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RECONSTRUCTION OF SEPARABLY CATEGORICAL METRIC STRUCTURES

We extend Ahlbrandt and Ziegler's reconstruction results ([AZ]) to the metric setting: we show that separably categorical structures are determined, up to bi-interpretability, by their automorphism groups.

Introduction

Categoricity offers an ideal setting for reconstruction: a lot of information on a categorical structure can be recovered from the action of its automorphism group. Indeed, the Ryll-Nardzewski theorem asserts that a classical countable structure is ℵ 0 -categorical if and only if its automorphism group acts oligomorphically on it. From this, definability in countably categorical structures translates as invariance under the action of the automorphism group.

An analogous phenomenon occurs in the continuous setting: a metric structure is separably categorical if and only if the action of its automorphism group is approximately oligomorphic ( [START_REF] Ben Yaacov | Model theory for metric structures, Model theory with applications to algebra and analysis[END_REF]theorem 12.10]). This continuous Ryll-Nardzewski theorem again implies that definability boils down to invariance by automorphisms (see section 1).

In this paper, we focus on a reconstruction result due to Ahlbrandt and Ziegler ( [AZ]) which states that countably categorical structures are determined, up to bi-interpretability, by their automorphism groups (regarded as topological groups). We extend Ahlbrandt and Ziegler's result to the continuous setting. More precisely, we introduce the notion of an interpretation between metric structures and prove that two separably categorical structures are bi-interpretable if and only if their automorphism groups are topologically isomorphic.

This guarantees that every model-theoretic property of separably categorical structures will translate into a topological property of their automorphism groups. Tsankov and the first author ( [BT]), and then Ibarlucía ( [I]), are precisely studying model-theoretic properties directly on groups.

Although our result encompasses its classical counterpart, the proof we give is fundamentally metric and is quite different from the original one. Indeed, we apply a construction of Melleray ([M, theorem 6]) that provides a canonical way to make a metric structure out of any Polish group (we will call this the hat structure associated to the group; see subsection 3.3 for a definition). The heart of the reconstruction consists in showing that every separably categorical metric structure is in fact bi-interpretable with the hat structure of its automorphism group.

Definability

In this section, we prove the aforementioned fact that in separably categorical structures, definability amounts to invariance under the action of the automorphism group. First, we introduce the following item of notation.

Notation. If ρ is a bounded pseudometric on a structure M, then (M, ρ) will denote the quotient metric space induced by ρ. For such a ρ, let ρ ω be the pseudometric on M ω defined by

ρ ω (a, a ′ ) = n<ω 1 2 n ρ(a n , a ′ n ).
When ρ is a metric, so is ρ ω , which then induces the product topology on M ω .

Proposition 1. Let M be a separably categorical metric structure and G its automorphism group.

Let P : S n (T ) coincide. This implies that Φ is continuous for the logic topology as well. Thus, by theorem 9.9 of [BBHU], the predicate P is definable.

M n → [0, 1] a continuous predicate on M. Then P is definable in M if and only if P is G-invariant. Proof. ⇒] If P is definable, there is a sequence (ϕ k ) k 1 of formulas which converges uniformly to P . Now G preserves (interpretations of) formulas so P is also G-invariant. ⇐] Suppose that P is G-invariant.
Remark 2. The same holds for predicates in an infinite number of variables. In fact, if M ω is endowed with d ω , then the Ryll-Nardzewski theorem can be reformulated as follows: a metric structure M is separably categorical if and only if the space (S ω (M), d ω ) of types in infinitely many variables is compact. Thus, the proof above readily adapts to an infinite number of variables.

Reconstruction up to interdefinability

We begin by reconstructing separably categorical structures up to interdefinability, mirroring

Ahlbrandt and Ziegler's theorem 1.1 (in [AZ]). The proof is exactly the same as in the discrete setting.

Definition 3. Let M and N be two structures on the same universe. We say that M and N are interdefinable if they have the same definable relations.

Proposition 4. Let M and N be two separably categorical metric structures on the same universe, in languages L M and L N respectively. Then M and N are interdefinable if and only if their automorphism groups are equal.

Proof. ⇒] Assume that M and N are interdefinable and let R be a relation in L N . Since it is definable in N, it is definable in M as well, so proposition 1 implies that it is Aut(M)-invariant.

Thus Aut(M) preserves every relation in L N so Aut(M) ⊆ Aut(N). Similarly, we obtain that Aut(N) ⊆ Aut (M).

⇐] Conversely, assume that Aut(M) = Aut(N) and let R be definable in M. Then, by proposition 1, it is Aut(M)-invariant hence Aut(N)-invariant by assumption. Thus, R is definable in N and the two structures have the same definable relations.

Reconstruction up to bi-interpretability

3.1. Interpretations. In the classical setting, an interpretation of a structure M in an other structure N is an embedding of M into a definable quotient of a finite power of N, that is, into the imaginaries of N. As Usvyatsov and the first author pointed out in [START_REF] Yaacov | Continuous first order logic and local stability[END_REF], the right definition of imaginaries in metric structures should allow classes of infinite tuples and this is also true for interpretations.

Definition 5. Let M and N be two metric structures in languages L M and L N respectively. An interpretation of M in N consists of the following data:

• a definable pseudometric ρ on N ω and

• an isometric map ϕ : (M, d M ) → (N ω , ρ) such that • the predicate P : N ω → [0, 1] defined by P (x) = ρ(x, ϕ(M)) is definable in N and
• for every formula F in L M , the formula

P F : ϕ(M) r → [0, 1] defined by P F (x) = F (ϕ -1 (x))
is definable in N.

To Then the equivalence relation on N n induced by restriction of ρ is well-defined and definable, and it yields an interpretation of M in N.

If M, N and K are metric structures, ϕ :

(M, d M ) → (N ω , ρ N ) is an interpretation of M in N and ψ : (N, d N ) → (K ω , ρ K
) is an interpretation of N in K, then we can compose the interpretations ψ and ϕ as follows.

Taking the product of ψ, we get an isometric map

ψ ω : (N ω , d ω N ) → (K ω×ω , ρ ω K ) = (K ω , ρ ω K ). Now, since ψ(N) is definable in (K ω , ρ K ), the image ψ ω (N ω ) is definable in (K ω , ρ ω K ) too.
Besides, ρ N is a definable pseudometric, so its pushforward by ψ ω also is. Then, by [B1, proposition 3.6], it extends to a definable pseudometric ρ on (K ω , ρ ω K ). Thus, the isometric map

ψ ω • ϕ : (M, d M ) → (K ω , ρ) is an interpretation of M in K.
Remark 7. If N is separably categorical and ρ is a definable pseudometric on N ω , then the structure (N ω , ρ) is separably categorical too (and thus definability corresponds to invariance by the automorphism group). Indeed, the automorphism group of N acts approximately oligomorphically on N ω and thus on (N ω , ρ) too. This implies that the whole automorphism group of (N ω , ρ) is approximately oligomorphic so, by the Ryll-Nardzewski theorem, that (N ω , ρ) is separably categorical.

In particular, any structure that is interpretable in a separably categorical one is itself separably categorical. That is the reason why it is necessary to impose an oligomorphicity restriction in theorems 14 and 16. Definition 8. Let M and N be two metric structures. We say that M and N are bi-interpretable if there exist interpretations ϕ of M in N and ψ of N in M such that ψ • ϕ and ϕ • ψ are definable.

In the rest of this section, we argue that interpretations between separably categorical structures correspond to continuous homomorphisms between their automorphism groups.

3.2. From interpretations to group homomorphisms. The first side of this correspondence is not too surprising, for it amounts to saying one can get information on the automorphism group from the structure. The process is however nicely functorial.

Proposition 9. Let M and N be two metric structures and ϕ an interpretation of M in N. Then ϕ induces a homomorphism of topological groups Aut(ϕ) from Aut(N) to Aut (M).

Proof. Let g be an automorphism of N. Then g leaves ϕ(M) and the predicates P R invariant so it induces an automorphism of (ϕ(M), (P R )) and thus of M. More formally, if a is an element of M, we put Aut(ϕ)(g)(a) = ϕ -1 (g(ϕ(a))). Then Aut(ϕ) is the conjugation by ϕ so it is a group homomorphism.

And since ρ is continuous, it is easy to see that Aut(ϕ) is continuous.

The map ϕ → Aut(ϕ) is functorial: it respects composition.

Lemma 10. Let M, N and K be metric structures, ϕ an interpretation of M in N and ψ an interpretation of N in K. Then Aut(ψ

• ϕ) = Aut(ψ) • Aut(ϕ).
Lemma 11. Let M be a separably categorical metric structure and ϕ an interpretation of M in itself. Then ϕ is definable in M if and only if Aut(ϕ) = id Aut(M ) .

Proof. ⇒] If ϕ is definable, then ϕ is Aut(M)-invariant. Then, if g ∈ Aut(M) and a ∈ M, we have Aut(ϕ)(g)(a) = ϕ -1 (g(ϕ(a))) = ϕ -1 (ϕ(g(a))) = g(a) and thus Aut(ϕ) is the identity. ⇐] If Aut(ϕ) is the identity, the same computation shows that ϕ is Aut(M)-invariant. Since ϕ is continuous (it is isometric), this implies that ϕ is definable (by proposition 1). This lemma will yield the first direction of theorem 17.

3.3.

A special structure: a group with a hat. We now proceed to the second part of the correspondence: the actual reconstruction. To this aim, we come down to a canonical structure built from the automorphism group and with which the structure is bi-interpretable.The following construction is due to Melleray ([M,theorem 6]).

Let M be a metric structure and G be its automorphism group. Whenever we endow G with a compatible left-invariant metric d L , we can consider the structure G whose universe is the left completion G L of (G, d L ) and whose relations are all those maps of the form R C (x) = d(x, C), for some orbit closure C of ( G L ) n under the diagonal action of G. Then the automorphism group of

G is G.
Now fix a dense sequence ξ ∈ M ω . Then, the metric on G given by d ξ (g, h) = d(gξ, hξ) is a compatible left-invariant metric.

Proposition 12. The structure G (obtained from this particular metric d ξ ) is interpretable in M.

Proof. Consider the map ψ :

g → gξ from (G, d ξ ) to G • ξ ⊆ M ω .
It is isometric so it extends to the left completion of G. Then ψ is an interpretation of G in M.

Indeed, the predicate P :

x → d(x, ψ( G)) = d(x, G • ξ) on M ω is G-invariant so it is definable in M by proposition 1. Moreover, if C is an orbit closure and R = R C is the associated predicate in G, we have P R (gx) = R(ψ -1 (gx)) = R(gψ -1 (x)) = R(ψ -1 (x)) because R is invariant by the automorphism group = P R (x),
so P R is definable, which completes the proof.

Remark 13. In fact, since the image of ψ is dense, G • ξ is exactly the left completion of G and from now on, we identify G with G • ξ.

The above proposition, along with remark 7, implies that if M is separably categorical, then so is G. And in that case, if d L is any other compatible left-invariant metric, then the associated hat structure is bi-interpretable with G: the two metrics generate the same topology so they are continuous with respect to each other, and their left-invariance implies, by proposition 1, that they are definable from each other. All the hat structures obtained from G are bi-interpretable and we will therefore identify them.

Moreover, if M is separably categorical, then the structure M is also interpretable in G. In fact,

we have the following more general result which will be the key ingredient in the proof of theorem 16.

Theorem 14. Let N be a metric structure and let H be a subgroup of Aut(N) which acts approximately oligomorphically on N. Then N is interpretable in H.

Proof. Let ζ be a dense sequence in N. Then H = H • ζ. Now the assumption ensures that the space N H of orbit closures of N by H is compact.

The intuition for the proof is to say that N is not far from being the product H × N H and moreover that compact spaces should be interpreted in every structure. As a matter of fact, we will build a particular system of representatives of N H that H will interpret.

We begin by building a tree T representing this compact quotient N H. For this, we will choose 2 ) in N with a finite number of balls of radius 1 4 centered in elements of ζ so that the second level of our tree consists of the indices of those centers, and so on.

The construction ensures that for every infinite branch of T , the sequence (ζ σ(i) ) converges in N. Moreover, every orbit closure corresponds to an infinite branch of T (maybe even several): for every a in N, there exists an infinite branch σ of T such that the limit of the sequence (ζ σ(i) ) is in the closure of the orbit of a. Let [T ] be the set of infinite branches of T .

We now embed N isometrically into (the completion of) a quotient of H • ζ × [T ], which we identify with H × [T ]. This will give the base map for our interpretation.

Endow the set H • ζ × [T ] with the following pseudometric ρ((x, σ), (y, τ )) = lim i→∞ d(x σ(i) , y τ (i) ).
Since for every branch σ in [T ], the sequence (ζ σ(i) ) converges, this is also true of every (x σ(i) ) with

x in H • ζ, so ρ is well-defined.

We now define a map ϕ :

(H • ζ × [T ], ρ) → N by ϕ(x, σ) = lim i→∞ x σ(i)
. By definition of ρ, the map ϕ is isometric. In addition, the image of ϕ is dense in N. Indeed, let a be an element of N and ǫ > 0. There exists a branch σ in [T ] such that (ζ σ(i) ) converges to some a ′ in N which is in the same H-orbit closure as a, that is, there exists h ∈ H such that d(h(a ′ ), a) < ǫ, so d(ϕ(hζ σ(i) ), a) < ǫ, hence the density.

Thus, the isometric map ϕ can be extended to an isometry from the completion of (H

• ζ ×[T ], ρ)
onto N. Then its inverse, call it φ, is the desired isometric map between N and the completion of ( H × [T ], ρ). This was the first step in our intuition.

In order to see φ as an interpretation of N in H, it remains to interpret [T ] in H, in other words, to code the branches of T in a power of H (that is H • ζ via the identification of the previous remark). The map φ will then induce a map N → H × H ω , which will be the desired interpretation.

A branch can be coded by a sequence of zeroes and ones 1 . Then we code 2 each bit by a pair of

elements of H • ζ. Consider the pseudometric on H • ζ × H • ζ defined by δ((x, x ′ ), (y, y ′ )) = |d(x 0 , x ′ 0 ) -d(y 0 , y ′ 0 )|,
which compares the differences between the first coordinates of the two sequences of the pair. This is a definable pseudometric and we code the bit 0 by the δ-class of (ζ, ζ) and the bit 1 by the δ-class of (ζ, h 0 ζ) where h 0 is some element of H that does not fix ζ 0 . Note that the code is invariant under the action of H.

Finally, we identify branches of T with their codes in ( H 2 , δ) ω and we transfer the pseudometric ρ on H × [T ] to a definable pseudometric ρ on H × ( H 2 , δ) ω . Note that the elements of ( H 2 , δ) ω that code a branch of [T ] may not cover the whole of ( H 2 , δ) ω , but [B1]'s proposition 3.6 allows us to extend ρ to ( H 2 , δ) ω all the same.

So we can now rewrite the map φ as a map from N to the completion of ( H × ( H 2 , δ) ω , ρ). The oligomorphicity of the action of H on N implies that the structure H = H • ζ, whose automorphism group is H, is separably categorical. Since ρ is invariant under the action of H, proposition 1 then yields that the pseudometric ρ is definable in H. Therefore, this new map φ is an interpretation of N in H.

Corollary 15. If M is separably categorical, then the structures M and G are bi-interpretable.

Proof. The proposition implies in particular that M is interpretable in G. Thus, it suffices to show that the compositions of the interpretations constructed in the previous propositions are definable. Both interpretations respected the actions of the automorphism groups so proposition 1 and remark 7 allow us to conclude.

3.4. Reconstruction. We are now ready to complete the reconstruction.

1 There are many ways of doing so; we pick one. For instance, we may say that given a branch of T , we follow the levels of T one by one, and we put a 1 in our sequence when we hit an element of our branch and a 0 otherwise.

2

There are also many ways of coding zeroes and ones in a power of 

d ′ L (g 1 , g 2 ) = inf{d L (g 1 k 1 , g 2 k 2 ) : k 1 , k 2 ∈ Ker(f )}.
Since Ker(f ) is normal, this indeed defines a pseudometric, which induces a compatible metric on H. Then (H, d ′ L ), which we identify with H (see subsection 3.3), is the quotient 3 of G by the definable pseudometric d ′ L and is thus interpretable in G.

Theorem 17. Let M and N be separably categorical metric structures. Then M and N are bi-interpretable if and only if their automorphism groups are isomorphic as topological groups.

Proof. ⇒] Assume that ϕ and ψ are interpretations that witness the bi-interpretability of M and N. Then lemma 11 implies that Aut(ϕ • ψ) = id Aut(N ) and Aut(ψ • ϕ) = id Aut(M ) . But Aut(ϕ • ψ) = Aut(ϕ) • Aut(ψ) so Aut(ϕ) = Aut(ψ) -1 and Aut(ψ) is an isomorphism of topological groups between Aut(M) and Aut(N). Note that for this direction, we do not need the categoricity of the structures.

⇐] By corollary 15, M is bi-interpretable with Aut(M) and N with Aut(N). Now if the two groups are isomorphic as topological groups, then their associated hat structures are biinterpretable (by the discussion following remark 13).

Example 18. In [B2], it is shown, by an explicit computation, that the probability algebra M of the unit interval is bi-interpretable with the space N = L 1 ([0, 1], [0, 1]) of [0, 1]-valued random variables, identified up to equality almost everywhere. Our reconstruction theorem allows us to recover this result in a more elegant way. Indeed, the probability algebra of [0, 1] is separably categorical, thus its automorphism group G = Aut(µ) is Roelcke-precompact ([R, theorem 5.2]).

Moreover, G is also the automorphism group of N. The space of orbit closures of N under the action of G can be identified with the space of probability measures on [0, 1]. Indeed, given a measurable map in N, multiply it by G to make it non-decreasing. The resulting map is then the characteristic function of some probability measure on I.

Thus, the space of orbit closures of N is compact. This suffices, by [START_REF] Yaacov | Weakly almost periodic functions, model-theoretic stability, and minimality of topological groups[END_REF]theorem 2.4], to get that the action of G on N is approximately oligomorphic, hence that the structure N is also separably categorical. Theorem 17 then applies, proving that M and N are bi-interpretable.
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H • ζ. Here we go for a method which compares two sequences of a pair in a very simple way.
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