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CONFIGURATIONS WITH LARGE INTENSITY DYNAMICS IN HIGHLY NOISY

HYPERSPECTRAL DATA.

Céline Meillier, Florent Chatelain, Olivier Michel, Hacheme Ayasso

University of Grenoble, GIPSA-Lab, 11 rue des Mathématiques,
BP 46, 38402 St Martin d’Hères, France

ABSTRACT

In this study, a method that aims at detecting small and faint objects

in noisy hyperspectral astrophysical images is presented. The par-

ticularity of the hyperspectral images that we are interested in is the

high dynamics between object intensities. Detection of the small-

est and faintest objects is challenging, because their signal-to-noise

ratio is low, and if the brightest objects are not well reconstructed,

their residuals can be more energetic than faint objects. This paper

proposes a marked point process within a nonparametric Bayesian

framework for the detection of galaxies in hyperspectral data. The

efficiency of the method is demonstrated on synthetic images, and it

provides good results for very faint objects in quasi-real astrophysi-

cal hyperspectral data.

Index Terms— Detection, nonparametric Bayesian models,

marked point process, hyperspectral data

1. INTRODUCTION

Over the last few decades, different research fields have used hy-

perspectral data to exploit spectral information, such as in biology,

astrophysics [1] and remote sensing [2]. Hyperspectral imaging de-

vices produce massive data fields that need to be treated efficiently.

This requires the development of algorithms that can take into ac-

count the mass of data, in order to overcome computational issues.

Hyperspectral imaging devices produce ever more spectrally and

spatially resolved images, and these lead to some processing difficul-

ties. First, there are the dimensions of the hyperspectral data cube,

whereby some observations can be made on a few thousands of spec-

tral bands, and the spatial resolution or the width of the observation

field requires an image a few hundreds of pixels wide. Then there

are the high dynamics between object intensities; indeed, objects that

are observed can be located at different astronomical distances from

the imaging device, and their intensity decreases with the distance

and the observation conditions. This leads to the third point: low

signal-to-noise ratio (SNR) for some faint objects, plus dilution of

information due to the optical device point spread function (PSF).

In the detection framework that we are interested in, the most

difficult signals to be detected have low spatial extension and a very

compact spectrum, and the maximum of their spectrum is close to

the noise amplitude. All of these constraints require very good re-

construction of extended and bright objects. Indeed, if the estimates

of the position, shape and intensity profile are not precise enough,

then the residuals of these objects can be stronger than small and

faint objects. Therefore, the detection of the object configuration

and the estimation of the noise residuals and error measurements

must be carried out jointly to have a chance of detecting small and

faint objects.

Many different detection processings have been reported in the

literature; see, for instance, [3] and [4] for reviews of supervised

techniques in a hyperspectral context. The main drawback of these

methods is the assumption that the noise properties are known a

priori. Recent studies have proposed the detection of sparse sig-

nals in noisy hyperspectral images [5], [6]. Sparse representation is

based on a dictionary of spectral components. In [5], a constrained

likelihood ratio was proposed that exploited the spread of the sig-

nal in three dimensions using the PSF. A specific dictionary that

was adapted to the signal to be detected was used to decrease the

false-alarm probability, and this dictionary was optimized by tech-

niques such as kernel singular value decomposition [7] or minimax

[8]. All of these methods perform pixel-wise processing and can

lead to tremendous computational issues.

To overcome these issues, the method proposed here favors an

object-oriented approach. Hence we propose a marked point process

that has often been used to model object configuration [9], [10]. The

estimation is reformulated in a nonparametric Bayesian framework.

A previous study was presented in [11] for the detection of galax-

ies in hyperspectral data cubes provided by the Multi-Unit Spectro-

scopic Explorer (MUSE) panoramic integral-field spectrograph. In

this paper, we propose an improvement of the Bayesian model to

account for the wide dynamics between the intensities of the differ-

ent galaxies to be detected. All of the regularization of the intensity

intrinsic to the Bayesian observation model described in [11] has

been replaced by a new approach to highlight the presence of small

and faint objects. The advantages of marked point processes and

the nonparametric Bayesian framework are preserved and frequen-

tist statistical tests as adapted to small and faint objects are used to

propose object positions. This allows the performance of the object

configuration sampling to be enhanced.

The proposed detection algorithm is applied to MUSE hyper-

spectral data that contain very faint light sources and bright objects,

as for nearby galaxies and stars in the field of observation. The

MUSE project aims to provide observations of the sky to astrophysi-

cists, and especially for distant galaxies [12], [13]. MUSE is planned

to be installed on the Very Large Telescope by the end of 2013. The

dimensions of the hyperspectral data cube are finally 300 × 300 pix-

els × 3600 wavelengths. One of the major scientific purposes of

MUSE is the detection of very distant galaxies where the spectrum

is composed of one faint and narrow line, called a Lyman-alpha line.

The detection challenge arises as the position of the galaxies in the

image and the position of the Lyman-alpha line in the spectrum are

unknown, as is the redshift related to the object velocity or distance.

This report is organized as follows. The nonparametric Bayesian

model is introduced in Section 2, and the detection method is pre-

sented in Section 3. Application to astrophysical data is shown in

Section 4, and some conclusions are drawn in the last section.



2. THE NONPARAMETRIC BAYESIAN MODEL

To model the object configuration u, a marked point process is used.

The realizations of this stochastic process belong to the infinite di-

mension space of all of the configuration with a finite number of

objects. An object is modeled as a point, i.e., a position in the im-

age, and some marks are added. In the galaxy detection application,

objects are characterized by an elliptical geometry that is governed

by some marks: length of semi-axes, orientation, and some other

additional marks related to the intensity profile. As we do not have

physical modeling of galaxies, a generic Sérsic profile [14] is used,

and the Sérsic index, which parameterizes this profile, belongs to the

marks of the objects. This process leads to a sparse representation

of the object configuration to be detected. The process is defined

by its density with respect to the probability measure of a reference

Poisson point process. This leads to a general and robust framework

that avoids penalizing the detection performance by some a-priori

information that can be misestimated.

2.1. Observation model

For the sake of simplicity, we assume the simplest case where the

object detection is on a single P × Q image (i.e., at a single wave-

length λ ∈ [1, . . . ,Λ]). However, the same model can be extended

to all of the images when the data is a stack of images.

Let y be the vectorized image, y is a M × 1 vector where M =
P × Q is the number of pixels. The objects are modeled by the

configuration u of marked points, which is assumed to be known in

this section. Formally, the detection of the different sources from the

observation y is addressed by:

y = Xw + 1m+ ǫBg, (1)

where m is the mean of the background intensity, 1 is a unit M × 1
vector, and ǫBg is a spatially centered white Gaussian noise M × 1
vector, such that:

ǫBg ∼ N (0, σ2IM ) (2)

where IM is the M × M identity matrix. The object configura-

tion u is represented by the matrix X =
[

x1 . . .xn(u)

]

which is a

M × n(u) matrix in which each column xj is the vectorized image

of a source uj that is convoluted with the impulse response of the

optical device, called a PSF. The number of detected objects is n(u)

and w =
[

w1, . . . , wn(u)

]T
∈ R

n(u) is the weights vector; i.e., the

intensities of each source of X .

Note that although a single image (at λ) is considered, the pixel

value is obtained from the three-dimensional imaging system. Thus,

the convolution between objects and the PSF can be written as fol-

lows:
xi = ui ∗H (3)

where ∗ is a three-dimensional convolution operator, and H is the

three-dimensional PSF of the instrument described in [15]. Here, r
and z are the spatial variables, while λ and µ are spectral variables,

and (r, λ) is the position of the pixel of interest. For a hyperspec-

tral imaging device, this PSF can be considered as separable into a

spatial component, the field spread function (FSF), and a spectral

component, the line spread function (LSF). Thus the PSF centered

on pixel (r, λ) reads as:

Hr,λ(z, µ) = Lr,λ(z, µ)Fr,λ(z, µ). (4)

Moreover, the FSF Fr,λ is considered as shift invariant in the ob-

servation field: Fr,λ(z, µ) = Fλ(z − r), and the LSF is spatially

constant and shows slow spectral variation, and thus it can be ap-

proximated by: Lr,λ(z, µ) = Lλ(µ). This finally yields the fol-

lowing expression of the PSF:

Hr,λ(z, µ) = Lλ(µ)Fλ(z − r) (5)

In the MUSE application, the PSF is modeled according to

Equation (5), where the FSF and LSF factors are well known by

instrument calibration. Finally, considering a single image (at λ)

makes sense, as in the overall model for the cube, it will be assumed

that the random noise fluctuations are independent versus λ. This

allows the same model to be considered from Equation (1) for all

λ, where u is uniquely defined with respect to m and σ2, which

depend on λ.

2.2. Likelihood function

The observation model defined in Equation (1) leads to the following

likelihood:

f(y|u,m, σ2) =

(

1

2πσ2

)M

2

exp

(

−
ZTZ

2σ2

)

(6)

where Z = y −Xw − 1m. We should recall that both m and σ2

depend on λ.

2.3. Background parameter priors

Using a fully Bayesian model for the data aims for the building of

an automatic and robust method. The Bayesian approach provides a

complete framework for combining data information, using the like-

lihood function and external knowledge of background parameters

(m,σ2) sampled from a prior (m,σ2). A noninformative Jeffrey’s

prior is chosen for (m,σ2):

p(m,σ2) =
1

σ2
1]0,+∞[(σ

2) (7)

Note that there is no regularization on m. In this case, its maximum

a-posteriori estimate reduces to the maximum likelihood one.

2.4. Object intensity prior

In a previous study [11], a Gaussian prior was investigated, and a

g-prior was introduced:

p(w|u, σ2, g2) ∼ N

(

0, g2σ2
(

X
T
X

)−1
)

(8)

where the hyperparameter g2 represents the a-priori SNR of the ob-

served scene:

E
[

(Xw)T (Xw)
]

E
[

ǫTBgǫBg

] =
Tr {E

[

wwT
]

XTX}

σ2 Tr {I}

=
Tr {g2σ2

(

XTX
)−1

XTX}

σ2 Tr {I}
= g2

(9)

This prior is adapted to detect objects that have similar dynamics,

because g2 is the same SNR for all of the objects in a single im-

age. This introduces too restrictive a constraint to detect objects with

large dynamics between the brightest objects and the faintest, as oc-

curs in the astrophysical application proposed in [11] and in Section

4 below.

In this paper, we consider the other solution that consists of us-

ing a noninformative prior on a w vector. Jeffrey’s prior is chosen

as:
p(w|u) ∝ 1R(w). (10)

2.5. Configuration prior

To avoid multiple detection, a hard core penalization is introduced to

prevent objects overlapping. Let r(ui, uj) be the overlapping ratio

between the energy distribution of two objects ui and uj . This ratio

r(ui, uj) ∈ [0, 1] leads to the consideration of a hard core penaliza-

tion term that is characterized by the following density with respect

to the reference measure µ(·):

h1(u) =

{

0 if it exists i 6= j such that r(ui, uj) > t,

1 otherwise,
for t ∈ [0, 1]



Let Y (r, :) be the 1×Λ vector that corresponds to the spectrum

at pixel r. To control the level of false alarms in the object detec-

tion procedure, the following hypotheses are assumed for each pixel

spectrum Y (r, :) = [y1(r), . . . ,yΛ(r)]:
{

H0 (absence of object) : Y (r, :) = ǫ(:)
H1 (presence of object) : Y (r, :) = α(r, :) + ǫ(:)

(11)

where ǫ is a 1 × Λ noise spectrum, ǫ(λ) ∼ N (mλ, σλ) for each

band λ with mλ and σλ as the noise parameters described in Equa-

tions (1) and (2). Let α(r, :) be the spectrum observed at r. As the

detector aims to find faint objects of low spatial extension and very

compact spectrum (a single spectral line), α(r, :) will be close to

the PSF. Thus. the hyperspectral data cube is processed with a filter

matched to the PSF cube, and statistics based on the maximum of

the filtered spectrum are used to highlight the Lyman-alpha emitter

characteristics. This yields the following binary test:

max
λ

(yf
λ(r))

H0

≶
H1

η(pFA), (12)

where y
f
λ(r) =

∑

z

∑

µ Hr,λ(z, µ)yµ(z) is the matched filter

statistics, and η(pFA) is the threshold corresponding to a given false

alarm pFA. Note that, because of the spectral correlation of yf (r, :),
it is not possible to obtain a tractable expression of η(pFA). How-

ever, this can be easily approximated by Monte-Carlo simulations,

with the parameters mλ and σλ replaced by some pre-processing es-

timates that are delivered with the MUSE data cube. This approach

is similar to a study presented by [5]. Another hard threshold penal-

ization term h2(u) is introduced to take into account the max-test

result:

h2(u) =

n(u)
∏

i=1

h2(ui) (13)
with

h2(ui) =

{

1 if max
λ

(yf (rui
, λ)) > η(pFA),

0 otherwise,

where rui
is the center of the object ui. Finally, h(u) = h1(u)h2(u).

2.6. Prior on the reference measure

The a-priori information regarding the number and location of the

objects being detected can be introduced into the intensity measure

of the reference nonhomogeneous Poisson point process.

As the matched filter statistics indicates the most likely loca-

tions, some classes Ci are created according to these statistics val-

ues. Typically, there are three classes: C3 contains each pixel under

the test statistics threshold, the other pixels are in C2, except for the

local maxima, which are in C1. A probability is associated with each

class to favor the proposition in the most probable class, such that

pC1 = 0.8, pC2 = 0.2, and pC3 = 0; as these last locations are not

detectable, this is equivalent to the constraint introduced by h2(u)
(Equation 13). This yields the following normalized intensity func-

tion λ(x) =
pCi

|Ci|
, where i is the class of the nearest pixel for the

location x, and |Ci| is the number of pixels in Ci.

Finally, the density of the process with respect to this normalized

Poisson point process measure [16, p. 15] is:

p(u|β) = βn(u)e−(β−1),

∝ βn(u)e−β . (14)

where n(u) is the number of objects in the configuration u, and β
is the mean number of objects. As there is no avaiblable information

about parameter β, a vague Gamma prior distribution is chosen:

p(β) =
βa−1e−β/b

Γ(a)ba
, ∀β ∈ R

+, (15)

where Γ(x) =
∫ +∞

0
tx−1e−tdt is the classical Gamma function,

and the hyperparameters are fixed to a = 1 and b = 103 to obtain

a sufficiently vague prior (with large variance). Using the Bayes

formula, the joint density becomes:

f(u, β) = f(u|β)p(β) ∝ βn(u) exp−

(

1 + b

b
β

)

. (16)

This density can be marginalized by integrating out β:

f(u) ∝ Γ (n(u) + 1))qn(u)+1, (17)

where q = b/(b+ 1).
This term defines the density of our reference process with re-

spect to the normalized Poisson process measure.

2.7. Posterior distribution

The resulting posterior density can be calculated, as:
p(u,w,m, σ2|y) ∝ p(y|w,m, σ2,u)p(w|u)p(m,σ2)p(u)

∝ exp

(

−
(y −Xw − 1m)T (y −Xw − 1m)

2σ2

)

×

(

1

2πσ2

)M

2

×
1

σ2
1]0,+∞[(σ

2)1R(w)1R(m)

× Γ (n(u) + 1)× qn(u)+1h(u)

(18)

This posterior distribution is marginalized by integrating out w, to

reduce the number of parameters to be estimated. After a straight-

forward calculation, the joint posterior distribution for both the con-

figuration u and parameters (m,σ2) becomes:

p(u,m, σ2|y) ∝ p(m,σ2|u,y)p(u)

∝ e
−

(y−1m)T (I−X(XT X)−1XT )(y−1m)

2σ2

×

(

1

σ2

)M

2

×
1

σ2
1]0,+∞[(σ

2)

× Γ (n(u) + 1)× qn(u)+1h(u)

(19)

Note that even if improper priors have been chosen (Equation 7), the

posterior densities of the background parameters are well-defined.

3. DETECTION METHOD

To enhance the performances of the configuration sampler, the

proposition map is the same as the intensity of the reference mea-

sure defined in 2.6. This allows the proposition for the most likely

locations according to the max-test statistics to be favored.

The reversible jump Monte Carlo Markov chain (RJMCMC)

algorithm [17] is used to sample the object configuration and back-

ground parameters. The RJMCMC algorithm is chosen first because

the dimension of the problem varies together with the number of

detected objects. A second reason lies in the simplicity to mix Gibbs

steps [18] for background parameters, sampling and Metropolis-

Hastings-Green moves to sample the configuration. In our case,

both the configuration and the noise parameters must be estimated.

Given the marginalized posterior distribution (Equation 19) the

conditional posterior distribution can be deduced for each back-

ground parameter given the other parameters. As Jeffrey’s priors

were chosen, these posterior distributions belong to classical distri-

bution families, and they can be sampled easily (see [11] for more

details). Thus, Gibbs moves are used to generate Markov chains

{m(t)}t and {σ2(t)}t.
For sampling the object configuration, different moves are used:

birth, death, modification of position, orientation, and dimension or



spatial profile. Birth moves consist of the adding of an object to the

current configuration u to build the new one (v), while death moves

randomly remove a single object of the configuration. Simple moves

such as translation, rotation, enlarge or shrink are applied to one

object selected with a uniform probability. All of these moves from a

configuration u to the configuration v are randomly accepted with a

probability min(1, r(u,v)), where r(u,v) denotes the Metropolis-

Hastings-Green ratio. This ratio depends on the transition kernels

associated with the different moves, as expressed in [11]. In the birth

case, the following Metropolis-Hastings-Green ratio is obtained:

r(u,v) =
p(v,m, σ2|y)

p(u,m, σ2|y)

pD(v)

pB(u)
, (20)

For a given configuration u, pB(u) denotes the probability to select

the birth move, while pD(u) = 1 − pB(u) is the probability to

choose the reversible move: the death move. In the death case, the

ratio becomes:

r(u,v) =
p(v,m, σ2|y)

p(u,m, σ2|y)

pB(v)

pD(u)

1

pS(ui|u)
, (21)

where pS(ui|u) is the uniform probability to select the object ui

in the configuration u. Simple moves on one object of the current

configuration can be viewed as the composition of a death move and

a birth move. Finally, the configuration that maximizes the posterior

density is selected as an approximation of the maximum a-posteriori

(MAP) estimator.

4. APPLICATION TO HYPERSPECTRAL DATA

The main challenge in hyperspectral MUSE data is the detection of

the faint galaxies that are buried in both the Gaussian noise and the

optical response of large and bright galaxies. Figure 1 shows typical

galaxy spectra observed using the MUSE instrument.
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Fig. 1: Typical spectra of bright (magenta) and faint (blue) galaxies.

The noise spectrum is in gray.

In this example, the faintest galaxy spectrum is much lower than

the noise level and it is at least 100-fold fainter than the brightest

galaxy spectrum. Lyman-alpha emitters are expected to show such

sparse and compact spectra. In the faint galaxy spectrum shown in

Figure 1, the position of the spectral line cannot be predicted because

of the redshift effect. As the MUSE instrument will be operational

in early 2014, we work here with a simulated quasi-real data cube

of 100 × 100 pixels by 3600 wavelengths that are provided by the

MUSE consortium. This contains eighteen typical objects that might

be observed by the MUSE instrument, and that are generated accord-

ing to some physical models or extracted from a catalog of galaxies.

Some of the objects show very low SNR, and the objective is to test

the performances of different algorithms on this cube. A sub-cube

of 28 × 26 pixels by 3600 wavelengths of these data has already

been used in [5], and our method here can be compared with the

constrained likelihood ratio proposed in [5] on this sub-cube.

Figure 2 presents the results obtained for 104 RJMCMC itera-

tions. A proposition map was calculated for a false alarm probability

of 2 × 10−2. The performances obtained for object detection from
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Fig. 2: The detection result over the whole cube, where the back-

ground image is the max-test result, and white pixels are under the

threshold. Ellipses correspond to the support of the Sérsic profile

at a decreasing rate of 63%, red ellipses represent good detection,

blue ellipses are false alarms, orange ellipses represent multiple de-

tections of extended objects, and green circles show where the de-

tection was missed. Inset: Zoom on a sub-cube that contains three

very faint Lyman-alpha objects.

these data are similar to those obtained from synthetic images (for

gravity reasons). The mean absolute error for the position is 0.5

pixel.Setting pFA = 2×10−2, 16 out of 18 objects are well detected.

The undetected objects have very low SNR, and they are likely to

be below the detection limit for this kind of data. Setting the pFA

to the same value as in [5], this provides results that are compara-

ble to those obtained by the pixel-wise constrained likelihood ratios

based method presented in [5] on the sub-cube displayed in the in-

sert of Figure 2. Note, however, that with our model, the position is

considered as continuous in the image. This is expected to improve

the detection performances, as it allows a better registration of the

PSF with the observed pixelized image. Moreover, the object marks

corresponding to the Sérsic profile parameters, which are related to

the spatial profile for each galaxy, are also sampled and estimated

to account more accurately for their spatial response. Finally, the

nonparametric Bayesian framework provides the advantage that the

multiple detection problem can be addressed directly, and the back-

ground parameters m and σ2 can be re-estimated taking into account

the objects already detected. These new values can also be used to

compute the configuration prior h2 (Equation 13), by replacing the

first estimate of m and σ2 provided with the cube. This would al-

low the map of proposed objects to be updated over the detection

process, and the object detection performance to be enhanced. This

refinement is the purpose of our ongoing study.

5. CONCLUSION

In this communication, we have explored the ability of a point pro-

cess model formulated in a nonparametric Bayesian framework to

detect astrophysical objects in a large hyperspectral data cube. Al-

though there have been similar studies, we have developed an orig-

inal approach where strong regularization is replaced by a statisti-

cal test that is better suited to detect sparse faint objects. The pro-

posed approach shows improved performance where objects might

have extremely different SNR. Furthermore, this approach provides

a means to detect super-resolved positions, and it can easily be ex-

tended to large datasets at reasonable computational cost.

6. ACKNOWLEDGMENT

The authors thank Roland Bacon and Johan Richard for providing

the hyperspectral MUSE data. They also thank David Mary, Andre

Ferrari and Eric Slezak for fruitful discussions.



7. REFERENCES

[1] B. R. Oppenheimer et al., “Project 1640: the world’s first exao

coronographic hyperspectral imager for comparative palnetary

science,” in Adaptative Optics systems III, Proceeding of SPIE,

2012, vol. 8447.

[2] A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock,

“Imaging spectroscopy for earth remote sensing,” Science, vol.

228, pp. 1147–1153, 1985.

[3] D. Manolakis and G. A. Shaw, “Detection algorithms for

hyperspectral imaging application,” IEEE Signal Processing

Magazine, January 2002.

[4] D. Manolakis, D. Marden, and G. A. Shaw, “Hyperspectral

image processing for automatic target detection applications,”

Lincoln Laboratory Journal, vol. 14, 2003.

[5] Silvia Paris, R.F.R. Suleiman, David Mary, and Andre Ferrari,

“Constrained likelihood ratios for detecting sparse signals in

highly noisy 3d data,” in International Conference on Acous-

tics, Speech and Signal Processing, 2013.

[6] Sebastion Bourguigon and Slezak Eric Mary David, “Process-

ing muse hyperspectral data: Denoising, deconvolution and

detection of astrophysical sources,” Statistical Methodology,

2011.

[7] M. Aharon, M. Elad, and A. Bruckstein, “K-svd: An algorithm

for designing overcomplete dictionaries for sparse representa-

tion,” Signal Processing, IEEE Transactions on, vol. 54, no.

11, pp. 4311–4322, 2006.

[8] R.F.R. Suleiman, D. Mary, and A. Ferrari, “Minimax sparse

detection based on one-class classifiers,” in Acoustics, Speech

and Signal Processing (ICASSP), 2013 IEEE International

Conference on, 2013, pp. 5553–5557.

[9] C. Lacoste, X. Descombes, and J. Zerubia, “Point processes for

unsupervised line network extraction in remote sensing,” IEEE

Transactions on pattern analysis and machine intelligence, vol.

27, 2005.

[10] Mathias Ortner, Xavier Descombes, and Josiane Zerubia,

“Building outline extraction from digital elevation models us-

ing marked point processes,” International Journal of Com-

puter Vision, vol. 72, no. 2, pp. 107–132, 2007.

[11] F. Chatelain, A. Costard, and O. Michel, “A bayesian marked

point process for object detection. Application to MUSE hy-

perspectral data,” in International Conference on Acoustics,

Speech and Signal Processing, 2011.

[12] “Muse project website,” http://muse.univ-lyon1.fr.

[13] R. Bacon et al., “Probing unexplored territories with MUSE :

a second generation instrument for the VLT,” in SPIE 6265,

2006.

[14] J. L. Sersic, “Influence of the atmospheric and instrumental

dispersion on the brightness distribution in a galaxy,” Bulletin

of the Astronomical Association of Argentina, pp. 41–43, 1963.

[15] Denis Serre, Emma Villeneuve, Hervé Carfantan, Lau-
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