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ABSTRACT 

Sound synthesis with mass-interaction physical modeling 

networks can be considered as a general paradigm capa-

ble of being the central part of complete software envi-

ronments for musical creation. GENESIS 3, built around 

the CORDIS-ANIMA formalism and developed by 

ACROE/ICA Laboratory, is the first environment of this 

kind. Using it, the artist may be facing an inherent prob-

lematic of every creation process: how to use a given tool 

in order to obtain an expected result. In our context, the 

question would be: “Considering a sound, which physical 

model could produce it?” This paper especially aims at 

presenting the frame in which this inverse problem is set 

and at establishing its very own inputs and outputs. How-

ever, we will also present two different algorithmic reso-

lutions applied on quite simple cases and then discuss 

their relevance. 

1. INTRODUCTION 

Sound synthesis is a matter of numbers. Max Mathews, 

its inventor, noted that a sound is nothing else than a 

pressure as a function of time, which, for the computer, 

means a stream of numbers, quite a large quantity of 

them each second. Since these first statements, a substan-

tial amount of methods for generating those numbers and 

thus, sounds, has been developed. The physical modeling 

synthesis [1], [2], [13], is a category designating such 

methods. Our work takes place in the ongoing researches 

and development of one of them: GENESIS [4], in 

ACROE-ICA laboratory. This distinctive environment 

provides a mass-interaction network modeling approach 

and relies on the instrumental interaction paradigm. It is 

built around the CORDIS-ANIMA (CA) formalism [3] 

and is meant to be used with force feedback gestural 

transducers (TGR). 

1.1 CORDIS-ANIMA 

The CA formalism is a really effective solution for num-

bers production and suggests an original approach for 

controlling it. Its earliest algorithm (1), a second-order 

linear homogeneous recurrence relation, is a very simple 

“digital oscillator.” To control it in an intuitive way, it 

was used to describe a discrete version of the mechanic 

harmonic oscillator (Fig. 1). This analogy allows then a 

sound generation using physical parameters (M for mass, 

K for stiffness, Z for damping), initial conditions (posi-

tion or velocity) and more generally by making the New-

ton second and third laws ruling every elementary com-

ponent of the formalism.  

! X
n

= A !X
n"1

+ B !X
n"2
! (1) !

! (A,B) = f (M ,K,Z) ! !

Where Xn represents the position of the moving part at 

each step. 

 

 

 

 

Figure 1. Model of a mechanic oscillator and its pa-

rameters 

This concept is then extended with the notion of external 

forces.  

! X
n

= A !X
n"1

+ B !X
n"2

+C !F
n"1
! (2) !

Finally, the algorithm (2) is split and distributed among 

each element, which we shall call modules (Fig. 2). 

Hence, they are distinguished in two categories regarding 

to the nature of their algorithms: The <MAT> kind mod-

ules have a force input, a position output and designate 

“matter.” As an example, MAS modules are comparable 

to punctual moving masses, SOL to an infinite inertia. 

The <LIA> kind modules have positions inputs, forces 

outputs and allow interconnections between <MAT> 

modules. As an example, REF modules are comparable to 

visco-elastic interactions and BUT modules to percussive 

interactions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. CORDIS-ANIMA formalism 
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Figure 3. CORDIS-ANIMA model – Interact & Listen 

 

CORDIS-ANIMA is thus characterized by its modu-

larity, it allows building large models, by putting together 

basic physical elements. Those models are networks of 

interconnected moving matter. It also natively permits to 

interact with models and of course, “listening” to them by 

making the evolving position of chosen masses the nor-

malized position of the loudspeakers membranes (Fig. 3). 

1.2 Sound synthesis using GENESIS 

Any sound creation approach by the mean of GENESIS 

thus supposes, at first, the elaboration of a mass-

interaction model, according to the CA formalism. Each 

module receives a set of parametrical specifications. A 

simulation is then launched and a sound emerges. We 

shall call “direct approach" this initial process, from the 

model elaboration and setting to the sound phenomena 

production. We can imagine that this process leads to a 

permanent round trip between the emergent sounds, the 

model, and some adjustments made under both quantita-

tive and qualitative constraints. A real difficulty is to 

establish relations between them. In the direct approach, 

we shall try to postulate the incidence of one or another 

model’s parameter on the perceptive attributes of the 

produced sound. Since its first actual implementation in 

1996, numerous investigations and experiments were 

realized in the GENESIS environment in order to gather 

as much knowledge as possible on this matter and to 

suggest tools and pedagogical material to the users. 

But this relation may be established differently and 

we can imagine an “inverse approach” as follow. If the 

users are able to describe precisely a sound phenomenon 

that they intent to synthesize, is there any means to com-

pute and suggest them a model producing such a sound? 

2. THE INVERSE PROBLEM 

There is a large variety of inverse problems applied in 

numerous different disciplines. Most of the time, there is 

no direct access to a system that has to be defined. The 

only available data to rely on are what such a system 

produces. The inverse problem is then to theorize its 

nature considering those data. To achieve that, a lot of 

attention must be paid on a good evaluation and formula-

tion of this very inverse problem. 

2.1 Information, Determinism & Stability 

Here follows a brief highlighting of three important no-

tions. 

Firstly, we might have to consider the amount of in-

formation available by gathering data that a system pro-

duces and whether or not it is sufficient for its descrip-

tion.  

Secondly, in physics, a system is said “deterministic” 

when, for one of its configurations, it always has the 

same observable effect. But, since it can be hard to inden-

tify all the components of a system and their relative 

influence on its global behavior, it is hardly possible to 

conceive an absolute determinism. Though, framed by 

physical modeling and digital simulation, and relying on 

the CORDIS-ANIMA formalism and algorithms, we can 

establish a more clear-cut definition of determinism. 

Indeed, all the parameters of a CA model are perfectly 

known and then both the model and the simulation are 

absolutely deterministic. The simulation of a given model 

always leads to the exact same signal. A given cause will 

always produce strictly the same effect. But, our purpose 

is to reverse this causality and in this case there’s no 

more determinism. Even with the finest analysis methods, 

two different causes can have the same measured effects. 

As a trivial example, the second order mechanical oscilla-

tor model in CORDIS-ANIMA will give two bitwise 

equivalent digital signals, if all its parameters are multi-

plied by the same coefficient. Consequently, it is neces-

sary to consider that a given effect can have multiple and 

different causes. However, towards the context in which 

takes place our study, the research for a unique generative 

model of a given sound phenomenon is not required. 

What matters is to obtain at least one of them. If a choice 

has to be done, we might consider the most precise, the 

most physically coherent, maybe the most stable, effi-

cient and usable model. 

Thirdly, a model is said “stable” if, for very slight 

modifications of its parameters, the simulated effect is 

also slightly modified. In the case of CA models, it is not 

impossible to obtain really ill-conditioned (unstable) 

models when using non-linear interaction or negative 

“physical” parameters. Our intention is to provide models 

with which the users may play by making some changes 

on its settings and therefore take a look at sound phenom-

ena close to their first idea. We can see here the particular 

interest of this approach, articulating the direct and in-

verse explorations in the general creation process. In 

conclusion, this forbids unstable models. 

2.2  “Correctly-Set” Inverse Problem 

Potentially unstable models, breach of determinism, and 

lack of relevant information, are unavoidable issues with 

which we have to deal. They will define the frame of our 

inverse problem and its formulation. Moreover, on that 

matter, J. Hadamard [6] says that we can consider a prob-

lem such as ours “correctly-set” on the condition that: 1) 

It has one and only one solution. 2) That this solution 

dependence on input data is continuous on a reasonable 

range. 
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Our first problem is not the “inverse problem” in it-

self, but its definition. We will afterward try to clearly 

establish what we shall expect from inverse resolution 

and of course, what data shall be given as an input. 

3. SPECIFICATION OF OUR INVERSE 

PROBLEM 

3.1 Outputs 

In the real world, as within the GENESIS environment, 

producing a sound is associated with an energy exchange 

between two bodies: a “source” body that will be the 

“instrumentalist” and an “instrumental” body. The energy 

delivered by the instrumentalist onto the instrument will 

cause a modification of its state and its nature will char-

acterize the resulting sound phenomenon. Of course, the 

applied gesture, the interaction between these two bodies 

is also significant in the specification of this sound. This 

trilateral configuration (Fig. 4) is necessarily involved in 

the sound phenomena production. 

 

 

Figure 4. Generative configuration of sound phenom-

ena production. 

 

Therefore, any sound must be considered as resulting 

of such a configuration. As an output, the inverse analysis 

of a sound must lead to an instrumentalist model interact-

ing with an instrumental model. 

Furthermore, this generalization can be even wider if 

we decide to integrate what causes the instrumental ges-

ture: the instrumentalist “acting decision.” Indeed, as we 

consider the instrumentalist component as an active me-

chanical system, we shall suppose it is fragmented in two 

components, one corresponding to purely physical system 

and another acting as a trigger. Here, the important aspect 

is that while the interaction between the physical system 

representing the body and the instrument must be consid-

ered as bilateral, the relation between the command and 

the instrumentalist physical system will be considered as 

unidirectional. 

To sum up, two fundamental hypotheses define what's 

expected from a valid solution for the most general in-

verse problem within the framework of GENESIS: 1) The 

considered sound phenomenon results from the action of 

an instrumentalist (by gestures) on an instrument. 2) The 

instrumentalist is a physical system unilaterally con-

trolled by  "acting commands." 

We have to keep these imperative considerations in 

mind as we seek for solutions. Nevertheless, in the first 

applications we present (developed in part 4. First ex-

periments and results) this level of expectation is not 

yet satisfied. 

3.2 Typology of the Inverse Problem Inputs 

If the nature of the inverse problem outputs is relatively 

well defined and framed by the GENESIS environment, it 

isn't the case for its inputs. We thus sought the most ex-

haustive typology of their varieties and more generally of 

all the possible methods for describing sound phenomena 

(Fig. 5). First of all, we must distinguish two kinds of 

inputs:  

- The low level inputs, directly in entry of the inverse 

resolution. Actually, they would be the parameters initiat-

ing the algorithmic resolution. We could think of numeri-

cal values identifying frequency, amplitude and damping 

time in the case of a simple signal.  

- The high level inputs, such as the records of sound 

phenomena [12], the score or maybe the expression of 

what the artist could mentally imagine and want to pro-

duce. This type of entry will obviously correspond to a 

more common usage of the sound phenomena descrip-

tion. It is thus necessary to imagine adapted analysis tools 

allowing conversion from this kind of inputs to the first 

one. 

This distinction reminds one of the one Nattiez made 

when he dealt with the notion of music semiology [11]. 

By extending his idea to the sound phenomenon analysis, 

without debate on musicality questions, we can indentify 

esthesic and neutral levels. The neutral level would de-

scribe the inputs existing independently of perceptive 

notions (low level inputs, recording, sheet music). The 

esthesic level would correspond to abstract and subjective 

considerations. (The poïetic level would appear essen-

tially in the direct approach of musical creation with 

GENESIS). 

 

 

Figure 5. Parametric scale 

4. FIRST EXPERIMENTS AND RESULTS 

As a first practical approach of the inverse problem, lets 

consider the simplest CORDIS-ANIMA model as an 



output: the harmonic oscillator as pictured in Figure 1. It 

is made of a mass (MAS) with an inertia parameter “M”, 

which is connected to the ground by a visco-elasticity 

defined with stiffness and viscosity parameters: “K” and 

“Z.” Furthermore, it oscillates within a single degree of 

freedom. This trivial object is well known and theorized 

in physics, the mathematical equations describing it are 

completely usable in our case on the condition that the 

shift from continuous to discrete expressions is quanti-

fied. Moreover, we focus only on the instrumental part of 

the problem. 

Solving these equations knowing M, K and Z gives us 

its modal characteristics, i.e. its eigenfrequency and its 

damping time (amplitude and phase depending on initial 

conditions). We can easily reverse those linear equations 

and then find, with a frequency, a damping time, ampli-

tude and phase, a description in inertia, stiffness, viscos-

ity and initial conditions of a cell carrying these exact 

modal characteristics. We thus have an infinite number of 

solutions. To choose among them, K or M must be set. 

In the simplest cases, a one frequency, over damped, 

critically damped or under damped signal, this mathe-

matical reversal is a first resolution of the inverse prob-

lem considering low-level data. A direct extension of it 

would be to recompose complex sounds by reproducing 

what’s done in additive sound synthesis. Knowing the 

modal characterization of a sound phenomenon, we could 

recompose it by synthesizing as many sinusoidal signals 

(replicating as harmonic oscillators) as necessary. Never-

theless, as specified before, it is not what we expect of 

this resolution. We need a coherent model with interde-

pendent components. 

More complex models can be analyzed as well. 

Damped spring-mass modal systems analysis is a well-

documented issue. Actually, a tool allows to compute the 

modal characteristics, a modal model, of a given 

CORDIS-ANIMA model, by solving the discrete version 

of equation (3). 

! M ( ˙ ̇ 
X ) = !K (X) ! Z ( ˙ 

X ) ! (3) !

With X, the position vector, M, K and Z matrices con-

taining the masses, stiffness and viscosities information 

of the model. A model of n masses has an equivalent 

modal model of n independent oscillators and thus n 

eigenmodes. If we still consider a low-level input com-

posed by three vectors (n amplitudes, n frequencies and n 

damping) then the instrumental part of a generative 

model must have at least n masses, and we can suppose 

that n masses are enough to define it. Thus, we suggest to 

choose its structure (also named “topology”). The sim-

plest coherent model of n masses is then the linear 

“chain.” A “string” fixed at its extremities such as in 

Figure 6, at one extremity or none. 

 

Figure 6. CORDIS-ANIMA linear chain model. 

The instrumentalist part of the generative model will 

be considered later. The reduced inverse problem is then 

to define, given 3 vectors of n modes (or calculated fre-

quencies), n amplitudes and n damping time, a generative 

CA string of n masses connected by visco-elastic interac-

tions. Such a topology imposes a certain nature on matri-

ces M, K and Z defining the equation (3). M will be di-

agonal; K and Z will be tridiagonals as shown in (4). All 

the values contained in those matrices are the unknowns 

of our problem. 
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Two different approaches have been followed. The first 

one, a numerical resolution, relies on an adapted optimi-

zation procedure. The second is algebraic. 

4.1 Numerical Partial Resolution 

This first attempt needs us to modulate our goal and just 

to focus on the frequencies input vector. For that, we 

have to assume that there is neither viscosity (because no 

damping time input) nor amplitude considerations. Thus, 

Z, is a null matrix and all masses are set to 1, M is then an 

identity matrix. We are now focused on the K matrix (4) 

and its characteristic polynomial (5). 

!
  

P( ) = f1 (K) + f2 (K)
1

+ f3 (K)
2

+…

…+ fn (K)
n"1

+ fn+1 (K)
n
! (5) !

Solving this equation by knowing all the coefficients 

contained in K would give us all the eigenvalues! .  

Here, frequencies are given allowing to calculate !  val-

ues according to (6). 

! ! i = "2 # (1" cos(
2$ # f i

Fe
))! (6) !

The unknown is K and we have to solve the equation (7) 

for all these! values. 

!

  

Pi (K) = f1 (K) + f2 (K) i

1
+ f3 (K) i

2
+…

…+ fn (K) i

n"1
+ fn+1 (K) i

n
! (7) !

For that, we aim to minimize R(k)  using Gauss-Newton 

algorithm combined with a gradient descent (8). This 

method is called Levemberg-Marquardt Algorithm [8], 

[9], [10], and is named after its inventors. 

! R(k) = (P
i
(K))

2

i=1

n

! ! (8) !

This algorithm is quite sensitive to the initial conditions 

that have to be provided and might need some time to 

reach a solution. Its results will be discussed in the “4.3 

Results” section. 

4.2 Algebraic Resolution 

This other method is separated in three parts: the first one 

handling the eigenmodes, the second one treating the 



amplitudes of these and finally, the third one approaching 

their damping time. 

4.2.1 Frequencies resolution 

In this first part, viscosities are set to zeros. We thus 

suppose that M and K matrices carry the frequency in-

formation. The mathematical method used is similar to 

that detailed by G.M.L. Gladwell in [5]. It relies on the 

reconstruction of a Jacobian matrix (tridiagonal matrix 

including positive diagonal elements and negative co-

diagonal elements, such as K in (4)) by application of an 

inverse version of the Lanczos algorithm [7].  

! 0! "
1
<"

2
< ...<"

n
! (9) !

It needs a vector of n frequencies interpreted with (6) and 

verifying (9), and to be initialized by a vector of n non-

zero values on which we shall return later. Matrices M, K 

and transformation matrix (which contains modal shape 

information) will then be directly interpretable. 

4.2.2 Amplitudes resolution 

Within the framework of the physical modeling, the am-

plitude, or we shall say the relative amplitude of each 

eigenmode, depends on how the energy has been distrib-

uted among them. But as mentioned before, the instru-

mental part of the generative model is inert. To make it 

move (to bring energy to it), it is necessary to introduce 

an instrumentalist part interacting with this instrumental 

part. Thus, we chose a simple interaction: the collision 

between a mass with an initial velocity and one of the 

linear chain’s masses. Therefore, we have one structure 

of a given topology with fixed parameters (masses and 

stiffness), which has precise eigenfrequencies, and which 

we shall “excite” by percussion. Our goal is to control the 

amplitude of each one of these eigenfrequencies. 

We can quickly make an analogy between this prob-

lem and that of piano makers when they chose to strike 

the strings of the instrument at a certain distance (1/7 and 

1/9 of the string) to enrich its harmonic spectrum. The 

amplitude of every mode directly depends on where the 

model is going to be “played.” Furthermore, in 

GENESIS, users do not capture the whole sound pro-

duced by a model but proceed to a local listening of it. 

The listening point(s) of our structure will be an addi-

tional parameter. 

We managed to solve this amplitude issue by going 

back to the frequencies resolution. Indeed, we previously 

spoke about a vector of n values necessary for the 

Lanczos algorithm initialization. This vector actually 

contains the first value of each eigenvector of the model 

to be computed (Fig. 7). Furthermore, the modal shape 

carries all the information necessary to estimate the rela-

tive amplitude of every mode and at any possible combi-

nation of excitation and listening points. 

But, if we excite and listen to our model on a certain 

mass (here the first one), all we need to estimate the rela-

tive amplitude of each mode is the very vector of n values 

that we have to provide! Amplitudes and frequencies 

have to be considered in the same stages of the resolu-

tion. 

 

 

 

 

 

 

 

 

 

Figure 7. Representation of the transformation matrix 

and how to interpret it regarding to the model and its ei-

gen modes. (i1, i2 ,…,in ) being the initial vector to pro-

vide 

4.2.3 Damping times consideration 

The trivial analysis of a simple model as for example a 

two masses chain, allows us to identify the constraints 

imposed by the physical coherence of the damping time 

of one or several modes. We particularly notice that the 

second eigenmode of such a structure cannot have a 

damping time longer than that of the fundamental mode 

unless we tolerate values of negative viscosities (Fig. 8).  

 

 

 

 

 

Figure 8. Representation of first (left) and second mode 

(right) of a two masses chain. If z2 = 0 : the two modes 

have the same damping time. The second mode can 

have a longer damping time than that of the first mode 

only if z2 < 0. 

Furthermore, it is impossible to preserve the precision 

of the frequency resolution by the Lanczos algorithm 

when we try to consider the viscosity parameters. To 

obtain the most coherent generative model, we thus ask 

the user to choose only one value of damping time, that 

of the fundamental mode. It also allows a better control 

of the viscosity influence on each mode frequency. 

4.3 Results 

The numerical resolution allows to efficiently obtain 

generative models defined with 10 or 15 frequencies. Its 

time of resolution increases dramatically with the number 

of frequencies to deal with. Its main advantage is that it 

doesn’t depend on the kind of topology you may expect 

for the output model. It is also convenient to have all 

masses set to 1. 

 

The algebraic approach is currently suitable for fixed, 

half-fixed or free linear chains. Any other topology for 

the output model would need to have its dedicated algo-

rithm. However, with this approach we managed to ob-

tain generative models defined by 40 frequencies for 

harmonic or even complex spectra. The global quality of 

this resolution, as well as the coherence of the resulting 

model, relies on the relative proximity of the wanted 

frequencies.  
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As an example, if 17 frequencies are harmonically 

sorted from 150Hz to 2550Hz, the resulting chain will 

have masses separated by a factor of two and stiffness 

values separated by a factor of one hundred, the fre-

quency precision is close to ~10-7Hz. 

If among these 17 frequencies, two of them get closer 

(to a 1Hz difference), then the resulting chain will have 

masses separated by a factor of one thousand and stiff-

ness values separated by a factor of one million, with a 

frequency precision close to ~10-2Hz. Regarding the 

precision of frequency resolution, it can be adapted to the 

limits of our perception and of our frequency discrimina-

tion capacities. 

 

Viscosities do have an influence on the modal model 

spectrum. But, they are quite insignificant, and again, this 

influence has to be evaluated regarding perceptual mat-

ters. 

Furthermore, these two approaches are already im-

plemented and used in the GENESIS environment. 

5. CONCLUSIONS 

This preliminary work on the inverse problem general 

definition, as well as the first concrete applications on 

very simple cases, allows us to set the bases of a vast and 

complex problem areas and to demonstrate its relevance 

thanks to some encouraging results. 

The next stages are already framed. Still in simple 

cases, one of them will consist in separating the structural 

and event-based contributions from the generative model 

regarding to an input signal. Afterward, we could picture 

a complete automated inverse resolution from extended 

inputs (digital audiofiles) to CORDIS-ANIMA generative 

models. 
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