Ex.

This Hessian is non-negative. For any unitary f ⊥ g in Ran(ΠΛ − Pn) we choose

A := |f〉〈−Cg| − | − Cg〉〈f |+ |g〉〈Cf | − |Cf〉〈g| ∈ m
C

Pn
.

As −CD̃QnC = D̃Qn , the condition on the Hessian gives

2
(
〈D̃Qnf , f〉+ 〈D̃Qng , g〉

)
+ 4ηn ≥ α

2

∣∣∣∣ [A,Pn
]∣∣∣∣2

Ex
≥ 0. (68)
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We have Cψn ∈ Ran(ΠΛ − Pn) and

〈D̃QnCψn , Cψn〉 = −〈D̃Qnψn , ψn〉 ≤ −m+Kα2,

thus necessarily for n large, there is no plane in Ran(ΠΛ−Pn)∩Ran(πn−), equivalently
there is no plane in RanPn ∩ Ranπ

n
+.

There exists a unitary ψe;n ∈ HΛ that spans RanPn ∩ Ranπ
n
+. Equivalently

ψv;n := Cψe;n spans the other one.
Thus:

Pn = |ψe;n〉〈ψe;n|+ π
n
−. (69)

- We thus write

Qn = |ψe;n〉〈ψe;n| − |ψv;n〉〈ψv;n|+ γn = Nn + γn. (70)

As RanPn is D̃Qn -invariant and that D̃Qn is bounded (with a bound that de-
pends on Λ), necessarily

D̃Qnψe;n = µnψe;n, µn ∈ R+.

The condition on the Hessian enables us to say that

m− µn + 2ηn ≥ 0.

– As for ψn, there is no vanishing for (ψe,n)n for α sufficiently small: decomposing
ψ+ ∈ RanPn:

ψ+ = aψe;n + φ, φ ∈ RanPn ∩ Ranπ
n
−,

we have

|a|2 ≥ 1

µ

(
m+ 〈|D̃Qn |φ , φ〉 −K(α2 + ηn‖Γn‖S2

)
)
.

Provided that µn is close to 1, the absence of vanishing for ψn implies that of ψe;n.
By Kato’s inequality (29):

D̃2
Qn

≥ |D0|
(
1− 2α‖RQn |D0|−1‖B − 4ηn‖Γn‖B

)
|D0|

≥ |D0|2
(
1− α‖Qn‖Ex − 4ηn‖Γn‖S2

)

Thus
∣∣D̃Qn

∣∣ ≥ |D0|
(
1− α‖Qn‖Ex − 2ηn‖Γn‖S2

)
and µn ≥ 1−K(α2 + ηn‖Γn‖S2

).

In the same way we can prove that

|µn −m| > α2 + ηn‖Γn‖S2

So
ψe,n ⇀ ψe 6= 0.

– We decompose γn = π
n
− − P0

− ∈ E1 − P0
− as in (49): using Cauchy’s expansion

[HLS05a], we have

π
n
− − P0

− =
1

2π

∫ +∞

−∞

dω

D0 + iω

(
2ηnΓn − αΠΛRQnΠΛ + 2ηnΓn

) 1

D̃Qn + iω
ΠΛ. (71)

To justify this equality, we remark that |D̃Qn | is uniformly bounded from below: the
r.h.s. of (71) is well-defined. Integrating the norm of bounded operator in (71), we
get that

‖πn− − P0
−‖B > α‖Qn‖Ex + ηn‖Γn‖S2

< 1.

In fact, we can also expand in power of Yn := −αΠΛRQnΠΛ + 2ηnΓn:




π
n
− − P0

− =
∑

j≥1

αjMj [Bn],

Mj [Yn] = − 1

2π

∫ +∞

−∞

dω

D0 + iω

(
Yn

1

D0 + iω

)j
.

(72)
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We take the Hilbert-Schmidt norm [HLS05a, Sok12]: as ‖RQn
1

|∇|1/2 ‖S2
> ‖Q‖Ex,

we have
‖γn‖S2

> α‖Qn‖Ex + ηn‖Γn‖S2
> α2. (73)

We thus write
γn =

∑

j≥1

λj;nqj;n,

where qj;n has the same form as the one in (49).
– Up to a subsequence, we assume all weak convergences as in Remark (12): the
sequence of eigenvalues (λj;n)n tends to (µj)j ∈ ℓ2 and each (e⋆j;n)n (with ⋆ ∈ {a, b})
tends to e⋆j;∞, (ψe;n)n tends to ψe. We also assume that the sequence (µn)n tends
to µ with 0 ≤ µ ≤ m. For shot we write ψv := Cψe.

– We write P := Q∞ + P0
− and π := χ(−∞,0)(DQ∞

). We will prove that

1.
[
D

(Λ)
Q∞

, P
]
= 0,

2. DQ∞
ψe = µψe and so πψe = 0.

Moreover DQ∞
Cψe = −µCψe and 〈Cψe , ψe〉 = 0.

3. π = P − |ψe〉〈ψe|+ |Cψe〉〈Cψe|.

Notation 8. We write D(Λ)
Q∞

:= ΠΛDQ∞
ΠΛ for short.

This all comes from the fact that

s − lim
n
RQn = RQ∞

. (74)

This fact enables us to show

RQnψe;n ⇀n RQ∞
ψe in L2,

s. op. − limn

(
π
n
− −P0

−
)
= π − P0

− in B(HΛ),

w. op. − limn Pn = π − P0
− + |ψe〉〈ψe| − |ψv〉〈ψv| in B(HΛ).

(75)

Indeed for any f ∈ HΛ we have

‖RQnf −RQ∞
f‖2L2 =

∫ ∣∣∣
∫

(Qn −Q∞)(x, y)

|x− y| f(y)dy
∣∣∣
2

dx

≤ ‖f‖2L2

( 1

A2
‖Qn −Q∞‖2S2

+ 4Λ2
x

B(0,2A)2

|(Qn −Q∞)(x, y)|2dxdy
)

+ 4Λ2‖Qn −Q∞‖2S2

∫

B(0,A)c

|f(y)|2dy.

We have just split as follows: for x ∈ R
3 we consider

R
3 = B(x,A)c ⊔B(x,A) ∩ B(0, A) ⊔ B(x,A) ∩ B(0, A)c.

Taking the limsup n→ +∞ we get that

∀A > 0, lim sup
n

‖RQnf−RQ∞f‖2L2 ≤ 4 lim sup
n

‖Qn‖2S2

(‖f‖2L2

A2
+4Λ2

∫

B(0,A)c

|f(y)|2dy
)
,

taking the limit A→ +∞ we get that

lim sup
n

‖RQnf −RQ∞f‖2L2 = 0.

In particular for any f ∈ HΛ

〈RQnψe;n , f〉 = 〈ψe;n , RQnf〉 −→
n→+∞

〈ψe , RQ∞
f〉 = 〈RQ∞

ψe , f〉.
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Thus D̃Qnψe;n ⇀
n→+∞

DQ∞
ψe, and DQ∞

ψe = µψe.

– Let us prove that
s. op. − lim

n
π
n
− = π. (76)

We have

RQn

1

D0 + iω
f = R[Qn −Q∞]

1

D0 + iω
f +RQ∞

1

D0 + iω
f

and at fixed ω and f

R[Qn −Q∞]
1

D0 + iω
f −→
n→+∞

0 in L2.

Generally for J ≥ 1, we expand
(
RQn

1
D0+iω

)J
in power of R[Qn − Q∞] and Q∞.

We get:

∀ω, f,
(
RQn

1

D0 + iω

)J
−→

n→+∞
0 in L2.

Moreover

∣∣∣
∣∣∣
(
RQn

1

D0 + iω

)J ∣∣∣
∣∣∣
L2

≤ Ẽ (ω)−J/2 ‖Qn 1

|D0|1/2 ‖
J
B‖f‖L2 ,

≤
(
lim sup

n
‖Qn‖ExẼ (ω)−1/2

)J‖f‖L2 .

By dominated convergence as

uj‖f‖L2 :=

∫
dω

Ẽ (ω)1+J/2
(
α‖Qn‖Ex + ηn‖Γn‖S2

)J‖f‖L2 < +∞, (77)

we get
Mj [Yn]f −→

n→+∞
Mj [αRQ∞

]f in L2.

To end this argument we remark that the series
∑

j≥1

uj is convergent for α and ηn

sufficiently small: thus we have
∑

j≥1

Mj [Yn]f −→
n→+∞

∑

j≥1

Mj [αRQ∞
]f in L2,

that is (76) holds.
– Thanks to (76), there holds (in the weak operator topology for instance)

Q∞ = lim
n
Qn = |ψe〉〈ψe| − |ψv〉〈ψv|+ π − P0

−,

that is
P = |ψe〉〈ψe| − |ψv〉〈ψv|+ π. (78)

In the weak operator topology we also have

w. op. − lim
n

[
D̃Qn , Qn + P0

−
]
=

[
D

(Λ)
Q∞

, Q∞ + P0
−
]
,

by strong convergence of RQn to RQ∞
and norm convergence of ηnΓn to 0.

– There remains to prove that ‖ψe‖L2 = 1. We assume for the moment that
we can uniformly separate the µn’s from the remainder of the positive spectrum
σ
(
|D̃Qn |

)
\{µn}. Let us write an the bottom of this last set: there exists ε > 0 (of

order α2 in fact) such that for n0 sufficiently large:

∀n ≥ n0, an − µn ≥ 5ε. (79)
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In particular, we can draw a small circle in C that intersects R only at points µ±2ε.
We write Cε this circle: it has been chosen such that if |µn−µ| ≤ ε (true for n ≥ n1

where n1 ≥ n0 is sufficiently large),

∀n ≥ n0, dist
(
µn; Cε

)
≥ ε.

By functional calculus we have

|ψe;n〉〈ψe;n| =
1

2iπ

∫

Cε

dz

z − D̃Qn

.

We want to substract χ(µ−2ε,µ+2ε)

(
D

(Λ)
Q∞

)
. If (79) is true, then the same holds

for the limit D(Λ)
Q∞

by strong convergence. Indeed, for any f ∈ Ran
(
π+

)
(where

π+ := ΠΛ − π) we have
‖πn+f − f‖L2 → 0.

For f1 ⊥ f2 in Ran
(
π+

)
, there holds

min
j

( 1

‖πn+fj‖2L2

)
〈D̃Qnπ

n
+f1 , f1〉+ 〈D̃Qnπ

n
+f2 , f2〉 ≥ an + µn

– We prove the gap (79) for D(Λ)
Q∞

by taking the liminf. Thus, we can isolate the

bottom of σ
(
|A|

)
for A = D̃Qn or A = D

(Λ)
Q∞

by the same circle and get

|ψe;n〉〈ψe;n|− 1

‖ψe‖2L2

|ψe〉〈ψe| = 1

2iπ

∫

Cε

dz

z − D̃Qn

(
αR[Q∞−Qn]+2ηnΓn

) 1

z −D
(Λ)
Q∞

.

By dominated convergence, this operator strongly converges to 0: this proves

‖ψe‖L2 = 1.

Proof of (79) and estimate on E1,1 This proof is based on the method of
[Sok12]: we know that

|m− µn| ≤ Kα2

and that
D̃Qnψe;n = µnψe;n. (80)

In the following, we will get estimates on the Sobolev norms of ψe;n, this will enable
us to estimate 〈D̃Qnψe;n , ψe;n〉. We will use estimates on g0, g1 written in (24).

Estimate on ∇ψe;n From (80) we have

‖D0ψe;n‖2L2 −m2 ≤ Kα2 + 4α‖Qn‖S2
‖∇ψe;n‖L2 + 4ηn‖Γn‖S2

+2‖∇ψe;n‖2L2

(
α‖Qn‖2S2

+ 4η2n‖Γn‖2S2

)

and ‖∇ψe;n‖2L2 > α2. In the same way, for n sufficiently large, we can prove that

〈 |∇|3ψe;n , ψe;n〉 > α3.

We multiply (80) by |∇|1/2 and take the L2-norm. We can drop all terms with
2ηnΓn because all the operators that we consider are bounded in HΛ and ηn‖Γn‖S2

tends to 0 as n tends to +∞. We just have to deal with |∇|1/2RQnψe;n. We recall
that in Fourier space, the following holds [HLS05a]

∀Q ∈ S2(HΛ), p, q ∈ R
3, F

(
RQ; p, q

)
=

1

2π

∫

R3

dℓ

|ℓ|2 Q̂(p− ℓ, q − ℓ).

So, writing An the operator whose Fourier transform is given by the integral kernel

F
(
An; p, q

)
:= |p− q|1/2|Q̂(p, q)|,
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we have ∣∣∣F
([
|∇|1/2, RQn

])∣∣∣ ≤ F
(
RAn ; p, q

)
.

By Hardy’s inequality, we have
∣∣∣∣[|∇|1/2, RQn

]
ψe;n

∣∣∣∣
L2 ≤ 4‖ |∇|1/2Qn‖S2

‖∇ψe;n‖L2 > α3/2.

As
‖RQn |∇|1/2ψe;n‖L2 ≤ π

2
‖ |∇|1/2Qn‖S2

‖∇ψe;n‖L2 > α3/2,

we have ‖ |∇|1/2RQnψe;n‖L2 > α3/2 and

〈 |∇||D0|2ψe;n , ψe;n〉 −m〈|∇|ψe;n , ψe;n〉 > α3. (81)

Estimates on χe;n We scale (80) by α−1, that is we consider

ψe;n(x) := α−3/2ψe;n(
x
α
), x ∈ R

3.

This enables us to get an estimate of the lower spinor of ψe;n. We write

ψe;n =:

(
ϕe;n
χe;n

)
∈ L2(R3,C2)2

For short we also write
g1(p) := g1(p)

p
|p| , p ∈ R

3.

We write
Qn(x, y) := α−3Qn

(x
α
,
y

α

)
and Γn(x, y) := α−3Γn

(x
α
,
y

α
The upper and lower spinors ϕe;n and χe;n of ψe;n satisifies

χe;n =
g1

(−i∇
α

)
· σ

α2(µn + g0
(
)i∇
α

)
)
ϕe;n +

(
− α2RQnψe;n + 2αηnΓnψe;n

)
↓. (82)

By Hardy’s inequality, we get that

‖χe;n‖L2 = ‖χe;n‖L2 > α.

As there holds:

〈−∆χe;n , χe;n〉 ≤ ‖ |∇|3/2χe;n‖L2

√
‖χe;n‖L2‖∇χe;n‖L2

we also get the following (rough) estimate

‖χe;n‖L2 > α4/3.

Estimate on E1,1 Using (24), we have (here g⋆ means g⋆(−i∇))

〈D0ψe;n , ψe;n〉 = 〈g0ψe;n , ψe;n〉+ 2µn〈 g21
(g0+µn)2

φe;n , φe;n〉+O
(
α(α2 + ηn‖Γn‖S2

)
)

= 〈g0ψe;n , ψe;n〉+ 2m〈 g21
(g0+m)2

φe;n , φe;n〉+O
(
α3

)
,

= m+
g′1(0)

2

2m
‖∇φe;n‖2L2 +O

(
α3

)
.

As ψv;n = Cψe;n, we have

1

2

x |ψe;n ∧ ψv;n(x, y)|2
|x− y| dxdy = D

(
|ϕe;n|2, |ϕe;n|2

)
+O(α3).

Using (73), we finally get for n sufficiently large

〈D̃Qnψe;n , ψe;n〉 = m+
g′1(0)

2

2m
‖∇φe;p‖2L2 − αD

(
|ϕe;n|2, |ϕe;n|2

)
+O(α3). (83)
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As ‖ϕe;n‖2L2 = 1−Kα2, we get

E1,1 ≥ E0
BDF(Q∞) = 2m+

α2m

g′1(0)
2
ECP

(
ϕ̃e;n

)
+O(α3),

where ECP denotes the Pekar energy [LL97] and ϕ̃e;n is the scaling of ϕe;n by g′1(0)
2

αm
.

We already have an upper bound of E1,1: it has the same expansion with
ECP

(
ϕe;n

)
replaced by the smallest possible value ECP. As there holds

ECP

(
ϕe;n

)
≥ (1− ‖χe;n‖2L2)

3ECP

we thus have
ECP

(
ϕe;n

)
= ECP +O(α), (84)

and

µn = m+ 2m
α2

g′1(0)
2
ECP +O(α3). (85)

Thus µn < m for α sufficiently small. Are there other eigenvalues in (0, m) ? As
the Hessians are non-negative (see (68)), we have

σ |D̃Qn | ⊂ [µn − 2ηn,+∞)

Let ξn ⊥ ψn in Ran ∈ (πn+) and sn ∈ (µn − 2ηn,m) such that

D̃Qnξn = snξn.

By the same method as before used for ψe;n, we can prove the following:

‖∇ξn‖L2 > α, ‖ |∇|3/2ξn‖L2 > α3/2,

‖(ξn)↓‖L2 > α, ‖∇(ξn)↓‖L2 > α4/3.

The arrow ↓ means we take the lower spinor (which is in L2(R3,C2)). In particular
we have

sn = 〈D̃Qnξn , ξn〉 = m+
g′1(0)

2

2m
‖∇ξn‖2L2 − αD(ξ∗nψe;n; ξ

∗
nψe;n) +O(α8/3).

Remark 13. We have lost α1/3 due to the rough estimate ‖∇(ξn)↓‖L2 > α4/3. We
can prove that this quantity is of order α2, but the proof is technical.

Estimate on ψe;n We know that ψe;n is close to a Pekar minimizer: its Pekar
energy is

ECP +O(α2/3).

For α sufficiently small, we know that this gives information about the distance
between ψe;n and the manifold P of Pekar minimizer [Len09]:

distH1(ψe;n,P)2 ≤ KECP(ψe;n)− ECP.

The notation distH1 means the distance in the H1-norm.
This result is stated in L2(R3,C), but it is not hard to prove it is also true in

L2(R3,C4): in this case P is isomorphic to R
3 × S

3 (and not simply to R
3 × S

1).

If ξn denotes the scaling of ξn by g′1(0)
2

2αm
, there holds

g′1(0)
2

2α2m
(sn −m) = ‖∇ξn‖2L2 −D

(
ξn

∗ψe;n, ξn
∗ψe;n

)
+O(α2/3). (86)

Eventually by replacing ψe;n by its projection φnCP onto P, we also have

g′1(0)
2

2α2m
(sn −m) = ‖∇ξn‖2L2 −D

(
ξn

∗φnCP, ξn
∗φnCP

)
+O(α1/3). (87)
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Proof of (79) We just have to study the spectrum of σ(−∆−R
(
|φnCP〉〈φnCP|

)
),

and precisely its negative eigenvalues. Its smallest eigenvalue is ECP with eigenvector
φnCP. Now we seek the second smallest eigenvalue, that is

FCP := inf
{
〈
(
−∆−R

(
|φnCP〉〈φnCP|

))
f , f〉, f ⊥ φnCP ∈ H1, ‖f‖L2 = 1

}
. (88)

By studying a minimizing sequence, we get

FCP > ECP. (89)

By continuity the same holds for the spectrum of −∆ − R
(
|ψe;n〉〈ψe;n|

)
: for α

sufficiently small (and n sufficiently big) its smallest eigenvalue tn has multiplicity
one and its second smallest eigenvalue t̃n is away from tn, uniformly in α (and n):

t̃n − tn >
FCP −ECP

2
> 0.

As a consequence, we get from (86) the following:

sn − µn ≥ α2m

g′1(0)
2

(
FCP − ECP

)
+O(α7/3), (90)

and (79) holds.

3.4 Proof of Theorems 2 and 3

In fact, it suffices to follow the proof of Theorem 1: instead of having an almost
minimizer, we deal with a real minimizer P = Q + P0

−. Technically speaking, we
just have to drop the term ηnΓn in the equations and by the same method we prove
the following.

1. There exist 0 < µ < m and a wave function ψe ∈ HΛ such that
{

P = |ψe〉〈ψe| − |Cψe〉〈Cψe|+ χ(−∞,0)

(
ΠΛDQΠΛ

)
,

ΠΛDQΠΛψe = µψe.
(91)

2. We have ‖ |∇|3ψe‖L2 > α3/2. Splitting ψe into upper and lower spinors ϕe and

χe, we have ‖χe‖L2 > α. We write ϕ̃e(x) := λ3/2ϕe(λx) with λ =
g′1(0)

2

αm
. The

following holds:





E1,1 = 2m+ α2m
g′
1
(0)2

ECP

(
ϕ̃e

)
+O(α3)

= 2m+ α2m
g′
1
(0)2

ECP +O(α3),

µ = m+ 2m α2

g′
1
(0)2

ECP +O(α3).

(92)

3. In the limit α→ 0 we have

lim
α→0

‖χe‖L2 = 0 and lim
α→0

ECP

(
ϕ̃e

)
= ECP.

The geometrical description of a minimizer of Theorem 2 has already been proved
at the end of Subsection 3.2 under the assumption of existence.

4 Proofs on results on the variational set

4.1 On the manifold M : Theorem 4, Propositions 1, 2

Proof of Theorem 4
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– As Q is a compact self-adjoint operator, we apply the spectral theorem and write

Q =
∑

i∈Z∗

µi|bi〉〈bi|,

where (µi)i∈N (resp. (µi)i∈Z∗
−

) is the non-increasing sequence of positive eigenvalues
of Q (resp. increasing sequence of negative eigenvalues).

It is clear that −1 ≤ Q ≤ 1. If Qψ = ψ, then necessarily P1ψ = ψ and P0ψ = 0,
analogously if Qψ = −ψ, then P1ψ = 0 and P0ψ = ψ.

Up to index translation we have:

A := Q−
{M+∑

i=1

|ai〉〈ai| −
M−∑

i=1

|a−i〉〈a−i|
}
=

∑

i∈Z∗

µi|bi〉〈bi| = Ap − An, (93)

where Ap is the sum over positive i and −An over negative i.

Notation 9. For short, for any µ ∈ R and any self-adjoint operator S, we write
ESµ = Ker(S − µ) the spectral subspace of S.

Furthermore, for an operator B we write

Bε1 ε2 = P0(ε1)BP0(ε2), εi = ±, P0(−) = P0, P0(+) = 1− P0.

– We know that

Q++ −Q−− = Q2 =

M+∑

i=1

|ai〉〈ai|+
M−∑

i=1

|a−i〉〈a−i|+
∑

i∈Z∗

µ2
i |bi〉〈bi|.

In particular [Q2, P0] = 0 and all the spectral subspaces of Q2 are P0-invariant. For
any µ > 0,

EQ
2

µ2 = EQµ
⊥
⊕ EQ−µ = EQ

++

µ2

⊥
⊕ EQ

−−

−µ2 .

For i ∈ N, let ci be a unitary eigenvector for Q++ with eigenvalue 0 < µ2
i < 1. We

write
ci = cp + cn, cp ∈ Ran(Ap), cn ∈ Ran(An).

We have Apcp = µicp and Ancn = −µicn. Moreover cn 6= 0, otherwise (1− P0)cp =
cp and

Acp = µicp = ((1− P0)− (1− P1))cp i.e. (1− P1)cp = (1− µi)cp.

This would give µi = 1 or µi = 0. By the same argument cp 6= 0. We have
P0cp = −P0cn and this vector is non-zero, otherwise (1 − P0)cp = cp. Thus the

two-dimensional plane Π = Span(cp, cn) is in EQ
2

µ2
i

and there exists an orthonormal

basis (e+ = ci, e−) of Π such that P0e− = e− (and (1− P0)ci = ci).
We write cp = ||cp||dp and cn = ||cn||dn and up to a phase, we have:

ci = cos(φ)dp + sin(φ)dn.

There holds:

Q2ci = µ2
i ci = Apci = µi(1− P0)(cos(φ)dp + sin(φ)dn) = µi(cos(φ)

2 − sin(φ)2)ci,

and µi = cos(2φ). We have

EQ
2

µ2
i
= Π

⊥
⊕R.

– By induction over the dimension of the remainder Dim(R ∩ EQ
++

µ2
i

), we can de-

compose EQ
2

µ2
i

as a sum of orthogonal planes: by symmetry there holds DimEQ
++

µ2
i

=

DimEQ
−−

µ2
i

. Each plane Π is invariant under the action of Q and P0
− and so also
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under that P = Q+ P0
−. Therefore, there also exists an orthonormal basis (v+, v−)

of Π such that P1v− = v− and (1− P1)v+ = v+. Up to a phase we suppose that

v− = cos(θ)e− + sin(θ)e+ and v+ = − sin(θ)e− + cos(θ)e+, θ ∈ (0, π
2
). (94)

In the plane Π we thus have:

Q|Π = |v−〉〈v−| − |e−〉〈e−|.

Such an operator has eigenvalues ± sin(θ) with eigenvectors




f+ =
√

1−sin(θ)
2

e− +
√

1+sin(θ)
2

e+ associated to sin(θ),

f− = −
√

1+sin(θ)
2

e− +
√

1−sin(θ)
2

e+ associated to − sin(θ)
(95)

2
Proof of Proposition 1 In general, let P1 and P2 be two orthogonal projectors in
HΛ. If P2 = UP1U

−1 where U is a unitary operator, we have:

P2 − P1 ∈ S2(HΛ) ⇐⇒ [U,P1]U
−1 ∈ S2(HΛ) i.e. [U, P1] ∈ S2(HΛ). (96)

– For any P1 ∈ M and any P2 ∈ M with ‖P1−P2‖B < 1, we can decompose P2−P1

as in Theorem 4 but with P1 as new reference (the decomposition is the same but
with ej ∈ Ran (1− P1) and e−j ∈ RanP1):





P2 − P1 =
∑

j∈N

(|v−j〉〈v−j | − |e−j〉〈e−j|), v−j = cos(θj)e−j + sin(θj)ej

P2v−j = v−j , P1e−j = e−j , P1ej = 0 and
∑

j∈N

sin(θj)
2 < +∞.

Above we have θj ∈ (0, π
2
) for all j ∈ N. Let A be defined as follows:

A =
∑

j∈N

θj(|ej〉〈e−j | − |e−j〉〈ej |), θj ∈ (0, π
2
),

then we have P2 = eAP1e
−A, A∗ = −A and

[A,P1] =
∑

j∈N

θj(|ej〉〈e−j |+ |e−j〉〈ej |) ∈ S2(HΛ). (97)

Furthermore [exp(A), P1] ∈ S2(HΛ): for all k ∈ N, there holds:

[Ak, P1] =
k−1∑

j=0

Aj [A,P1]A
k−1−j ,

and

‖[exp(A), P1]‖S2
≤

+∞∑

k=1

1

k!

{
k‖[A, P1]‖S2

‖A‖k−1
B

}
= ‖[A, P1]‖S2

exp ‖A‖B. (98)

Let us call this A the canonical antiunitary operator LP1(P2) associated to P2: we
will see it does not depend on the choice of eigenvectors ej .

Remark 14. In the case ‖P2−P1‖B = 1, we have 1,−1 ∈ σ(P2−P1): indeed P2−P1

may be decomposed as in (93) with M+ =M− because Tr(P2 − P1) = 0.
We still have P2 = eAP1e

−A with

A =

M+∑

i=1

π

2

(
|ai〉〈a−i| − |a−i〉〈ai|

)
+

∑

j≥1

θj
(
|ej〉〈e−j| − |e−j〉〈ej |

)
, (99)

where ai, ej ∈ Ran(1−P1) and a−i, e−j ∈ RanP1 form an orthonormal family as in
the decomposition of Theorem 4 (in particular the non-zero eigenvalues in (−1, 1)
are the ± sin(θi)).
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– Let (mP1 , ‖·‖S2
) be the set of compact operators:

mP1 := {a ∈ B(HΛ), ((1−P1)aP1)
∗ = −P1a(1−P1) ∈ S2(HΛ), (1−P1)a(1−P1) = P1P1 = 0}.

Remark 15. As we consider operators in B(HΛ) we can replace 1 by ΠΛ in the
definition.

The map ΦP1

ΦP1 :
(mP1 , 0) −→ (M , P1)

a 7→ eaP1e
−a (100)

is differentiable and we have:

∀A ∈ mP1 , dΦP1(P1) · A = [A,P1].

This map
dΦP1 : mP1 → {[A, P1], A ∈ mP1} =: Ran(dΦP1)

is invertible with inverse

dΦ−1
P1

: v ∈ Ran(dΦP1) 7→ [v, P1] ∈ mP1 .

This proves that in a neighbourhood of P1, the corresponding part of M is the graph
of some function FP1 .

Indeed, if we see the set

P0
− +S2(HΛ) = P1 +S2(HΛ)

as an affine space with associated vector space S2(HΛ), then we have

S2(HΛ) = mP1

⊥
⊕ Ran(dΦP1)

⊥
⊕ {u ∈ S2(HΛ), P1u(1− P1) = (1− P1)uP1 = 0}.

We decompose any Q ∈ S2(HΛ) with respect to Ran(dΦP1)⊕ (Ran(dΦP1))
⊥:

Q = v[P1;Q] + w[P1;Q] ∈ Ran(dΦP1)⊕ (Ran(dΦP1))
⊥.

In a neighbourhood VP1 of P1, the set VP1 ∩ M is a portion of the graph of

FP1 : v ∈ Ran(dΦP1) 7→ P1 + w
[
P1; e

[v,P1]P1e
−[v,P1] − P1

]
∈ P1 + (RandΦP1)

⊥.

– Thus for any P1 ∈ M , there exists a neighbourhood VP1 ∋ P1 such that M ∩ VP1

is a manifold with TP1M = Ran(dΦP1). To conclude M is a proper manifold, it
suffices to compare the neighbourhood of M (or prove that M is connected): for
P1, P3 ∈ M , we use Remark 14 and write P3 = eAP1e

−A with A ∈ mP1 . Then it is
clear that the map

T(P1, P3) :
(M , P1) −→ (M , P3)

P 7→ eAPe−A

is an isometry and that its differential t(P1, P3) is an isometry that maps TP1M

onto TP3M . The map t ∈ [0, 1] 7→ etAP1e
−tA ∈ M links P1 and P3.

Moreover the map

LP1 :
{P ∈ M , ‖P − P1‖B < 1} −→ mP1

P 7→ A

is locally invertible around P1 with (local) inverse ΦP1 .
More generally, we can prove that the restriction of ΦP1 to the a ∈ mP1 with

‖a‖B < π
2

is one-to-one: it suffices to consider the spectral decomposition of a and
link spectral subspaces with rotations.

2
Proof of proposition 2
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Remark 16. 1. We recall that if P1 and P2 are two projectors such that P1 − P2

is Hilbert-Schmidt, then

A ∈ S
P1
1 ⇐⇒ A ∈ S

P2
1 and TrP1(A) = TrP2(A). (101)

2. For any A ∈ B and any projector P we have:

[[A, P ], P ] = (1− P )AP + PA(1− P ). (102)

If we restrict EBDF to M , using (101) and (102) we get that for (P, v) ∈ TM :

dE0
BDF(P ) · v = TrP (ΠΛDP−P0

−
ΠΛv) = TrP

(
[[ΠΛDP−P0

−
ΠΛ, P ], P ]v

)
. (103)

We write Q = P − P0
−, π = χ(−∞,0)(ΠΛDQΠΛ) and Γ = P − π. We have:

PΠΛDQΠΛ(1− P ) = (π + Γ)ΠΛDQΠΛ(1− π − Γ),

= π −ΠΛDQΠΛΓ + ΓΠΛDQΠΛ(1− π)− ΓΠΛDQΠΛΓ.

Thus

[[ΠΛDQΠΛ, P ], P ] = |ΠΛDQΠΛ|Γ + Γ|ΠΛDQΠΛ| − 2ΓΠΛDQΠΛΓ. (104)

We have:

|ΠΛDQΠΛ|2 = ΠΛ(D0)2 + α
(
ΠΛBQΠΛD0 +D0ΠΛBQΠΛ

)
+ α2(ΠΛBQΠΛ)

2

≤ ΠΛ(D0)2
(
1 + α‖ΠΛBQΠΛinv(D0)‖B

)2

,

≤ ΠΛ(D0)2
(
1 + αK‖VQ ΠΛ√

1−∆
‖B + ‖RQ ΠΛ√

1−∆
‖B

)2

.

We have Γ = (P − P0
−) + (P0

− − π) ∈ S
P0

−

1 (HΛ). So the following holds:

∣∣∣∣ |ΠΛDQΠΛ|Γ
∣∣∣∣

S2
> E(Λ)1/2‖ |D0|1/2Γ‖S2

(1 + α(
√
D(ρQ, ρQ) + ‖|D0|1/2Q‖S2

))2,

and
‖ΓΠΛDQΠΛΓ‖S2

≤ 2
∣∣∣∣ |ΠΛDQΠΛ|1/2Γ

∣∣∣∣2
S2

< +∞.

2

4.2 On the manifold MC : Propositions 3, 4 and 5

Proof of Proposition 3

Let P1, P2 ∈ MC such that ‖P2 − P1‖B < 1. Thanks to Theorem 4, we know that
P2 can be written as P2 = eAP1e

−A where A ∈ B(HΛ) is antiunitary and

P1AP1 = (1− P1)A(1− P1).

– Taking into account the C-symmetry we can say more: thanks to (15) we can
follow the proof of Proposition 5 with P0

− replaced by P1. This gives

CAC = A. (105)

Indeed there exist J ⊂ Z
∗ with −J = J and (ej)j∈J in HJ

Λ such that

1. (ej)j ∪ (Cej)j is an orthonormal basis for Ran(P2 − P1),

2. for all j ∈ J , j > 0: P1ej = 0 and P1e−j = e−j ,

3. each 4-dimensional space Span(ej , e−j ,Cej ,Ce−j) is spanned by four eigenvec-
tors fj ⊥ Cf−j with eigenvalue sin(θi) > 0 and f−j ⊥ Cfj with eigenvalue
− sin(θi).
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Then A is defined as follows:

A =
∑

j∈J
θj
(
|ej〉〈e−j| − |e−j〉〈ej | − |Ce−j〉〈Cej |+ |Cej〉〈Ce−j |

)

It is easy to check (105) from this formula. Reciprocally, let A ∈ mP be an antiu-
nitary map satisfying (105). Then we know that eAPe−A ∈ M . Moreover we have
−CeAC = −eA. It follows that

−C(eAPe−A − P )C = CeAC(−CPC)Ce−AC+ CPC,

= eA(−(ΠΛ − P ))e−A + (ΠΛ − P ),

= −ΠΛ + eAPe−A +ΠΛ − P = eAPe−A − P.

In other words eAPe−A ∈ MC . Thus ΦP1 (cf (100)) is a local isomorphism from
(mP1 , 0) to (M , P1), and its restriction

ΦC

P1
:

m
C

P1
−→ MC

a 7→ eaP1e
−a

is well-defined and is a local isomorphism from (mC
P1
, 0) to (MC , P ). There remains

to prove that for any P1, P2 ∈ MC , there exists an isometry of S2, that maps m
C

P1

onto m
C

P2
. If ‖P1 − P2‖B < 1, this isometry is given by

φ0
C (P1, P2) : X ∈ S2(HΛ) 7→ exp(LP1(P2))X exp(−LP1(P2)) ∈ S2(HΛ).

The restriction is:

φC (P1, P2) : X ∈ m
C

P1
7→ exp(LP1(P2))a exp(−LP1(P2)),

indeed, as CLP1(P2)C = LP1(P2) we have CφC (P1, P2; a)C = φC (P1, P2; a). If
‖P1 − P2‖B = 1 then we can write

P2 − P1 =

K∑

k=1

(
|ak〉〈ak| − |Cak〉〈Cak|

)
+ γ(P1, P2),

where (ak)k ∪ (Cak)k is an orthonormal family which is orthogonal to Ran γ(P1, P2)
and ‖γ(P1, P2)‖B < 1. We also have P1Cak = Cak and P1ak = 0. We define





P12 := P1 +

K∑

k=1

(
|ak〉〈ak| − |Cak〉〈Cak|

)
∈ MC ,

U12 :=

K∑

k=1

(
|Cak〉|ak〉 − |ak〉〈Cak|

)
∈ U(HΛ).

Then ‖P2 − P12‖B < 1 and U12P1U
∗
12 = −U12P1U12 = P12. Moreover

φC ,P1,P12
:

mC
P1

−→ mC
P12

a 7→ U12aU
−1
12

is well-defined and is an isometry. Indeed, as CU12C = −U12, we get that

CU12aU
−1
12 C = U12aU

−1
12 .

This proves the isometric isomorphisms

S2(HΛ)
≃−→

φ0
C

(P1,P12)
S2(HΛ)

≃−→
φ0

C
(P12,P2)

S2(HΛ),

m
C

P1

≃−→
φC (P1,P12)

m
C

P12

≃−→
φC (P12,P2)

m
C

P2
.
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So MC is a submanifold and the characterization of the tangent planes (39)
follows from that of M .
– Let us show that MC is invariant under the flow of E0

BDF: it suffices to show that
for any P ∈ MC , the gradient ∇E0

BDF(P ) (cf (37)) is in TPMC . For a C-symmetric
state P , we write Q := P − P0

−.
That the density ρQ vanishes is clear from (107) and the fact that for any ψ ∈ HΛ

and x ∈ R
3 we have |Cψ(x)|2 = |ψ(x)|2. From (4), we get that for −CQC = Q there

holds:

−CQC(x, y) = Q(x, y) so − CRQC(x, y) = RQ(x, y) =
Q(x, y)

|x− y| .

As −CD0C = D0, it follows that:

− C
(
D0 + α(ρQ ∗ 1

|·| −RQ)
)
C = −C(D0 − αRQ)C = D0 − αRQ. (106)

We remark that [ΠΛ,C] = 0, and CPC = 1− P and C(1− P )C = P . Thus

−C
[[
ΠΛDQΠΛ;P

]
;P

]
C = −C

(
PΠΛDQΠΛ(1− P ) + (1− P )ΠΛDQΠΛP

)
C

= (1− P )
(
− ΠΛCDQCΠΛ

)
P + P

(
− ΠΛCDQCΠΛ

)
(1− P )

= (1− P )ΠΛDQΠΛP + PΠΛDQΠΛ(1− P )

=
[[
ΠΛDQΠΛ;P

]
;P

]
.

Proof of Proposition 4 Let c : t ∈ [0, 1] 7→ c(t) ∈ MC be a continuous map such
that c(0) = 0 and ‖c(1)‖B = 1. By Theorem 4 and Proposition 5, any c(t) has the
following form:

c(t) =
∑

j∈N

λj(|fj(t)〉〈fj(t)| − |f−j(t)〉〈f−j(t)|+ |Cf−j(t)〉〈Cf−j(t)| − |Cfj(t)〉〈fj(t)|)

+

N(t)∑

j=1

(|aj(t)〉〈aj(t)| − |Caj(t)〉〈Caj(t)|),

where (aj)j ∪ (Caj)j ∪ (fj)j ∪ (Cfj) is an orthonormal family and (λj)j is the
sequence of positive eigenvalues lesser than 1. Each plane Span(fj , f−j) (resp.
Span(Cfj ,Cf−j)) is spanned by ej ∈ Ran(P0

+) and e−j ∈ Ran(P0
−) (resp. Ce−j ∈

Ran(P0
+) and Cej ∈ Ran(P0

−)).
Let t0 be inf{t ∈ [0, 1], ‖c(t)‖B = 1}. For any t ∈ [0, 1] and any µ ∈ σ(c(t))\{1, 0},

4 | DimE
c(t)2

µ2 . In particular, for t < t0 the number

J(c(t)) = Dim
⊕

1
2
<µ≤1

E
c(t)2

µ2 is divisible by 4.

By continuity, J(c(t)) is divisible by 4 for any t : the variations of J follow the

variations of the λ′
is (λi equals sin( ̂Cvj , Cej) in the notations of Theorem 4). Such

an eigenvalue is associated to 4-dimensional spaces of type Span(fj , f−j ,Cfj ,Cf−j)

and each of them has a basis made of four eigenvectors in Ec(t)
2

λ2
i

.

Thus 4 | J(c(1)) and for any unitary ψ ∈ RanP0
+, there is no continuous path in

MC that links 0 and Qψ = |ψ〉〈ψ| − |Cψ〉〈Cψ|. It is then straightforward to prove
that for any γ ∈ MC , if 4 | J(γ) then there exists a path that links 0 and γ else
there exists a path that links Qψ and γ. 2

Proof of Proposition 5

A direct computation shows that for any ψ ∈ L2:

C|ψ〉〈ψ|C = |Cψ〉〈Cψ|. (107)
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By Theorem 4, for µ ∈ σ(γ)∩ (0, 1), there exist N ∈ N and N orthogonal planes
Π1
µ, . . .Π

N
µ such that

Eγ
2

µ2 = Eγµ
⊥
⊕Eγ−µ =

⊕

1≤j≤N
Πjµ,

where each plane is γ-invariant with γ|Πµ = |v−〉〈v−| − |e−〉〈e−| with Pv=v− and
P0

−e− = e−. The expression of its eigenvectors f+ and f− are written in (95), where
e+ ∈ RanP0

+ is chosen such that v− = cos(θ)e− + sin(θ)e+.

As C is isometric, then necessarily Eγ
2

µ2 is C-invariant, and CΠjµ is some plane Π̃jµ

in Eγ
2

µ2 , γ-invariant (there holds µ = sin( ̂Cv−,Ce−)). Let us show that Πjµ 6= Π̃jµ.

Indeed, using (95) this would imply that Ce− = eiφ1e+ and Ce+ = eiφ2e− for some
φ1, φ2 ∈ R and

−(|Ce−〉〈Ce+|+ |Ce+〉〈Ce−|) = |e−〉〈e+|+ |e+〉〈e−|.

In particular there would hold −ei(φ1−φ2) = 1 that is φ1 − φ2 ≡ π[2π]. However C
is an involution so C2e+ = e+ and ei(φ1−φ2)e+ = e+: this gives φ1 − φ2 ≡ 0[2π] and
contradicts the previous result.

Thus the two planes are different and the 4-dimensional space Vµ they span is

C and γ-invariant: Eγ
2

µ2 = Vµ
⊥
⊕Wµ. By induction over DimWµ, we get that 2N is

divisible by 4, that is N is even. We obtain N
2

such Vµ, written V jµ .
In each V jµ , let uaj ⊥ ubj be two unitary eigenvectors associated to µ. Thus

Cuaj ⊥ Cubj are two eigenvectors associated to −µ. We use Theorem 4 to decompose

V jµ = Πa
⊥
⊕Πb with

∀ ⋆ ∈ {a, b}, Π⋆ = Span(u⋆j , u
⋆
−j) = Span(e⋆j , e

⋆
−j)

γu⋆±j = ±µu⋆±, P0
∓e

⋆
±j = 0.

We may assume (95) holds for both planes. Our aim is to prove that up to a phase,
Cua±j = ub∓. A priori there exist φ0, φ1, φ2, θ ∈ [−π, π) such that

Cuaj = eiφ1 cos(θ)ua−j + eiφ2 sin(θ)ub−j ,

Cubj = −ei(φ1+φ0) sin(θ)ua−j + ei(φ2+φ0) cos(θ)ub−j .

We may assume cos(θ), sin(θ) > 0. Using (95), and writing φk = φk+φ0, k ∈ {1, 2},
we get

Ceaj = −eiφ1 cos(θ)ea−j − eiφ2 sin(θ)eb−j , Cebj = eiφ1 sin(θ)ea−j − eiφ2 cos(θ)eb−j ,

Cea−j = eiφ1 cos(θ)eaj + eiφ2 sin(θ)ebj , Ceb−j = −eiφ1 sin(θ)eaj + eiφ2 cos(θ)ebj .

Applying C to Ceaj we get

eaj = ei(φ1−φ2)
(
sin(θ)2 − ei(φ2−φ1) cos(θ)2

)
eaj − eiφ0

sin(2θ)

2

(
ei(φ2−φ1) + 1

)
ebj .

Thus sin(θ) = 1 and φ1 − φ2 ≡ 0[2π]. This gives:

Eγ
2

µ2 =
⊥
⊕

1≤j≤N
2

V jµ and V jµ = Πaµ,j
⊥
⊕CΠaµ,j , (108)

where each Πaµ,j and CΠaµ,j is a spectral plane described in Theorem 4. 2
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