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Abstract

The Bogoliubov-Dirac-Fock (BDF) model is a no-photon, mean-field approxi-
mation of quantum electrodynamics. It describes relativistic electrons in the Dirac
sea. In this model, a state is fully characterized by its one-body density matrix,
an infinite rank nonnegative operator. We prove the existence of the positronium,
the bound state of an electron and a positron, represented by a critical point of the
energy functional in the absence of external field. This state is interpreted as the
ortho-positronium, where the two particles have parallel spins.
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1 Introduction and main results

THE DIRAC OPERATOR

In relativistic quantum mechanics, the kinetic energy of an electron is described
by the so-called Dirac operator Dy. Its expression is [Tha92]:

3
Dg = mec2ﬂ — ihcz ;O (1)

j=1

where m. is the (bare) mass of the electron, ¢ the speed of light and % the reduced
Planck constant, 8 and the o ’s are 4 x 4 matrices defined as follows:
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The Dirac operator acts on spinors i.e. square-integrable C*-valued functions:
§ = L*(R% CY). (2)

It corresponds to the Hilbert space associated to one electron. The operator Do
is self-adjoint on $ with domain H*(R* C*), but contrary to —A/2 in quantum
mechanics, it is unbounded from below.

Indeed its spectrum is o(Do) = (—o0, mec?]U[mec?, +00). Dirac postulated that
all the negative energy states are already occupied by "virtual electrons", with one
electron in each state, and that the uniform filling is unobservable to us. Then, by
Pauli’s principle real electrons can only have a positive energy.

It follows that the relativistic vacuum, composed by those negatively charged
virtual electrons, is a polarizable medium that reacts to the presence of an external
field. This phenomenon is called the vacuum polarization.

If one turns on an external field that gets strong enough, it leads to a transition
of an electron of the Dirac sea from a negative energy state to a positive one. The
resulting system — an electron with positive energy plus a hole in the Dirac sea —
is interpreted as an electron-positron pair. Indeed the absence of an electron in the
Dirac sea is equivalent to the addition of a particle with same mass and opposite
charge: the positron.

Its existence was predicted by Dirac in 1931. Although firstly observed in 1929
independently by Skobeltsyn and Chung-Yao Chao, it was recognized in an experi-
ment lead by Anderson in 1932.

CHARGE CONJUGATION

Following Dirac’s ideas, the free vacuum is described by the negative part of the
spectrum o (Dy):
PS = X(—oo,O)(DO)-
The correspondence between negative energy states and positron states is given by
the charge conjugation C [Tha92]. This is an antiunitary operator that maps Ran P°
onto Ran(1 — P2). In our convention it is defined by the formula:

Yy € L*(R?), Cy(x) = ifasi(x), (3)
where 7 denotes the usual complex conjugation. More precisely:
2] @1
c. |2 ]=] ¥ (4)
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In our convention it is also an involution: C* = id. An important property is the
following;:

Ve L Va e R?, |Cy(z)|® = ()] (5)

PosiTrRONIUM

The positronium is the bound state of an electron and a positron. This system
was independently predicted by Anderson and Mohorovi¢i¢ in 1932 and 1934 and
was experimentally observed for the first time in 1951 by Martin Deutsch.

It is unstable: depending on the relative spin states of the positron and the
electron, its average lifetime in vacuum is 125 ps (para-positronium) or 142 ns (ortho-
positronium) (see [Kar04]).

In this paper, we are looking for a positronium state within the Bogoliubov-Dirac-
Fock (BDF) model: the state we found can be interpreted as the ortho-positronium
where the electron and positron have parallel spins. Our main results are Theorem
[ and In our state, the wave function of the real electron and that of the virtual
electron defining the positronium are charge conjugate of each other.

BDF MODEL

The BDF model is a no-photon approximation of quantum electrodynamics
(QED) which was introduced by Chaix and Iracane in 1989 [CI89], and studied
in many papers [Sok12].

It allows to take into account real electrons together with the Dirac vacuum in
the presence of an external field.

This is a Hartree-Fock type approximation in which a state of the system "vac-
uum + real electrons" is given by an infinite Slater determinant 1 A ¥ A ---.
Equivalently, such a state is represented by the projector onto the space spanned by
the v;’s: its so-called one-body density matrix. For instance P® represents the free
Dirac vacuum.

Here we just give main ideas of the derivation of the BDF model from QED, we

refer the reader to [CI89, [HL.S05al [HLS07] for full details.

Remark 1. To simplify the notations, we choose relativistic units in which, the mass
of the electron m., the speed of light ¢ and # are set to 1.

Let us say that there is an external density v, e.g. that of some nucleus and let
us write a > 0 the so-called fine structure constant (physically e?/(4meohc), where
e is the elementary charge and eo the permittivity of free space).

The starting point is the (complicated) Hamiltonian of QED Hqgp that acts on
the Fock space of the electron Feiee [Tha92]. The (formal) difference between the
infinite energy of a Hartree-Fock state 2p and that of 20, state of the free vacuum
taken as a reference state, gives a function of the reduced one-body density matrix
Q:=P—P°.

It can be shown that a projector P is the one-body density matrix of a Hartree-
Fock state in Felec iff P — PO is Hilbert-Schmidt, that is compact such that its
singular values form a sequence in ¢2.

To get a well-defined energy, one has to impose an ultraviolet cut-off A > 0: we
replace $ by its subspace

9 :={f €9, supp f C B(0,A)}.

This procedure gives the BDF energy introduced in |CI89] and studied for instance
in [ALS05a, [HLSO5H].

Notation 1. Our convention for the Fourier transform .# is the following

~

VfeL'(RY), fip)= W/ﬂx)e””dz.



Let us notice that £, is invariant under Do and so under P°.
For the sake of clarity, we will emphasize the ultraviolet cut-off and write ITa for
the orthogonal projection onto $a: Il is the following Fourier multiplier

HA = 971)(3(0,/\)?. (6)

By means of a thermodynamical limit, Hainzl et al. showed in [HLS0O7] that the
formal minimizer and hence the reference state should not be given by Iy P° but
by another projector PO in H that satisfies the self-consistent equation in Ha:

739—% = —sign(DO)7
o p 0P D=y @
2z -yl

We have P2 = X(_o0,0)(D").
In $), the operator D° coincides with a bounded, matrix-valued Fourier multiplier
whose kernel is ﬁf{ c 9.

The resulting BDF energy Egpr is defined on Hartree-Fock states represented by
their one-body density matrix P:

N ={P e B®a), PP=P*=P, P-P° € G2(H1)}.

This energy depends on three parameters: the fine structure constant a > 0,
the cut-off A > 0 and the external density v. We assume that v has finite Coulomb
energy, that is

D(v,v) = ar [ B 4y (8)
|Fe[?
R3

v(@)*v(y)

= dxdy whenever this

Remark 2. The Coulomb energy coincides with  [[
R3 xXR3

integral is well-defined.
Remark 3. The operator D° was previously introduced by Lieb et al. in [LS00] in
another context in the case alog(A) small.

Notation 2. We recall that B($a) is the set of bounded operators and G, () the set
of compact operators whose singular values form a sequence in (¥ [RS75, Appendix
IX.4 Vol I1], (p > 1). In particular G () is the set Comp($H4) of compact
operators.

Notation 3. Throughout this paper we write
m = inf o (|D°]) > 1, 9)

and

P i=Ta — P = X(0,400)(DP"). (10)
The same symmetry holds for P and P{: the charge conjugation C maps Ran P°
onto Ran PY.

MINIMIZERS AND CRITICAL POINTS

The charge of a state P € .4 is given by the so-called P°-trace of P — PY
Trpo (P —PY) = Tr(PL(P - PL)P2 + PL(P — PY)PY).
This trace is well defined as we can check from the formula [HLS05a]
(P—-P°)? =PL(P PP —P2(P - P2P. (11)

Minimizers of the BDF energy with charge constraint N € N corresponds to ground
states of a system of N electrons in the presence of an external density v.



The problem of their existence was studied in several papers [HLS09,
[Soki3]. In [HLS09], Hainzl et al. proved that it was sufficient to check binding
inequalities and showed existence of ground states in the presence of an external
density v, provided that N —1 < f v, under technical assumptions on «, A.

In [Sok12], we proved that, due to the vacuum polarization, there exists a mini-
mizer for E3pp with charge constraint 1: in other words an electron can bind alone
in the vacuum without any external charge (still under technical assumptions on
a, A).

In [Sok13], the effect of charge screening is studied: due to vacuum polarization,
the observed charge of a minimizer P # P2 is different from its real charge Trpo (P—

PO).

Here we are looking for a positronium state, that is an electron and a positron
in the vacuum without any external density. So we have to study E3pr on

M= {PeN, Trpo (P-P°) =0}, (12)

From a geometrical point of view .# is a Hilbert manifold and £3pr is a differentiable
map on ./ (Propositions [I and [2I).

We thus seek a critical point on ./, that is some P € .#, P # P° such that
V&%DF(P) = 0. We also must ensure that this is a positronium state. A good
candidate is a projector P that is obtained from P° by substracting a state ¢_ €
RanP® and adding a state ¢, € Ran PE)H that is

P =P+ ) (s] — )| (13)

But there is no reason why such a projector would be a critical point. If it were that
would mean that there exists a positronium state in which, apart from the excitation
of the virtual electron giving the electron-positron pair, the vacuum is not polarized.

Keeping ([I3) in mind, we identify a subset .#« C .#, made of C-symmetric
states.

Definition 1. The set .#+« of C-symmetric states is defined as:
Me ={Pc.#,-CP-PHYC=P—-P°}. (14)
Remark 4. Let P € Mw. As —C(PY —P)C =P — PJ, writing
PP =1(P—(Ix-P)—P2+PY),

there holds:
Pe Mo = P+ CPC=1l,, (15)

that is
VP e Me, C:Ran P — Ran(Ily — P) is an isometry.

The set .#+ has fine properties: this is a submanifold, invariant under the gra-
dient flow of E3pr (Proposition B)). Moreover it has two connected components &1
and &1 (Proposition H). In particular, any extremum of the BDF energy restricted
to .« is a critical point on .Z.

So we are lead to seek a minimizer over each of these connected components: the
first (&) gives P2, which is the global minimizer over .4, but the second gives a
non-trivial critical point. It corresponds to the positronium and is a perturbation of
a state which can be written as in (I3]).

Our main Theorems are the following:

Theorem 1. There exist ao, Ao, Lo > 0 such that if @ < ag,A™! < Agl, and
alog(A) < Lo, then there exists a minimizer of E3pr over &-1. Moreover we have
. 0 Oé2m 3
E1,1 = lrlf{(‘:BDF(,P)7 P c éfll} <2m+ WECP + O(a )7
1



where Ecp < 0 is the Choquard-Pekar energy defined as follows [Lie77]:
Eop = inf {|Voll}= — D(161%,161), ¢ € L2(R), |glp2 =1} (16)

Theorem 2. Under the same assumptions as in Theorem [, let P be a minimizer
for E11. Then there exists an anti-unitary map A € A($4), and P(I)J of form ([@3)
such that

P=ct 1,16’4,

eAq/)s = 1/)57 €€ {+7_} and 77/1— = Cq/”m

17
A=[[4,P2),P] € &a(n), lIAlls, < o, ()
and CAC = A.
Moreover, the following holds:
a’m 3
Ei1 =2m+ WECP + O(a”). (18)

We emphasize that ¢ does not represent the electron state.
Theorem 3. Under the same assumptions as in Theorem [, let P be a minimizer
for E11 and Qo = P — PO Let T be
T = X(—00,0) (HADQOHA). (19)

Then there holds Ran (IIx — ) N RanP = Ctpe. The unitary wave function .
satisfies the equation

DQO'l/Je = Me¢e7 (20)
where e is some constant

K0a2 <m— pe < Klaz, Ko, K1 > 0.
By C-symmetry 1, := Ct)e satisfies Dgyty = —pethy, and we have

P =7+ [the) (e] — |00 (tu]. (21)

Moreover the following holds. We split 1. into upper spinor . € L*(R3,C?) and
’ 2
lower spinor x. € L*(R* C?) and scale . by \ == %:

Pe(x) := )\3/2<pe ()\:c)

Then in the non-relativistic limit o« — 0 (with alog(A) kept small), the lower spinor
Xe tends to 0 and, up to translation, @. tends to a Pekar minimizer.

Remark 5. As 1. and 1, = Ctp. have antiparallel spins, the state P represents one
electron in state 1. and the absence of one electron in state 1, in the Dirac sea,
that is an electron and a positron with parallel spins.

Remark 6. To prove that @, tends to a Pekar minimizer up to translation, it suffices
to prove that its Pekar energy tends to Ecp [Lie77].

Notation 4. Throughout this paper we write K to mean a constant independent of
a, A. Its value may differ from one line to the other. We also use the symbol <:
0 < a < b means there exists K > 0 such that a < Kb.

REMARKS AND NOTATIONS ABouT D°
D has the following form [HLS07]:
0 . . v .
D" = go(—iV)B —icx - ﬁgl(—zV) (22)

where go and g1 are smooth radial functions on B(0,A) and & = (e;)}—;. Moreover
we have:

Vp € B(0,A), 1 <go(p), and |p| < g1(p) < |plgo(p)- (23)



Notation 5. For alog(A) sufficiently small, we have m = go(0) |[LLIT, [Sok12].
Remark 7. In general the smallness of a is needed to ensure technical estimates
hold. The smallness of o log(A) is needed to get estimates of D°: in this case D° can
be obtained by a fixed point scheme [HLS07, [LLI7|, and we have [Sok12l Appendix
Al:

90(0) = 0, and [|golz=, (g0 |~ < Ka

lg1 — 1z~ < Kalog(A) < 5 and [[gi|[z < 1.

(24)
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2 Description of the model
2.1 The BDF energy

Definition 2. Let a > 0,A > 0 and v € S'(R*) a generalized function with
D(v,v) < +oo. The BDF energy Epp is defined on .4 as follows: for P € A
we write Q := P —PY and

EBor(Q) = Trpo (D°Q) — aD(pa,v) + 5 (Dlpas pa) — QI )

: (25)
Vi €, pa(e) i= Tres (Q(e.2). QU = [ 420 dady,

where Q(z,y) is the integral kernel of Q.
Remark 8. The term Trpo (DOQ) is the kinetic energy, —aD(pq, v) is the interaction
energy with v. The term %D(p@, pq) is the so-called diract term and —%HQH%X is

the exchange term.
1. Let us see that this function is well-defined and more generally that formula (25))

is well-defined whenever Q is P -trace-class [HLS05al [IL.S09).
— We start by defining this notion. For any €,&’ € {+,—} and A € B(Hr), we write

A5 = PoAPY,.
0
The set GT’ of PY-trace class operator is the following Banach space:

6] = {Qe:(5r), @TF,Q " € &i(9a)}, (26)

with the norm

HQIIGPQ = Q" e, +1Q  llez +1Q e, +1Q7 s, (27)
1

0
We have 4" C P2 + 61}7 thanks to Eq. (II). The closed convex hull of .4 — P
0
in the GT’ -topology gives
PO .
K={Qe6&, (). Q=0 ~PL<Q@<P}}

and we have [HLS05al [HLS05D]: VQ € K, @* < QT —Q ™.
0
— For @ in GT’, we show Egpp(Q) is well defined. We have

PYL(D°Q)P’ = —|DP°|Q™~ € G1(Ha), because |D°| € B(5a),

this proves that the kinetic energy is defined.



— Thanks to the Kato-Seiler-Simon inequality [Sim79, Chapter 4], the operator Q is
locally trace-class:

Vo € CF(R), ¢lla € 62 50 6Q¢ = PIIAQ¢ € &1(L*(R?)).
We recall this inequality states that for all 2 < p < co and d € N, we have
V f.g € L*(RY), f(x)g(=iV) € &,(94) and || f(2)g(=iV)lls, < 2m)" | f]lLr g r-
In particular the density pg of @, given by the formula )

Vo € R, po(z) = Trea (Q(x, x))

is well defined. In [HLSO05al Hainzl et al. prove that its Coulomb energy is finite
D(pq, pq) < +oo. By Cauchy-Schwartz inequality, D(v, pg) is defined.
— By Kato’s inequality

1 s
— < —|V|, 29
BELIN (29)

the exchange term is well-defined: this implies that ||Q||%, < ITr(|VIQ*Q).

— Furthermore the following holds: if a@ < %7 then the BDF energy is bounded from
below on K [BBHS98] [ALS09]. Here we assume it is the case.

2. For Q € K, its charge is its P%-trace: ¢ = Trpo (Q). So we define charge sectors
sets:
VgeR? K':={Q €K, Tr(Q) = q}.

A minimizer of Egpp over K is interpreted as the polarized vacuum in the presence
of v while minimizer over charge sector N € N is interpretreted as the ground state
of N electrons in the presence of v. We define the energy functional Fgpp:

Vg eR®, Egpr(q) = inf {Expr(Q), Q € K7} (30)

We also write:

K% :={Q € K, Trpo (Q) =0, —CQC = Q}. (31)

0
Lemma [ states that this set is sequentially weakly-* closed in GT’ (HA)-
Notation 6. For an operator Q € G2($a), we write Rg the operator given by the

integral kernel:
Qz,y)
Ro(x,y) := .
e(z,y) o=yl

2.2 Structure of manifold
We define
¥ ={P-P%, P"=P>=PeB$ar), Trpo (P—PL) =0} C &2(H).
Up to adding P°, we deal with
M=PL+¥ ={P, P*=P>=P, Trpo (P-P2) =0}

From a geometrical point of view, we recall that these sets are Hilbert manifolds: ¥
lives in the Hilbert space G2($a) and .# lives in the affine space PO+ G2(9H4).

Proposition 1. The set .# is a Hilbert manifold and for all P € 4,

Tptl ={[A,P], Ac B($Hr), A" = —A and PA(1 — P) € G2(Ha)}. (32)
Writing
mp = {A € B(Hr), A" = —A, PAP = (1-P)A(1-P) =0 and PA(1-P) € &2(Hr)},
(33)

any P1 € A can be written as Py = e*Pe= where A € mp.



0
The BDF energy Eppy is a differentiable function in 671)’ ($HA) with:

YQ.6Q €S, (94), dE4pr(Q) - 6Q = Trpo (DaubQ).

0 ) (34)
Do, :=D" + a((pQ — V) % - RQ).
We may rewrite (34) as follows:
0
VQ,6Q €&, (H4), d€kpr(Q) - 6Q = Trpo (T1aDg, 1A5Q) (35)

Notation 7. In the case v = 0 we write Dg := Dqo.

Proposition 2. Let (P,v) be in the tangent bundle T.# and Q = P — P°. Then
[[IaD@Ila, P, P] is a Hilbert-Schmidt operator in Tp.# and:

AE%r(P) -0 = T&“(HHADQHA, P, P}u). (36)

Remark 9. The operator [[IIxDglla, P], P] is the "projection" of IInDglIx onto
Tp.#. 1t properly defines a vector in the tangent plane which is exactly the gradient
of E3pp at the point P.

VP €., VEpr(P) = [[TIaDgll4, P], P]. (37)

We recall .#« is the set of C-symmetric states (I4).

Proposition 3. The set #¢ is a submanifold of .# , which is invariant under the
flow of EXpp. For any P € M« , writing

mp = {a € mp, CaC = a}, (38)

we have
TpMy ={[a,P], acmf} ={veTps#, —CoC = v} (39)

Furthermore, for any P € .#« we have
pp_po =0. (40)
Proposition 4. The set .#« has two connected components & and &-1:
VP € .My, PEE <= DimRanPNRanP = 0[2]. (41)

In particular, & contains P° and &-1 contains any P° + |¢) (1| — |Cep)(Cyp| where
¥ € RanPY.

We end this section by stating technical results needed to prove Propositions [Tl
and [l

2.3 Form of trial states
Theorem 4 (Form of trial states). Let Pi, Py be in A and Q = P1 — Py. Then

there exist My, M_ € Z4 such that there exist two orthonormal families
(a1,..., aM+) U (€4)ien in RanPﬂ7

(a-1,...,a—n,)U(e—i)ien in RanP?,

and a nonincreasing sequence (\;)ien € €2 satisfying the following properties.

1. The a;’s are eigenvectors for Q with eigenvalue 1 (resp. —1) if ¢ > 0 (resp.
i<0).

2. For each i € N the plane I1; := Span(e;, e—;) is spanned by two eigenvectors f;
and f—; for Q with eigenvalues i and —\;.



3. The plane 11; is also spanned by two orthogonal vectors v; in Ran(l — P) and
v—; in Ran(P). Moreover \; = sin(0;) where 0; € (0, 3) is the angle between
the two lines Cv; and Ce;.

4. There holds:

M_

Q= Zml az|—2|a@ asil + DN (F)] = 1F-3) (5.

JEN

Remark 10. We have

Q**-Zlaz (as| + > sin(0;)%[e;) (e,
Jen (42)

*=—Zlaﬂ- (ail =D sin(0;)*e—j){(e—|-
i=1

jEN

Thanks to Theorem M} it is possible to characterize C-symmetric states.

Proposition 5. Let v = P — P° be in Mv. For —1 < p <1 and A =€ {v,~*},
we write
A
E/ = Ker(A — p).
Then for any p € o(v), we have CE] = E7 . Moreover for |u| < 1: if we decompose
E)® EZM into a sum of planes Il as in Theorem[{] then each II is not C-invariant
and dim £} is even. Equivalently dim E:; is divisible by 4.
Moreover there exists a decomposition

3

€
BT, = & Vi andV, J =%, & CIL.

1<i<%

where the 11}, ;’s and CII}, ;’s are spectral planes described in Theorem [4]

3 Proof of Theorem [I]
3.1 Strategy and tools of the proof

TOPOLOGIES

The upper bound in (I8) comes from minimization over C-symmetric state of

form ([I3)).

We prove the existence of the minimizer over &_; by using a lemma of Borwein
and Preiss [ALS09], a smooth generalization of Ekeland’s Lemma [Eke74]:
we study the behaviour of a specific minimizing sequence (Pp)» or equivalently
(P, —P°% = Qun)n.

Each element of the sequence satisfies an equation close to the one satisfied by a
real minimizer and we show this equation remains in some weak limit.

Remark 11. We recall different topologies over bounded operators, besides the norm

topology ||| [RST5].
1. The so-called strong topology, the weakest topology 75 such that for any f € Ha,
the map
B($r) — Ha
A - Af

is continuous.

10



2. The so-called weak operator topology, the weakest topology Tuw.o. such that for
any f,g € Ha, the map

is continuous.
0

P .
We can also endow &, = with its weak-* topology, the weakest topology such that
the following maps are continuous:

6~ — C
Q = Tr(A@M+Q ) +4:(QT +Q ™M)
V (Ao, A2) € Comp($Ha) X S2(Ha).

We emphasize that the weak-* topology is different from the weak topology (where
Comp($4) must be replaced by B(Ha)).

The following Lemma is important in our proof.
0
Lemma 1. The set K& (defined in B1))) is weakly-+ sequentially closed in (‘5?7 (Ha).

We prove this Lemma at the end of this Subsection.

BORWEIN AND PREISS LEMMA

We recall this Theorem as stated in [HLS09]:
Theorem 5. Let M be a closed subset of a Hilbert space H, and F : M —

(=00, +00] be a lower semi-continuous function that is bounded from below and not
identical to +o00. For all e > 0 and all w € M such that F(u) < inf +&2, there
exist v € M and w € Conv(M) such that

1. F(v) < infaq+e?,

2. Ju—v||n < Ve and ||v — w|ln < +E,

3. F(v) +¢|lv — w||3 = min {F(2) + ||z — w||3, z € M}.

Here we apply this Theorem with H = G2(Ha), M = &1 — P2 and F = EXpp.

. . . PO . -
The BDF energy is continuous in the &; ~-norm topology, thus its restriction

over ¥ is continuous in the G2(HHa)-norm topology.
This subspace H is closed in the Hilbert-Schmidt norm topology because ¥ =
M is closed in G2(Ha) and &1 — P° is closed in V.

Moreover, we have
j S

Conv(&_1 —P%) * c KY%.

For every n > 0, we get a projector P, € &1 and A, € K% such that P, that
minimizes the functional

Fp:Pcé 1 Epr(P—P) +e|P-P% - A%,
We write
Qy =Py —P°, Ty:=Qy— Ay, Dg, :=1ar(D° — aRq, +210)a. (43
Studying its differential on Tp, .#Z+%, we get that
[Dq,, P;] = 0. (44)
In particular, by functional calculus, we get that

[77,P,] =0, 7, := X(—o0,0)(Da,)- (45)

11



We also write _
Tl'ﬁ = X(0,+oo)(DQn) = HA - 71',7 (46)

We can decompose $a as follows (here R means Ran):

9 = R(P))NR () GR(P,) NR(m}) OR(IIs - Py) NR(my ) OR(IIs — Py) NR(w).
(47)

We will prove
1. Ran P N Ran ﬂﬁ has dimension 1, spanned by a unitary 1, € Ha.

2. As 7 tends to 0, up to translation and a subsequence, 1y — e # 0, Qn — Q.
There holds @ + PO e &_1, 1. is a unitary eigenvector of HADEH A and

Q+ P = X(o0,0) (TaDgIIa) + [the) (W — |Cipe) (Cipel.

In the following part we write the spectral decomposition of trial states and prove
Lemma [l

SPECTRAL DECOMPOSITION

Let (Qn)n be any minimizing sequence for E1 ;. We consider the spectral decom-
position of the trial states Qn: thanks to the upper bound, Dim Ker(Q, — 1) = 1,
as shown in Subsection

There exist a non-increasing sequence (\j.)jen € €2 of eigenvalues and an or-
thonormal basis B,, of Ran Q,:

Bn = (1/}’"'7 CT/}n) U (e?;’m eg;ny Ce?;ny Ce?;n)y Pgwn = Pge;;n = 07 * € {a7 b}7 (48)

such that the following holds. We omit the index n:

VjieN, e = —Ce?, eb,j = Cej, (492)
1-X; [ESY
f’f = J et, + J e -
J 2 J 2 6 (49b)

* L 1+X; % 1+X; %
f*j = TV 2 et + 3 €5

@n = [n){n] = ICY)(Ctbnl + 3 Aidsin
j>1 (49¢)
Qjin LT = P20 250+ YT = 12251,
Remark 12. Thanks to the cut-off, the sequences (¥, )» and (ej.n)n are H'-bounded.
Up to translation and extraction ((nx)r € NV and (z,,)r € (R*)Y), we assume
that the weak limit of (¢)r is non-zero (if it were then there would hold E1 1 = 2m).
We consider the weak limit of each (e,): by means of a diagonal extraction, we
assume that all the (ejn, (- — Zn, ))rx and (¥, (- — Tn, )k, converge along the same
subsequence (nx)r. We also assume that

Vj €N, Ny = w5 (1); € €%, (13); non-increasing, (50)

and that the above convergences also hold in L?,. and almost everywhere.

Proor or LEMMA [I]

Let (Qn)n be a sequence in K% that converges to Q € K in the weak-* topology
of Glpg, that is:
V(Go, G2) € Comp(Ha) X G2(Ha) :

{ﬂ(@i%) 2 QG and Tr(QitGy) = T(QFGa),

n——+oo

TI"(QI+G0) j TI‘(Q++G0) and T‘I‘(Q;iGo) — TI"(QiiGo).

n——+oo

12



In particular we have S := sup,, ||Qn|ls, < +0o0 by the uniform boundedness princi-
ple. The C-symmetry is a weak-* condition: for all ¢1, 2 € Ha:

Tr( — CQnClg1)(d2]) = —(QnCoh1, Coo)
thus —CQC = Q. There remains to prove that Trpo (Q) = 0.

We consider the spectral decomposition of P, := P° + Q,. We know that this
is compact perturbation of P2, thus its essential spectrum is {0,1} and there exist
an ONB of H,:

(ekin)ity U (fiin)jen U (gjin)jen, K1 € Zy

and two sequences (7:n);, (sj:n); in [0, ) that tend to 0, such that

Ky
1
Pu= 33 lexm)(ensnl + 3 {rsinlfin) (Fronl + (1 = 850)lgson) (g5in }-
k=1 JEN

Our aim is to prove we can rewrite P, as follows:
Pn = Fn + 77“
Y = th;n(|¢jm><¢jm| - |C¢j;n><c¢j;n|)7

B J
Pn c -//%7 2zjtj;n S TI‘( IJF - Q;i)v
(¢jin); U (Cdjin); orthonormal family.

(52)

Let us assume this point for the moment. Up to extraction, it is clear that the
weak limit 7 __ of (7,,) has trace 0: the eventual loss of mass of (¢;;n)» is compensated
by that of (Cejin)n: |¢sm(2)|> = |Cojin(x)|? for all 2 € R®. So the weak limit of

tj;n(|¢j;n><¢j;n| - |C¢j;n><c¢j;n|)

has trace 0.

The same goes for Q,, := P, — P2. We write S := limsup,, Trpo (@,) < 4.

n

We decompose each Q,, as in [@J) and take the same notations. We may have

D, = Dim(Qi —1) > 2 but the sequence (Dy ) is bounded by S. There is at most
2 different 1;;, in the spectral decomposition of @, (j =1,...,[%]).

We study the weak-limit of the ¢);.,’s and the €},,,’s: there may be a loss of mass.
However from ([@2]), we see that the loss of mass in 1;,, is compensated by that of
Ctpjin, and that of €},,, is compensated by that of CeJ,,.

The subscript co means we take the weak limit. If the sequences of eigenvalues
()\;); € €% weakly converges to (u;); € €%, then we get that

Q= D o) Wioel D5 { 16500 (Efrool + € oe) (€l |

1<5<|S/2] JeN
N 2 a a b b
D DI [ TS I Py Sy S L S E E T
1<j<15/2] JEN

where [1)j,00 > = [¥—j.0|” Tesp. |} o|” = €% o |*. Thus
QT +Q ) =0.
Proof of (52) The condition —CQ,C = @, is equivalent to CP,C = Iy — Py,
so for any i € R we have
CKer (P, — p) = Ker (P, — (1 — p)).
Up to reindexing the sequences, we can assume that 7;;, = s, and up to changing

the ONB, we can assume that g;;, = Cfj;n. Let us remark that

Ko
CB,C = B,, where B,, := % ;1 |ekn) (€xinl.
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0
As shown in [HLS09, Lemma 15, Appendix BJ, the condition Q,, € 6?’ gives

__ K,
Qi Q7)) = 5+ D {rlPLfialte + (=) [P fale |
j=1
+ {0 = 55m)PLgsnllie + 55 P giinllZa |
j=1

which implies
K
7 + Z(Tj;n + Sj;n) < T‘r'pg (Qn)

j=1

In particular we can write
P, :?n+7n+Bn7
Y= D (i) (Frml = [CLjin ) (Crinl),

j>1
Pl = |Cfin)(Clinl.
j>1
0
Both v, and B, are trace-class, thus P, —P° € (‘5?7 We know that Trpo (P, —P°)
is an integer [HLS05al, this gives

K
%ZK@GN.

Let us prove that we can decompose Ran B,, as follows:

1
Ran B, = F,, ® CF,,, Dim F,, = Kp. (53)

This ends the proof: we have
1
B, = Proj(CF,) + 3 (Proj(Fn) — Proj(CFy))
where Proj(F) is the orthogonal projection onto E. We choose then

P, := P, + Proj(CF,),
Y i=Yn + 3 (Proj(F.) — Proj(CFy)).

Let ¢ € Ran B, with C¢ ¢ C¢. Else, we take ¢ L ¢' with
Co=ep, Co' =e¢, 0,0 €R.

Up to considering e*/24 and ¢**'/2¢' we may assume that Cé = ¢, C¢/ = ¢'. Then
writing )
P+ = E(d}i i¢')
we have (C¢y , ¢4) = 0, which is absurd.
Let us consider Span(¢, C¢) and assume ||¢||z2 = 1. Thus z = (C¢, ¢) = —re®?
with 0 < r < 1. There exist a,b € C such that

(C(ag + bCo) , ad + bC) = 0.
—i0/2 i0/2

If r = 0 we take a = 1 and b = 0, else it suffices to take a = rge and b = rie

where ro, 71 > 0 are any number that satisfies

70 T1
— 4+ ==

3N

1 To

This is possible because as 0 < r < 1 we have % > 2. By an easy induction, we can
write Ran By, as in (G3).
O
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3.2 Upper and lower bounds of F, ;
UPPER BOUND

We consider trial states of the following form:

Q = [V) (] — |CY)(CY, Y]z =1 and P2y =0

The set of these states is written £%;. We will prove that the energy of a particular
Q gives the upper bound. For such a @, the BDF energy is simply:

2
2D, ¥) - 5 fiw A;%zl’y)' dzdy. (54)

Following [Sok12], we take ¢cp € L*(R*,C) the unique positive radial minimizer
of the Choquard-Pekar energy. We know that this minimizer is in the Schwartz class
(here we just need it to be in H?). We form the spinor:

¢:=(gor 0 0 0)7,
and scale ¢ by a constant A~! ~ « to be chosen later:

ox(2) = A0 (x/N).
We define ¢y := IIx¢x and write:

Pl P2 Cepy
= —" " —and ¢Y_ ;= —————— = Ct)y. 55
Y P YT PO Y (58)
Let us compute the energy of
Qo == [P ) (b | — [ ) (¥-|. (56)
We have:
1Pl = [ RGP+ 2y,
B(0,A)
= [97 (0) Pgo(p) (1 — L2222 )dp + O(A™),
B(0,A)

—~ ’ 2
[0A ()] (m — L2 dp + O((a+ A"2)A72),
B(0,A)

=1- 4;2) lpcrlZz + O((a+A"3)A73).

Similarly the following holds:

(D[P, n) = / B (1) (P2 (0)D(0) 1 (p))sdp

B(0,A)

) 5 (90(0) + F (7)) dp

B(0,A)

mt B 2+ O+ AN,

Then we estimate:

j|Rexisstatln [ A Y- (2, y)I” |m_ W, dy—2{D(|¢+|27|1/)f|2)—D(Q/)ilﬁfﬁiq/’*)}
—2{1D(dcr . loer ) + OO?) - D(w v b))
=2{1D(lgcr [ [ocr[?) + OO},

15



Indeed we have:

IVorllpzlloallz = OATY).
[y |? * < 5V, ve)
on).

[ ep—] L
[Yio—|* 7

IA N

Thus we get that:

91(0)?
A2m

g]%DF(QO) =2m+ ||V¢cp||2Lz — %D(|¢CP|27 |¢CP|2) _,_(’)((054-)\’2))\*2), (57)

If we choose

we get the following upper bound:
m
E11 < Epr(Qo) = 2m + o ———

(0)? Ecp + 0(a®). (59)

A PRIORI LOWER BOUND

Let Q € .# — P° be an approximate minimizer such that

m
3 |Ecp| < 2m.

g]gDF(Q) < Fi1+ 052W

Our aim is to prove the following

E1,1 —2m —1{0527
T (|VIQ?)

Ka.

IN IV
=
=

We have

2m

<3
1-0{1

™
(1 - aZ)Tr(|DO|Q2) < &pr < 2m so [|Q|I&, <

However ||Q||&, > Dim Ker(Q*—1) = 2Dim Ker(Q — 1), thus @ has the form written
in ([@9); in particular we have:

Q = [¥) (W] = C){CY| +7, ¢ € Ran(PY), ¢4 := ¥, ¢ := Cy € Kern.

Let us remark that v+ P2 € .#. The energy of Q is:

Cp(z,y)|

g&m@>:agﬂw+mm%wmm—§j[WAM_M dady—a Y (R, ).

ee{+,—}
(61)
We substract 2m: as ¢g5(0) = 0 and ||g¢ ||z < Ka [Soki2l Appendix A], we have

1
|%@—Mgﬁ/W¢wmuwngwi
0
thus:

B (p) — m = 90+ (90p) = m)(g0(p) +m)

E(p)+m
_ 00’(1 - Ka)
B 2E (p)

Going back to the energy, we have by Cauchy-Schwartz inequality:

(e s Bytpe)| <IN llmx[Vllme, Nlthe] = [3he)(9e.

16



The quantity || N[:]||#x is simply D(|1<|?, [¢]*) and we get:

20, o
(1 - Ka) (G5 g ) 4 T(D°]y?) < Kia? + 20D (W2, 10f2) + 2 [

(1 - Ka) (G5 ) 4 (1 - 32) Te(1D°]y) < Kia? + am(| V], 4).

Now we have:
2 ~
(1- Ka) Ep( ) > 2alp| < p® >40*(1 — Ka)E (p)°. (62)
b

We can take K = ||go||zo~: this inequality holds for
2c oo 11—« oo
Ip| > o = ||902||L, \/2 llgoll . (63)
V1=4a?[gillf~ (1 — allgollr>)

If we split (|[V|, ¥) at level |p| = ro, we have:

L= HgOHLma<9f(7N)¢y Py + (1 — —3aﬁ)Tr(|DO|’Y2) < Ki0® 4 are < o2, (64)

2 1201 4
and
(IV[Y, ) < o (65)
Substituting these estimates in (G1), we get:
0 2 m 2
El,l —QmZSBDF(Q)—2m+o¢ WECP Z —Ka”. (66)

FORM OF A MINIMIZER FOR Fi 1

If a minimizer P € & exists, then it satisfies the following:

P=P% +Q =P+ |th+)(¢+]| — |Cyo1 ) (Cs | +
P+, Cy € Kerry, Plepy = 0.

Moreover the proof of the lower bound ensures that ||v|/e, < a. So let Py, be:
POy =P + [y ) (i ] — |C¥oy ) (Cooy .
Then we have [P}, — Plls, = ||7]|ls, < @. Using Propositions [ and B we write

P=e"Pl e Ac mfgl
where there exist (6;); € 2 decreasing and Ko > 0 such that
—+oo
e, = 4Zsin(9j)2 < Koa?, thus
j=1
2 g2 T 2
IAIS, =467 < —~ Koo

Jj=1

Assuming Theorem [ this proves the description of Theorem
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3.3 Existence of a minimizer for F ;

We consider a family of almost minimizers (P, )» of type (3] where (n,), is any
decreasing sequence. We assume that A2« 2n, is small. We also consider the
spectral decomposition @3J) of any @, := P,, — P°.

For short we write P, := P,, and in general replace the subscript 7, by n.

— We study weak limits of (Qr)n. We recall that Ct, = Ker(Q, — 1), and

Qn = [n)(n| = [Cn)(Cihn| + Y0, ¥n, Cihn € Keryn. (67)

— We first prove that there is no vanishing:

Indeed, let us assume this is false. Then for any A > 0 the following holds:

1 1/2
D(unlenl?) < g +20{ swp [ nta)faz}
ZERSB(Z 4

where we have used Cauchy-Schwarz inequality and Hardy inequality. In the limit
n — 400 and then A — 400, we have: limsup,, D(|1/;n|27 |1/;n|2) =0.
There holds a priori estimates (60): using Kato’s inequality we would get

liminf E3pp (Qn) > 2lminf (| D[4y, , ¥n) + lim inf ERpp(yn) > 2m.

Thus, up to translation, we assume that Q, — Q- # 0.
— As the BDF energy is sequential weakly lower continuous [HLS05b], we have

E11 > Eppr(Qoo)-

Our aim is to prove that Qe + P2 € #«: in other words that Qo is a minimizer
fOI" E1’14
— The spectral decomposition (G7) is not the relevant one: let us prove we can
describe P, in function of the spectral spaces of the "mean-field operator" Dg,, : the
first step is to prove (G9) below.

We recall that Q,, satisfies Eq. (@), that we have the decomposition (@T]).

The following holds:

s 0 1/2 1/2

(D@, tn s $n) = (D[, tn) + O(all [V * Pl 2] V]2 Qllez + 1Tl e2)

= (ID°[ton , ¥n) + O(0”) 2 m — Ko,

Thus Ran P,NRan =’} # {0}. Let us prove this subspace has dimension 1: we use the
minimizing property of . The condition on the first derivative gives (@), what is

the condition on the second derivative ? For any A € mfw expanding e P,e™* — P,
in power of A, we get that the Hessian Hessp, (F) of F,, := Fy,, at point P, is

VYV € Tp, Me, A= [V,Pn],
HeSSFn (P”l; V7 V) = T\r(ﬁQn (A2P7L - AP"A)) + n"LHVHéz - %”VH%X'

This Hessian is non-negative. For any unitary f L ¢ in Ran(IIx — P,) we choose
A= |f){=Cgl = | = Ca){f] + 9)(CS] = IC) (gl € mE,.

As —CEQHC = EQH, the condition on the Hessian gives

2((Da.f . 1)+ (Dang, 9) +4ma = || [A,Pa] [, > 0. (68)
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We have Cv,, € Ran(IIx — P,) and
(Dq,,Cibn , Ctbn) = —(D@ythn , tn) < —m + Ko,

thus necessarily for n large, there is no plane in Ran(IIx — P,)NRan(w" ), equivalently
there is no plane in Ran P, N Ran 7.
There exists a unitary e, € Ha that spans Ran P, N Rann’. Equivalently
Yuin := Ctbe;n, spans the other one.
Thus:
P = pesn) (them| + 2. (69)
- We thus write
Qn = |[Yein) (Yesn| — |"/’v;n><¢v;n| T, = N, V- (70)
As Ran P, is ﬁ@n—invariant and that ﬁQn is bounded (with a bound that de-
pends on A), necessarily
Dq,thein = pnten, pin € Ry
The condition on the Hessian enables us to say that

m — Un +2777L > 0.

— As for 1y, there is no vanishing for (tbe,n)n for « sufficiently small: decomposing
Yy € Ran Py:
Yy = ahesn + ¢, ¢ € Ran P, NRanw” |

we have 1
la* > S+ (1Da. |, ¢) - K(a® + na|Talles))-

Provided that p, is close to 1, the absence of vanishing for v, implies that of ¥e;n.
By Kato’s inequality (29)):

D3, > D°|(1 = 2a||Rq, ID°|~*[l5 = 414 |Talls) |D°|
> D[ (1 — al|Qnllex — 47| Tnlls. )
Thus
Do,

> D°|(1 — al|@nllex — 20 ITnlle,) and pn > 1= K(a” + 7| Tnllss)-
In the same way we can prove that
lin =] S @ + mllTnls

So
Ven — the # 0.
— We decompose 7, = «" — P € & — P% as in [#9): using Cauchy’s expansion
[HLS05a], we have
1 [T dw 1

n 0
n_po_ L Y (29,Tn — allaRg, TTa + 27nTn) ———Ta. (71
T =Pl = o N D0+iw(n allyRq, IIx + 27 )DQn-&-iw A (71)

To justify this equality, we remark that |.5Qn | is uniformly bounded from below: the
r.h.s. of ([{I) is well-defined. Integrating the norm of bounded operator in ([TIl), we
get that

7 = P25 < al|@nllex + nnlTnlle, < 1.

In fact, we can also expand in power of Y, := —allaRq, IIa + 21, :
7 =P = ol M;[B.],
j=1
) 72)
1 [t dw 1 j (
MY, = —— ‘(Yn )
i) 27r/,0o DO + iw DO + iw
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We take the Hilbert-Schmidt norm [HLS05a), [Sok12)]: as ||RQnM+/2H62 < |1QllExs

we have

_ 2
Vnlle: < ll@nllex + 0l Tnlle, < o (73)
We thus write
Vn = Z)‘j;n%’;m
j=1

where ¢j;» has the same form as the one in ([49]).

— Up to a subsequence, we assume all weak convergences as in Remark ([2)): the
sequence of eigenvalues (\j;n)n tends to (u;); € €% and each (€}.,)n (with x € {a,b})
tends t0 €},00, (Yesn)n tends to .. We also assume that the sequence (fin)n tends
to p with 0 < p < m. For shot we write 1, := Cie.

~ We write P := Qoo + P2 and T := X(—c0,0)(Dq@.. ). We will prove that
L. [D(QAo)o’ﬁ] = 07
2. Dg.Ye = p1pe and so wipe = 0.
Moreover Dg. Ctpe = —uCtbe and (Ctbe , 1e) = 0.

3. T =P — [te) (the| + [Cthe) (Che .
Notation 8. We write Dg\o)o :=IIaDg 11 for short.
This all comes from the fact that

s —lim Rg,, = Rq.. . (74)

This fact enables us to show
RQ,%ein —n Rt in L?,
s.op. — lim,, (7" —P2) =7 — P in B(Ha), (75)
w.op. — limy, P, =7 — P2 + [the) (Y| — |0 ) {1y | in B(Ha).

Indeed for any f € $1 we have

1Ro.f = Rl = [ | [0 )0 ao

<1713 (5 1@n = QueliE, + 487 [f 1(Qn = Que) (o) Pdudy)

B(0,24)2

FQn - Qull, [ ISPy,
B(0,A)°

We have just split as follows: for z € R? we consider
R® = B(x, A)° U B(z, A) N B(0, A) U B(z, A) N B(0, A)°.
Taking the limsup n — 400 we get that

2
V4> 0, msupl o, f~Ra.sle < atmsuplQulis, (LI 4an [ jsPay)

B(0,A)¢

taking the limit A — 400 we get that
limsupl||Rq,, f — Rq.rll7z = 0.
n
In particular for any f € $Ha

(Ronen, ) = (Yem s Ronf) — (Ye, Roo f) = (Rowc Ve, f)-

n——+oo
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Thus Do, e =  Dqutbe, and Do e = piibe.

n——+oo

— Let us prove that
s.op. — limw” =7 (76)

We have

1 1

1
Ran oy = Fl@n = Ol I+ Row o/

and at fixed w and f

1 .
R[Qn - Qoo]mf njw 0in L2.
J
Generally for J > 1, we expand (RQn D+m) in power of R[Qn — Q] and Qoc.
We get:
Vo, f (R %)J — 0in I?
w? ) Qn DO + uu n— oo 1 N

Moreover

- —J/2 J
< B ()" |Qugrirra Il 122,

. = — J
< (limsup||QullexE (@) ™) [If 2

”(RQnﬁ)J’

L2

By dominated convergence as

dw J
wllflz2 = / o7 (@l + mlTalles) 112 < oo, (7D

we get
M;[Yalf N M;[aRg..]f in L*.

To end this argument we remark that the series Zuj is convergent for o and 7,
j=1
sufficiently small: thus we have

. 2
D_M[Yalf > > MjlaRe]f in L%,
j=1 j=1

that is (Z@) holds.
— Thanks to (@), there holds (in the weak operator topology for instance)

Qoo = 1im Qn = [the) (te| — [tow) (00| +7 — P,

that is .
P = the)(Ye| — o) (tho| + 7. (78)

In the weak operator topology we also have
w.op. —lim [Dg,,Qn +P°] = [DS) |, Qu + P,

by strong convergence of Rg,, to Rg., and norm convergence of n,I", to 0.

— There remains to prove that |¢e]lp2 = 1. We assume for the moment that
we can uniformly separate the j,’s from the remainder of the positive spectrum
o(|D@,,|)\{pn}. Let us write an the bottom of this last set: there exists e > 0 (of
order o in fact) such that for no sufficiently large:

Vn > no, an — pn > be. (79)
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In particular, we can draw a small circle in C that intersects R only at points p 4 2e.
We write C. this circle: it has been chosen such that if |, — u| < € (true for n > ny
where n1 > no is sufficiently large),

Vn > no, dist(un;Cg) > €.

By functional calculus we have

1 dz
[ein) (Wein| = i /CE Do,
We want to substract X(u—2-,.+2¢) (D(QAQ)O) If ({9 is true, then the same holds

for the limit Dg\; by strong convergence. Indeed, for any f € Ran(ﬁ+) (where
74 :=IIp —7) we have

7 f = flliz — 0.
For fi L f2in Ran(ﬁ+), there holds

. 1 = —n o —n
min (=) (D@, T4 f1, 1) + (D@, T fa, f2) = an + pin
i mfillze
— We prove the gap () for Dg\o)o by taking the liminf. Thus, we can isolate the
bottom of o (|A]) for A = Dg, or A= Déonl by the same circle and get
1

e ape] = =

|w5§”><wﬁ§”|_ ||1/]€||L2 %m

dz 1
/CEZ—DQn( [ ] )z—Dg\;

By dominated convergence, this operator strongly converges to 0: this proves
[Yellp2 = 1.

Proof of ([9) and estimate on FE;; This proof is based on the method of

[Sok12]: we know that
m — pn] < Ko
and that _
D@, Yein = pinte;n- (80)
In the following, we will get estimates on the Sobolev norms of 9)e;n, this will enable
us to estimate (Dq, Yein , Yein). We will use estimates on go, g1 written in ([24)).

Estimate on V1, From (80) we have

ID%einll72 —m? < Ko + 4a]|Qulle, [ Veen L2 + 4 [Tnlls,
+2/[Vipein 122 (el QnllE, + 403 |TnllS,)

and |‘v¢e;n|‘iz < o, In the same way, for n sufficiently large, we can prove that
<|v|3¢e;n7 1/’e;n> < 053-

We multiply @) by |V|"/? and take the L?-norm. We can drop all terms with
2, I',, because all the operators that we consider are bounded in H and 7, ||| s,
tends to 0 as n tends to +00. We just have to deal with |V|1/2RQn Ye;n. We recall
that in Fourier space, the following holds [HLS05a]

1 [dl ~
YQ € &2(Ha),p,q € R®, F(Rq;p,q) = %/WQ(p—&q—f)-
]R3

So, writing 2(,, the operator whose Fourier transform is given by the integral kernel

F (Un;p,q) = Ip — q|"*|Qp, )],
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we have
|7 (V1'% Ro,])| < 7 (Rayiv.a).
By Hardy’s inequality, we have
V1Y%, Rau]wen]] 2 < AUV 2Qnlles | VibenllLe < o™

As
1Ra, V12l < SHIVI2Qulles IVl 2 < 0¥/,

we have || |[V|'2Rq, temn |2 < /2 and
02 ( 3
(IVID [ thein , them) = m'[Vibem ; Yein) < o
Estimates on y.,, We scale [&0) by a™ ', that is we consider

we;n(x) = 0573/21/16;n(§)7 T e RB.
This enables us to get an estimate of the lower spinor of ve;,. We write
Qpe;n = (iﬂn) S Lz(R3, C2)2

For short we also write
gi1(p) = q1(p) . p ER’.
We write

I

_ T _
Qu(w,y) = a*Qu(=, 2) and Lu(w,y) = o~ T
The upper and lower spinors @e;, and Xe;n of ¥e;, satisifies
gi(=) o
2 )iV
o2 (pn + g0 (55))

By Hardy’s inequality, we get that

Q=
SRS

Xen —

HXe;7l||L2 = ||XemHL2 < a.

As there holds:

3/2
(—=AXein > Xem) < VI xemll2 VXeml 2V Xen ]2
we also get the following (rough) estimate

Ixesnllzz < /2.

Estimate on E;; Using (24), we have (here g, means g.(—:V))

Pe;n + ( - O‘2RQn Yesn + 20”77L&1/’e;n)¢«

(81)

(82)

2
<D0¢e;n 5 d)e;n> = <g()1/)e;7l 5 ¢e;n> + 2M7L<(9057L)2¢e;n 5 ¢e;n> + O(a(az + nn”FnHGg))

= (goe;n » Yesn) + 2m{—"1—7 9 +m)2 Gein s Pein) + O( )

91()

=m+ Zo—2|[Voeml12 + O(a?).

AS y;n = Cthe;n, we have

2
D oy = D(1pen [0enl?) + O(a).

|wen/\¢un
2 j |z — yl

Using (73)), we finally get for n sufficiently large

- ’ O 2
(Dantbern » tem) = m 4+ IO 196,125 — aD(jgenl?, [pen]?) + O(@2).

2m
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As [|esn |72 = 1 — Ka?, we get

a2

E11 > EBpp(Qeo) = 2m + ,—m250P (pem) + O(a?),
91(0)

/ 2
where Ecp denotes the Pekar energy and @ooy, is the scaling of e by 2L

am
We already have an upper bound of FE;i: it has the same expansion with

Ecp (npe;n) replaced by the smallest possible value Ecp. As there holds

Ecp (@e;n) > (1- ||Xe;nH2L2)3ECP
we thus have
Eop (pen) = Eop + O(a), (84)

and )
o

n — 2m————=F 3 .
fn =M + mgi(0)2 cp + O(a”) (85)

Thus pun < m for a sufficiently small. Are there other eigenvalues in (0, m) 7 As
the Hessians are non-negative (see (68])), we have

71D, | C [ = 20a, +00)
Let &, L ¢y in Ran € (w7) and s, € (ftn — 275, m) such that
Da,én = snén.
By the same method as before used for v.;,, we can prove the following:
IV€nllze S o | IIVI*26nllz2 < o™,
1(€n)illze S 0, | IV (En)illze S a2,

The arrow | means we take the lower spinor (which is in L?(R* C?)). In particular
we have

91(0)?
2m

sn = (D@, &n, En) =m + IVénl2e — aD(Extbein; Entbesn) + O(a®?).

Remark 13. We have lost a'/? due to the rough estimate ||V (&,) ]2 < /. We
can prove that this quantity is of order o, but the proof is technical.

Estimate on ¢, We know that 1., is close to a Pekar minimizer: its Pekar
energy is

Ecp +0(a”?).

For o sufficiently small, we know that this gives information about the distance
between 1., and the manifold & of Pekar minimizer |[Len09]:

dist ;71 (Yesn, 2)° < KEcp(ein) — Ecp.

The notation dist ;1 means the distance in the H*-norm.
This result is stated in L? (]R37(C)7 but it is not hard to prove it is also true in
L*(R?,C*): in this case & is isomorphic to R* x S§* (and not simply to R* x S').
91(0)?

If £, denotes the scaling of &, by 3~ there holds
91(0)* - 2 . . 2/3
D (o —m) = IVEal22 — D& tn, " ton) + 0. (86)

Eventually by replacing te;, by its projection ¢¢p onto &2, we also have

N

91(0)
2a2m

(sn—m) = |[Véall72 — D(&n" dtp, &n"d0p) + O(a?). (87)
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Proof of ([J) We just have to study the spectrum of o(—A—R(|¢p¢p) (pdp])),
and precisely its negative eigenvalues. Its smallest eigenvalue is Ecp with eigenvector
¢ép. Now we seek the second smallest eigenvalue, that is

For = inf {(( = &= R(198p)(6&p)) S, ), [ L oEp € H', |Ifli2 =1} (
By studying a minimizing sequence, we get
Fep > Ecp. (89)

By continuity the same holds for the spectrum of —A — R(|the;n)(Yein|): for o
sufficiently small (and n sufficiently big) its smallest eigenvalue ¢, has multiplicity
one and its second smallest eigenvalue ¢, is away from t,, uniformly in « (and n):

~ Fop — E,
tn—tn>¥>0.

As a consequence, we get from (BE) the following;:

2

— fn > g(f(o) (Fcp Ecp) +O(« 7/3) (90)

and (79) holds.

3.4 Proof of Theorems 2] and

In fact, it suffices to follow the proof of Theorem [Tt instead of having an almost
minimizer, we deal with a real minimizer P = Q + P°. Technically speaking, we
just have to drop the term 7,1I',, in the equations and by the same method we prove
the following.

1. There exist 0 < © < m and a wave function . € 4 such that

{ P = [tpe) (the] — [Cthe) (Ctbe| + X(—o0,0) (1A D511a),

(91)
5 Dgllathe = pibe.

2. We have || |[V[*%e |2 < o®/2. Splitting 1. into upper and lower spinors goe and

Xe, we have ||xe|lr2 < . We write g () := A/ ?p.(Az) with A = gla((zl) The
following holds:

O¢2m -
Eiix =2m+ WSCP (SOe) + O(a 3)
=2m + WECP +0(a?), (92)
W o=m+ 2mWEcP +0(a®).

3. In the limit @ — 0 we have

lim [[xe[l 2 = 0 and lim Eop (e) = Ece.

The geometrical description of a minimizer of Theorem [Plhas already been proved
at the end of Subsection [3.2] under the assumption of existence.

4 Proofs on results on the variational set

4.1 On the manifold .#Z: Theorem [4], Propositions [I],
Proof of Theorem [4
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— As Q is a compact self-adjoint operator, we apply the spectral theorem and write

Q=" milbi)(bil,
iez*
where (pi)ien (resp. (pi)icz* ) is the non-increasing sequence of positive eigenvalues
of @ (resp. increasing sequence of negative eigenvalues).
It is clear that —1 < Q < 1. If Q¢ = 1, then necessarily P1¢ = 1 and Py =0,
analogously if QY = —1, then Pi¢ = 0 and Py = 1.
Up to index translation we have:

My M_

A=Q- {Z |ai)(as| — Z |a,i><a,,-|} = wilbi)(bil = Ay — A, (93)

1E€EL*

where A, is the sum over positive i and —A,, over negative 1.

Notation 9. For short, for any x4 € R and any self-adjoint operator S, we write
EfS = Ker(S — p) the spectral subspace of S.
Furthermore, for an operator B we write

B %2 = P()(El)BP()(Ez), €, = =+, P()(—) = 1:’()7 Po(—|—) =1-F.

— We know that

++ -~ _—0?%= < . ) < . . 215\ (b
QT Q=@ = laiail + Y lasidasil + 3w bi il
i=1 =1

iez*
In particular [Q27 Py] = 0 and all the spectral subspaces of Q? are Pp-invariant. For
any p > 0,
Q? QE @ Qtt L o -
E;ﬂ =E;®E", = Eu2 &) Eﬂﬂ .
For i € N, let ¢; be a unitary eigenvector for QT+ with eigenvalue 0 < p? < 1. We

write
¢i = Cp + cn, ¢p € Ran(A,), ¢, € Ran(Ay).

We have Apcp = picp and Ancn = —picn. Moreover ¢y, # 0, otherwise (1 — Po)cp =
¢p and

Acp = picp = ((1 — Po) — (1 — P1))cp ie. (1 — Pr)ep = (1 — ps)cp.

This would give p; = 1 or u; = 0. By the same argument ¢, # 0. We have
Pycp = —Pocn, and this vector is non-zero, otherwise (1 — Py)cp = ¢p. Thus the

2
two-dimensional plane II = Span(cp,cn) is in El?g and there exists an orthonormal

basis (e+ = ¢, e—) of II such that Poe— = e— (anld (1—Po)e = ci).
We write ¢, = ||¢p||dp and ¢, = ||cn||dn and up to a phase, we have:

ci = cos(p)dp + sin(@)dn.
There holds:
Q%ci = ples = Apes = (1 — Po)(cos(@)dy + sin(6)dn) = pis(cos(6)? — sin()*)c,

and p; = cos(2¢). We have
0? i
EY =& R.

++
— By induction over the dimension of the remainder Dim(R N E,?? ), we can de-

2 ++
compose E,?? as a sum of orthogonal planes: by symmetry there holds Dim E,?? =

i

Dim Ef;i. Each plane II is invariant under the action of @ and P% and so also
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under that P = Q 4+ PY. Therefore, there also exists an orthonormal basis (v4,v-)
of II such that Piv— = v— and (1 — P1)v+ = v4. Up to a phase we suppose that

v— = cos(f)e— +sin(f)e;+ and vy = —sin(f)e— + cos(f)e+, 0 € (0, 3). (94)
In the plane IT we thus have:
Qlm = |v-){v-| = le-)(e-].

Such an operator has eigenvalues =+ sin(6) with eigenvectors

fi= \/17si2n(9)67 + \/”Siz"(g) e+  associated to sin(6),

f-=—1/ %’"(0)67 + 4/ %n(e)(# associated to — sin(6)
O

Proof of Proposition [l In general, let P, and P» be two orthogonal projectors in
. P =UP U~" where U is a unitary operator, we have:

(95)

Py — P €Gy(Hr) <« [U,PU " € &a2(Ha) ice. [U, Pi] € S2(Ha). (96)

— For any Py € .# and any P> € .4 with ||P1 — P2||p < 1, we can decompose P, — Py
as in Theorem @ but with P; as new reference (the decomposition is the same but
with e; € Ran (1 — P1) and e_; € Ran P1):

Po—Pr= ([v-j)(v—j] = le—s){e—s]), v—j = cos(6;)e—; + sin(6;)e;
jEN
Pyw_j =v_j, Ple_j =e_;,Pie; =0 and E:sin(@j)2 < +o0.
jEN
Above we have 0; € (0, %) for all j € N. Let A be defined as follows:
A= "0(es)e—j| — le—s){e;l), 0; € (0, %),
jEN
then we have P, = eAPlefA, A* = —A and
[A,P1] = 0i(les){e—s] + le—i)(ej]) € Sa(5n). (97)
jEN
Furthermore [exp(A), Pi] € G2(Ha): for all k € N, there holds:

k—1

(A%, P = AT[A, AR,
j=0
and
+oo 1 .
—1
fexp(A), Pillle, <> E{k”[A7P1]H62”A”B = [I[A, Pr]llesexp [|Alls. (98)
k=1

Let us call this A the canonical antiunitary operator Lp, (P2) associated to Pa: we
will see it does not depend on the choice of eigenvectors e;.
Remark 14. In the case |P— P1||s = 1, we have 1,—1 € o(P> — P): indeed P, — P,
may be decomposed as in ([@3]) with M4 = M_ because Tr(P, — P1) = 0.

We still have Py = e Pre”# with

A= gf 5 (laa) (=il = la=i){ail ) + >0, (les)e—s| = le=i)esl),  (99)

where a;,e; € Ran(l — Py) and a—;,e—; € Ran P; form an orthonormal family as in
the decomposition of Theorem Ml (in particular the non-zero eigenvalues in (—1,1)
are the £sin(6;)).
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— Let (mp,, ||||s,) be the set of compact operators:
mp, = {a S B(f)/\)7 ((1—P1)QP1)* = —Pla(l—P1) S Gz(ff)/\)7 (1—P1)L1(1—P1) =P P = 0}.
Remark 15. As we consider operators in B()a) we can replace 1 by IIx in the

definition.

The map ®p,

(mP170) — (%7P1)
dp, : N

100
e Pre” (100)

a

is differentiable and we have:
VA € mp,, dCI’p1 (Pl) A= [A, Pl].

This map
d‘I)pl rmp, — {[A7 Pl]7 Ae ‘mpl} =: Ran(dq)pl)

is invertible with inverse
d®.' 1 v € Ran(d®p,) > [v, Pi] € mp,.

This proves that in a neighbourhood of Pi, the corresponding part of .# is the graph
of some function Fp,.
Indeed, if we see the set

PC 4+ Ga(Hr) = P14+ G2(Ha)

as an affine space with associated vector space G2($a), then we have

S2(2) = mp, B Ran(dPp,) @ {u € S2(H1), Pru(l — Pr) = (1 — P1)uP, = 0}.
We decompose any @ € Ga($4) with respect to Ran(d®p, ) @ (Ran(d®p, ))*:
Q = v[P1; Q] + w[Pi; Q] € Ran(d®p,) @ (Ran(d®p,))™".
In a neighbourhood Vp, of Pi, the set Vp, N .# is a portion of the graph of
Fpy :v € Ran(d®p,) = Py +w[Pr; el e — i) € P+ (Rand®p, ).

— Thus for any P1 € .4, there exists a neighbourhood Vp, 3 P such that .# N Vp,
is a manifold with Tp, .# = Ran(d®p,). To conclude .Z is a proper manifold, it
suffices to compare the neighbourhood of .#Z (or prove that .# is connected): for
Py, Ps € #, we use Remark [[4] and write Ps = e Pre 4 with A € mp,. Then it is
clear that the map

((%7131) — ((%7.[33)

P Py P — eAPe4

is an isometry and that its differential t(Py, P3) is an isometry that maps Tp, .#
onto Tp,#. The map t € [0,1] — et Pe " € ./ links Py and Ps.
Moreover the map

Lo {Pe, ||P-Pls<l} — mp
e P = A

is locally invertible around P; with (local) inverse ®p,.

More generally, we can prove that the restriction of ®p, to the a € mp, with
llalls < % is one-to-one: it suffices to consider the spectral decomposition of a and
link spectral subspaces with rotations.

O
Proof of proposition
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Remark 16. 1. We recall that if P and P» are two projectors such that P — P>
is Hilbert-Schmidt, then

Ae 6t «—= Ac&and Trp, (A) = Trp, (A). (101)
2. For any A € B and any projector P we have:
[[A,P],P]=(1—-P)AP+ PA(1 - P). (102)
If we restrict Epr to A, using (I0I) and ([02) we get that for (P,v) € T.4:
d€gpr(P) - v = Trp(IIaDp_po av) = Trp ([[HaDp_po Ia, P], Plv). (103)
We write Q = P —P°, w = X(=o0,0)(ITaD@IIA) and I' = P — 7. We have:

PHADQHA(I — P) = (71' + F)HADQHA(l — T — F)7
=7 — IIADQIIAT 4+ TTIADQIIA (1 — 7) — TTIA DQIIAT.

Thus
[[Ta DoIlA, P), P] = |TIa DQIIA|T 4 T'|TIa DoITa| — 205 DQIIAT. (104)
We have:
[TIADQIIA|? = ITA(D®)? + a(IIa BoIIaD’ + DA Bolla) + o (A Bolla)?

2
< HA(D°)2(1 n aHHABQHAinv(DO)HB) 7

2
<TA(D?)? (1 + aK||Vo Ax s + 1 Ro Ax ls)

0
We have T'= (P —PY) + (P° — =) € (‘5?7 ($HA)- So the following holds:

|| [TTA DQIIA[T ||, < E(A)2 | [D°[2Tlls, (1 +a(v/Dlpa, pa) + ID°[*Qls,))*.

and
IPTIA DQITAT |, < 2|| [Ta DTIA|"?T[|7 < +oo.

4.2 On the manifold .#,: Propositions [3], 4 and

Proof of Proposition
Let P1, P> € M« such that |[P. — Pi||g < 1. Thanks to Theorem @] we know that
P, can be written as Py = e*Pie~* where A € B($4) is antiunitary and

PLAP, = (1— P)A(1L— Py).

— Taking into account the C-symmetry we can say more: thanks to (IZ) we can
follow the proof of Proposition [ with P° replaced by P;. This gives

CAC = A. (105)

Indeed there exist J C Z* with — 7 = J and (e;);es in ﬁ{ such that
1. (e;); U (Ce;); is an orthonormal basis for Ran(P> — Py),
2. foralljeJ,j>0: Piej =0 and Pie_j =e_j,

3. each 4-dimensional space Span(e;,e—;, Ce;, Ce—;) is spanned by four eigenvec-
tors f; L Cf_; with eigenvalue sin(6;) > 0 and f_; L Cf; with eigenvalue
—sin(6;).
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Then A is defined as follows:
A =305 (les) (sl = le—s)es| = 1Ce—;)(Ce;| + [Ce;)(Ce—y])
JjeT

It is easy to check ([I0f]) from this formula. Reciprocally, let A € mp be an antiu-
nitary map satisfying (I05). Then we know that e Pe~* € .#. Moreover we have
—CeC = —e?. Tt follows that

—C(e*Pe™* — P)C = Ce? C(—CPC)Ce *C + CPC,
= e (=(Ila = P))e™" + (Ia — P),
= —IIx + eApPe 4 + 1l — P = e*Pe ™ — P
In other words e*Pe™* € .#¢. Thus ®p, (¢f [OD)) is a local isomorphism from
(mp,,0) to (A, P1), and its restriction

<€
q)g ) mp — M
! a e*Pre

is well-defined and is a local isomorphism from (m,,0) to (.#«, P). There remains
to prove that for any Pi, P, € .#«, there exists an isometry of &2, that maps m;‘fl
onto mg,. If |[P1 — P»||s < 1, this isometry is given by

¢%(P1, P2) : X € 62(a) = exp(Lp, (P2)) X exp(—Lp, (P2)) € G2($2).
The restriction is:
¢ (P, P2) : X € mp s exp(Lp, (P)) aexp(—Lp, (P2)),
indeed, as CLP1 (PQ)C = Lpl (Pz) we have C¢<g(P1,P2;a)C = ¢<g(P1,P2;a). If
[Py — P2||z = 1 then we can write

K

Py — Py =Y (|lax){ax| — [Cax)(Caxl) + 7(P1, P2),
k=1

where (ax)r U (Cax) is an orthonormal family which is orthogonal to Ran~ (P, P2)
and ||v(P1, P2)||s < 1. We also have P;Cay = Cay and Pray = 0. We define

K
P = P+ Z (|ak>(ak| — |Cak><Cak|) S .//%7

k=1

Us = (|Cak>|ak> — |ak><Cak|) S U(f)/\)

M=

el
Il

1

Then ||P2 — P12||B < 1 and U2 P1U{3 = —U12P1U12 = Pi12. Moreover

€ €
é . ey mpyy

€,P1,P12 - _
a U12aU121

is well-defined and is an isometry. Indeed, as CU12C = —Ui2, we get that
CUlganQlC = U12aU1;1.

This proves the isometric isomorphisms

S2(Hn) = S2(Hn) = S2(Ha),
3% (P1,P12) 3% (P12,P2)
€ =~ =~ €
m m — mp,.
e ¢ (P1,P12) P2 b (P12,P2) P
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So #¢ is a submanifold and the characterization of the tangent planes (B3]
follows from that of .Z.
— Let us show that .#« is invariant under the flow of E3pp: it suffices to show that
for any P € .4, the gradient VERLr(P) (c¢f BD) is in Tp.#4. For a C-symmetric
state P, we write Q := P — PY.

That the density pg vanishes is clear from (I07) and the fact that for any ¢ € Ha
and z € R® we have |Ct(z)|* = [¢(z)[>. From @), we get that for —CQC = Q there
holds:

x7
~CQC(z.) = Q(a.1) 50 — CRoCla,y) = Ra(e.y) = Ho2),
As —CD°C = DY, it follows that:
— C(D° +alpq * 1 — R@))C = —C(D” — aRq)C = D’ — aRq. (106)

We remark that [IIx,C] = 0, and CPC=1— P and C(1 — P)C = P. Thus

—CHHADQHA; P} ; P}C = —C(PHADQHA(l — P) + (1 — P)HADQHAP)C
= (1= P)(—HaCDgCIA)P + P(—IIACDqCIHA) (1 — P)
= (1 — P)IIaDQIIAP + PIIADQIIA(1 — P)
= [[HADQHA;P];P].

Proof of Proposition @ Let ¢ : ¢t € [0,1] — ¢(t) € 4« be a continuous map such
that ¢(0) = 0 and ||¢(1)||s = 1. By Theorem [l and Proposition [}l any ¢(¢) has the
following form:

c(t) = > N (L] = 1 F-5 O F-3 )+ 1CF5 ()N (CL—5 ()] = [CL () f5()])
jeN
N(t)

+ Z(Iaj(t)ﬂaj(t)l — |Ca;(£)){Ca;(®)]),

where (a;); U (Caj); U (fj); U (Cf;) is an orthonormal family and (A;); is the
sequence of positive eigenvalues lesser than 1. FEach plane Span(f;, f—;) (resp.
Span(Cf;, Cf_;)) is spanned by e; € Ran(P}) and e_; € Ran(P2) (resp. Ce_; €
Ran(PY) and Ce; € Ran(P?)).

Let to be inf{t € [0, 1], ||c(¢)||s = 1}. For any ¢ € [0, 1] and any p € o(c(t))\{1,0},
4| Dim E;(;)2. In particular, for ¢t < top the number

J(e(t) =Dim @@ EY” s divisible by 4.

1
§</,L§1

By continuity, J(c(t)) is divisible by 4 for any t : the variations of J follow the
variations of the Ajs (A\; equals sin(Cv;, Ce;) in the notations of Theorem []). Such
an eigenvalue is associated to 4-dimensional spaces of type Span(f;, f—;,Cf;,Cf—;)

2
and each of them has a basis made of four eigenvectors in E/c\(;) .

Thus 4| J(c(1)) and for any unitary ¢ € RanPY, there is no continuous path in
M that links 0 and Qyu = ) (] — [Cy)(Cep|. Tt is then straightforward to prove
that for any v € A+, if 4] J(v) then there exists a path that links 0 and ~ else
there exists a path that links Qy and 7. a

Proof of Proposition
A direct computation shows that for any ¢ € L*:

Cl)(4]C = [Cy)(Ceh. (107)
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By Theorem [ for o € o(y) N (0, 1), there exist N € N and N orthogonal planes
H}H . ny such that

2 L .
EL,=E,6E, = P 1,

1<GSN
where each plane is y-invariant with |, = |v—)(v—| — |e~)({e—| with Pv—v_ and
P%e_ = e_. The expression of its eigenvectors f and f_ are written in (@), where

e+ € RanPY is chosen such that v_ = cos(f)e— + sin(f)e.
As C is isometric, then necessarily E:z is C-invariant, and CHi is some plane ﬁﬂ
in E;’z, ~v-invariant (there holds p = sin((Cme,)). Let us show that ITJ, # ﬁft

Indeed, using (@3] this would imply that Ce— = e'®1e, and Cey = e'®2e_ for some
(2517 (]52 € R and

—(ICe-)(Cey| +[Ce)(Ce-|) = le—){e+| + |e1){e~|-

In particular there would hold —e'(91792) — 1 that is ¢1 — ¢2 = w[27]. However C
is an involution so C?e; = e, and e®17%2)e, = e, : this gives ¢1 — ¢p2 = 0[27] and
contradicts the previous result.

Thus the two planes are different and the 4-dimensional space V), they span is
C and ~y-invariant: Ezz =V, é W,. By induction over Dim W, we get that 2N is
divisible by 4, that is N is even. We obtain % such V,,, written Vlf .

In each Vl{, let uj L u? be two unitary eigenvectors associated to p. Thus
Cuj L Cug’- are two eigenvectors associated to —u. We use Theorem H] to decompose

. 4 b
Vi =T @I with

Vx € {a,b}, TI, = Span(uj,u’ ;) = Span(ej, e’ ;)

yul; = tpul, Prei; = 0.

We may assume (0F) holds for both planes. Our aim is to prove that up to a phase,
Cul; = u%. A priori there exist ¢o, $1, ¢2,0 € [—m, ) such that

—3

Cub = —€' (1790 gin(P)u? ; + €'(?2+90) cos(h)u®

‘ Cuf = €' cos(O)u® ; + €'?2 sin()u”
7jc

We may assume cos(#),sin(0) > 0. Using [@3), and writing ¢, = éx + ¢o, k € {1,2},
we get

Ce§ = —e'? cos(0)e® ; — ' sin(f)e” ;, | Cel = ¢'h sin(f)eZ; — e%2 cos(0)e” ;,

Ce®; = €' cos(f)ed + "2 sin(f)el, | Ce’; = —eih sin(0)ej + ei%2 cos(0)el.

Applying C to Cej we get

6? — 6i($1*¢2)(sin(0)2 _ ei(¢2*$1) COS(9)2)€? _ ei¢0 SinéQH) (ei(¢2*$1) + 1)6?.
Thus sin(f) = 1 and ¢, — ¢2 = 0[2x]. This gives:
2 x j J a & Ore
E‘R = D NVH and VM = Hlle D CHHJ’ (108)
1<j<%
where each ITj; ; and CII}; ; is a spectral plane described in Theorem @ a
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